1 //===- DynamicTypePropagation.cpp ------------------------------*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains two checkers. One helps the static analyzer core to track
11 // types, the other does type inference on Obj-C generics and report type
12 // errors.
13 //
14 // Dynamic Type Propagation:
15 // This checker defines the rules for dynamic type gathering and propagation.
16 //
17 // Generics Checker for Objective-C:
18 // This checker tries to find type errors that the compiler is not able to catch
19 // due to the implicit conversions that were introduced for backward
20 // compatibility.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "ClangSACheckers.h"
25 #include "clang/AST/RecursiveASTVisitor.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
28 #include "clang/StaticAnalyzer/Core/Checker.h"
29 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
34 
35 using namespace clang;
36 using namespace ento;
37 
38 // ProgramState trait - The type inflation is tracked by DynamicTypeMap. This is
39 // an auxiliary map that tracks more information about generic types, because in
40 // some cases the most derived type is not the most informative one about the
41 // type parameters. This types that are stored for each symbol in this map must
42 // be specialized.
43 // TODO: In some case the type stored in this map is exactly the same that is
44 // stored in DynamicTypeMap. We should no store duplicated information in those
45 // cases.
46 REGISTER_MAP_WITH_PROGRAMSTATE(MostSpecializedTypeArgsMap, SymbolRef,
47                                const ObjCObjectPointerType *)
48 
49 namespace {
50 class DynamicTypePropagation:
51     public Checker< check::PreCall,
52                     check::PostCall,
53                     check::DeadSymbols,
54                     check::PostStmt<CastExpr>,
55                     check::PostStmt<CXXNewExpr>,
56                     check::PreObjCMessage,
57                     check::PostObjCMessage > {
58   const ObjCObjectType *getObjectTypeForAllocAndNew(const ObjCMessageExpr *MsgE,
59                                                     CheckerContext &C) const;
60 
61   /// \brief Return a better dynamic type if one can be derived from the cast.
62   const ObjCObjectPointerType *getBetterObjCType(const Expr *CastE,
63                                                  CheckerContext &C) const;
64 
65   ExplodedNode *dynamicTypePropagationOnCasts(const CastExpr *CE,
66                                               ProgramStateRef &State,
67                                               CheckerContext &C) const;
68 
69   mutable std::unique_ptr<BugType> ObjCGenericsBugType;
initBugType() const70   void initBugType() const {
71     if (!ObjCGenericsBugType)
72       ObjCGenericsBugType.reset(
73           new BugType(this, "Generics", categories::CoreFoundationObjectiveC));
74   }
75 
76   class GenericsBugVisitor : public BugReporterVisitorImpl<GenericsBugVisitor> {
77   public:
GenericsBugVisitor(SymbolRef S)78     GenericsBugVisitor(SymbolRef S) : Sym(S) {}
79 
Profile(llvm::FoldingSetNodeID & ID) const80     void Profile(llvm::FoldingSetNodeID &ID) const override {
81       static int X = 0;
82       ID.AddPointer(&X);
83       ID.AddPointer(Sym);
84     }
85 
86     PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
87                                    const ExplodedNode *PrevN,
88                                    BugReporterContext &BRC,
89                                    BugReport &BR) override;
90 
91   private:
92     // The tracked symbol.
93     SymbolRef Sym;
94   };
95 
96   void reportGenericsBug(const ObjCObjectPointerType *From,
97                          const ObjCObjectPointerType *To, ExplodedNode *N,
98                          SymbolRef Sym, CheckerContext &C,
99                          const Stmt *ReportedNode = nullptr) const;
100 
101 public:
102   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
103   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
104   void checkPostStmt(const CastExpr *CastE, CheckerContext &C) const;
105   void checkPostStmt(const CXXNewExpr *NewE, CheckerContext &C) const;
106   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
107   void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
108   void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
109 
110   /// This value is set to true, when the Generics checker is turned on.
111   DefaultBool CheckGenerics;
112 };
113 } // end anonymous namespace
114 
checkDeadSymbols(SymbolReaper & SR,CheckerContext & C) const115 void DynamicTypePropagation::checkDeadSymbols(SymbolReaper &SR,
116                                               CheckerContext &C) const {
117   ProgramStateRef State = C.getState();
118   DynamicTypeMapImpl TypeMap = State->get<DynamicTypeMap>();
119   for (DynamicTypeMapImpl::iterator I = TypeMap.begin(), E = TypeMap.end();
120        I != E; ++I) {
121     if (!SR.isLiveRegion(I->first)) {
122       State = State->remove<DynamicTypeMap>(I->first);
123     }
124   }
125 
126   if (!SR.hasDeadSymbols()) {
127     C.addTransition(State);
128     return;
129   }
130 
131   MostSpecializedTypeArgsMapTy TyArgMap =
132       State->get<MostSpecializedTypeArgsMap>();
133   for (MostSpecializedTypeArgsMapTy::iterator I = TyArgMap.begin(),
134                                               E = TyArgMap.end();
135        I != E; ++I) {
136     if (SR.isDead(I->first)) {
137       State = State->remove<MostSpecializedTypeArgsMap>(I->first);
138     }
139   }
140 
141   C.addTransition(State);
142 }
143 
recordFixedType(const MemRegion * Region,const CXXMethodDecl * MD,CheckerContext & C)144 static void recordFixedType(const MemRegion *Region, const CXXMethodDecl *MD,
145                             CheckerContext &C) {
146   assert(Region);
147   assert(MD);
148 
149   ASTContext &Ctx = C.getASTContext();
150   QualType Ty = Ctx.getPointerType(Ctx.getRecordType(MD->getParent()));
151 
152   ProgramStateRef State = C.getState();
153   State = setDynamicTypeInfo(State, Region, Ty, /*CanBeSubclass=*/false);
154   C.addTransition(State);
155 }
156 
checkPreCall(const CallEvent & Call,CheckerContext & C) const157 void DynamicTypePropagation::checkPreCall(const CallEvent &Call,
158                                           CheckerContext &C) const {
159   if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
160     // C++11 [class.cdtor]p4: When a virtual function is called directly or
161     //   indirectly from a constructor or from a destructor, including during
162     //   the construction or destruction of the class's non-static data members,
163     //   and the object to which the call applies is the object under
164     //   construction or destruction, the function called is the final overrider
165     //   in the constructor's or destructor's class and not one overriding it in
166     //   a more-derived class.
167 
168     switch (Ctor->getOriginExpr()->getConstructionKind()) {
169     case CXXConstructExpr::CK_Complete:
170     case CXXConstructExpr::CK_Delegating:
171       // No additional type info necessary.
172       return;
173     case CXXConstructExpr::CK_NonVirtualBase:
174     case CXXConstructExpr::CK_VirtualBase:
175       if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion())
176         recordFixedType(Target, Ctor->getDecl(), C);
177       return;
178     }
179 
180     return;
181   }
182 
183   if (const CXXDestructorCall *Dtor = dyn_cast<CXXDestructorCall>(&Call)) {
184     // C++11 [class.cdtor]p4 (see above)
185     if (!Dtor->isBaseDestructor())
186       return;
187 
188     const MemRegion *Target = Dtor->getCXXThisVal().getAsRegion();
189     if (!Target)
190       return;
191 
192     const Decl *D = Dtor->getDecl();
193     if (!D)
194       return;
195 
196     recordFixedType(Target, cast<CXXDestructorDecl>(D), C);
197     return;
198   }
199 }
200 
checkPostCall(const CallEvent & Call,CheckerContext & C) const201 void DynamicTypePropagation::checkPostCall(const CallEvent &Call,
202                                            CheckerContext &C) const {
203   // We can obtain perfect type info for return values from some calls.
204   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
205 
206     // Get the returned value if it's a region.
207     const MemRegion *RetReg = Call.getReturnValue().getAsRegion();
208     if (!RetReg)
209       return;
210 
211     ProgramStateRef State = C.getState();
212     const ObjCMethodDecl *D = Msg->getDecl();
213 
214     if (D && D->hasRelatedResultType()) {
215       switch (Msg->getMethodFamily()) {
216       default:
217         break;
218 
219       // We assume that the type of the object returned by alloc and new are the
220       // pointer to the object of the class specified in the receiver of the
221       // message.
222       case OMF_alloc:
223       case OMF_new: {
224         // Get the type of object that will get created.
225         const ObjCMessageExpr *MsgE = Msg->getOriginExpr();
226         const ObjCObjectType *ObjTy = getObjectTypeForAllocAndNew(MsgE, C);
227         if (!ObjTy)
228           return;
229         QualType DynResTy =
230                  C.getASTContext().getObjCObjectPointerType(QualType(ObjTy, 0));
231         C.addTransition(setDynamicTypeInfo(State, RetReg, DynResTy, false));
232         break;
233       }
234       case OMF_init: {
235         // Assume, the result of the init method has the same dynamic type as
236         // the receiver and propagate the dynamic type info.
237         const MemRegion *RecReg = Msg->getReceiverSVal().getAsRegion();
238         if (!RecReg)
239           return;
240         DynamicTypeInfo RecDynType = getDynamicTypeInfo(State, RecReg);
241         C.addTransition(setDynamicTypeInfo(State, RetReg, RecDynType));
242         break;
243       }
244       }
245     }
246     return;
247   }
248 
249   if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
250     // We may need to undo the effects of our pre-call check.
251     switch (Ctor->getOriginExpr()->getConstructionKind()) {
252     case CXXConstructExpr::CK_Complete:
253     case CXXConstructExpr::CK_Delegating:
254       // No additional work necessary.
255       // Note: This will leave behind the actual type of the object for
256       // complete constructors, but arguably that's a good thing, since it
257       // means the dynamic type info will be correct even for objects
258       // constructed with operator new.
259       return;
260     case CXXConstructExpr::CK_NonVirtualBase:
261     case CXXConstructExpr::CK_VirtualBase:
262       if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion()) {
263         // We just finished a base constructor. Now we can use the subclass's
264         // type when resolving virtual calls.
265         const Decl *D = C.getLocationContext()->getDecl();
266         recordFixedType(Target, cast<CXXConstructorDecl>(D), C);
267       }
268       return;
269     }
270   }
271 }
272 
273 /// TODO: Handle explicit casts.
274 ///       Handle C++ casts.
275 ///
276 /// Precondition: the cast is between ObjCObjectPointers.
dynamicTypePropagationOnCasts(const CastExpr * CE,ProgramStateRef & State,CheckerContext & C) const277 ExplodedNode *DynamicTypePropagation::dynamicTypePropagationOnCasts(
278     const CastExpr *CE, ProgramStateRef &State, CheckerContext &C) const {
279   // We only track type info for regions.
280   const MemRegion *ToR = C.getSVal(CE).getAsRegion();
281   if (!ToR)
282     return C.getPredecessor();
283 
284   if (isa<ExplicitCastExpr>(CE))
285     return C.getPredecessor();
286 
287   if (const Type *NewTy = getBetterObjCType(CE, C)) {
288     State = setDynamicTypeInfo(State, ToR, QualType(NewTy, 0));
289     return C.addTransition(State);
290   }
291   return C.getPredecessor();
292 }
293 
checkPostStmt(const CXXNewExpr * NewE,CheckerContext & C) const294 void DynamicTypePropagation::checkPostStmt(const CXXNewExpr *NewE,
295                                            CheckerContext &C) const {
296   if (NewE->isArray())
297     return;
298 
299   // We only track dynamic type info for regions.
300   const MemRegion *MR = C.getSVal(NewE).getAsRegion();
301   if (!MR)
302     return;
303 
304   C.addTransition(setDynamicTypeInfo(C.getState(), MR, NewE->getType(),
305                                      /*CanBeSubclass=*/false));
306 }
307 
308 const ObjCObjectType *
getObjectTypeForAllocAndNew(const ObjCMessageExpr * MsgE,CheckerContext & C) const309 DynamicTypePropagation::getObjectTypeForAllocAndNew(const ObjCMessageExpr *MsgE,
310                                                     CheckerContext &C) const {
311   if (MsgE->getReceiverKind() == ObjCMessageExpr::Class) {
312     if (const ObjCObjectType *ObjTy
313           = MsgE->getClassReceiver()->getAs<ObjCObjectType>())
314     return ObjTy;
315   }
316 
317   if (MsgE->getReceiverKind() == ObjCMessageExpr::SuperClass) {
318     if (const ObjCObjectType *ObjTy
319           = MsgE->getSuperType()->getAs<ObjCObjectType>())
320       return ObjTy;
321   }
322 
323   const Expr *RecE = MsgE->getInstanceReceiver();
324   if (!RecE)
325     return nullptr;
326 
327   RecE= RecE->IgnoreParenImpCasts();
328   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(RecE)) {
329     const StackFrameContext *SFCtx = C.getStackFrame();
330     // Are we calling [self alloc]? If this is self, get the type of the
331     // enclosing ObjC class.
332     if (DRE->getDecl() == SFCtx->getSelfDecl()) {
333       if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(SFCtx->getDecl()))
334         if (const ObjCObjectType *ObjTy =
335             dyn_cast<ObjCObjectType>(MD->getClassInterface()->getTypeForDecl()))
336           return ObjTy;
337     }
338   }
339   return nullptr;
340 }
341 
342 // Return a better dynamic type if one can be derived from the cast.
343 // Compare the current dynamic type of the region and the new type to which we
344 // are casting. If the new type is lower in the inheritance hierarchy, pick it.
345 const ObjCObjectPointerType *
getBetterObjCType(const Expr * CastE,CheckerContext & C) const346 DynamicTypePropagation::getBetterObjCType(const Expr *CastE,
347                                           CheckerContext &C) const {
348   const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
349   assert(ToR);
350 
351   // Get the old and new types.
352   const ObjCObjectPointerType *NewTy =
353       CastE->getType()->getAs<ObjCObjectPointerType>();
354   if (!NewTy)
355     return nullptr;
356   QualType OldDTy = getDynamicTypeInfo(C.getState(), ToR).getType();
357   if (OldDTy.isNull()) {
358     return NewTy;
359   }
360   const ObjCObjectPointerType *OldTy =
361     OldDTy->getAs<ObjCObjectPointerType>();
362   if (!OldTy)
363     return nullptr;
364 
365   // Id the old type is 'id', the new one is more precise.
366   if (OldTy->isObjCIdType() && !NewTy->isObjCIdType())
367     return NewTy;
368 
369   // Return new if it's a subclass of old.
370   const ObjCInterfaceDecl *ToI = NewTy->getInterfaceDecl();
371   const ObjCInterfaceDecl *FromI = OldTy->getInterfaceDecl();
372   if (ToI && FromI && FromI->isSuperClassOf(ToI))
373     return NewTy;
374 
375   return nullptr;
376 }
377 
getMostInformativeDerivedClassImpl(const ObjCObjectPointerType * From,const ObjCObjectPointerType * To,const ObjCObjectPointerType * MostInformativeCandidate,ASTContext & C)378 static const ObjCObjectPointerType *getMostInformativeDerivedClassImpl(
379     const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
380     const ObjCObjectPointerType *MostInformativeCandidate, ASTContext &C) {
381   // Checking if from and to are the same classes modulo specialization.
382   if (From->getInterfaceDecl()->getCanonicalDecl() ==
383       To->getInterfaceDecl()->getCanonicalDecl()) {
384     if (To->isSpecialized()) {
385       assert(MostInformativeCandidate->isSpecialized());
386       return MostInformativeCandidate;
387     }
388     return From;
389   }
390 
391   if (To->getObjectType()->getSuperClassType().isNull()) {
392     // If To has no super class and From and To aren't the same then
393     // To was not actually a descendent of From. In this case the best we can
394     // do is 'From'.
395     return From;
396   }
397 
398   const auto *SuperOfTo =
399       To->getObjectType()->getSuperClassType()->getAs<ObjCObjectType>();
400   assert(SuperOfTo);
401   QualType SuperPtrOfToQual =
402       C.getObjCObjectPointerType(QualType(SuperOfTo, 0));
403   const auto *SuperPtrOfTo = SuperPtrOfToQual->getAs<ObjCObjectPointerType>();
404   if (To->isUnspecialized())
405     return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo, SuperPtrOfTo,
406                                               C);
407   else
408     return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo,
409                                               MostInformativeCandidate, C);
410 }
411 
412 /// A downcast may loose specialization information. E. g.:
413 ///   MutableMap<T, U> : Map
414 /// The downcast to MutableMap looses the information about the types of the
415 /// Map (due to the type parameters are not being forwarded to Map), and in
416 /// general there is no way to recover that information from the
417 /// declaration. In order to have to most information, lets find the most
418 /// derived type that has all the type parameters forwarded.
419 ///
420 /// Get the a subclass of \p From (which has a lower bound \p To) that do not
421 /// loose information about type parameters. \p To has to be a subclass of
422 /// \p From. From has to be specialized.
423 static const ObjCObjectPointerType *
getMostInformativeDerivedClass(const ObjCObjectPointerType * From,const ObjCObjectPointerType * To,ASTContext & C)424 getMostInformativeDerivedClass(const ObjCObjectPointerType *From,
425                                const ObjCObjectPointerType *To, ASTContext &C) {
426   return getMostInformativeDerivedClassImpl(From, To, To, C);
427 }
428 
429 /// Inputs:
430 ///   \param StaticLowerBound Static lower bound for a symbol. The dynamic lower
431 ///   bound might be the subclass of this type.
432 ///   \param StaticUpperBound A static upper bound for a symbol.
433 ///   \p StaticLowerBound expected to be the subclass of \p StaticUpperBound.
434 ///   \param Current The type that was inferred for a symbol in a previous
435 ///   context. Might be null when this is the first time that inference happens.
436 /// Precondition:
437 ///   \p StaticLowerBound or \p StaticUpperBound is specialized. If \p Current
438 ///   is not null, it is specialized.
439 /// Possible cases:
440 ///   (1) The \p Current is null and \p StaticLowerBound <: \p StaticUpperBound
441 ///   (2) \p StaticLowerBound <: \p Current <: \p StaticUpperBound
442 ///   (3) \p Current <: \p StaticLowerBound <: \p StaticUpperBound
443 ///   (4) \p StaticLowerBound <: \p StaticUpperBound <: \p Current
444 /// Effect:
445 ///   Use getMostInformativeDerivedClass with the upper and lower bound of the
446 ///   set {\p StaticLowerBound, \p Current, \p StaticUpperBound}. The computed
447 ///   lower bound must be specialized. If the result differs from \p Current or
448 ///   \p Current is null, store the result.
449 static bool
storeWhenMoreInformative(ProgramStateRef & State,SymbolRef Sym,const ObjCObjectPointerType * const * Current,const ObjCObjectPointerType * StaticLowerBound,const ObjCObjectPointerType * StaticUpperBound,ASTContext & C)450 storeWhenMoreInformative(ProgramStateRef &State, SymbolRef Sym,
451                          const ObjCObjectPointerType *const *Current,
452                          const ObjCObjectPointerType *StaticLowerBound,
453                          const ObjCObjectPointerType *StaticUpperBound,
454                          ASTContext &C) {
455   // TODO: The above 4 cases are not exhaustive. In particular, it is possible
456   // for Current to be incomparable with StaticLowerBound, StaticUpperBound,
457   // or both.
458   //
459   // For example, suppose Foo<T> and Bar<T> are unrelated types.
460   //
461   //  Foo<T> *f = ...
462   //  Bar<T> *b = ...
463   //
464   //  id t1 = b;
465   //  f = t1;
466   //  id t2 = f; // StaticLowerBound is Foo<T>, Current is Bar<T>
467   //
468   // We should either constrain the callers of this function so that the stated
469   // preconditions hold (and assert it) or rewrite the function to expicitly
470   // handle the additional cases.
471 
472   // Precondition
473   assert(StaticUpperBound->isSpecialized() ||
474          StaticLowerBound->isSpecialized());
475   assert(!Current || (*Current)->isSpecialized());
476 
477   // Case (1)
478   if (!Current) {
479     if (StaticUpperBound->isUnspecialized()) {
480       State = State->set<MostSpecializedTypeArgsMap>(Sym, StaticLowerBound);
481       return true;
482     }
483     // Upper bound is specialized.
484     const ObjCObjectPointerType *WithMostInfo =
485         getMostInformativeDerivedClass(StaticUpperBound, StaticLowerBound, C);
486     State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
487     return true;
488   }
489 
490   // Case (3)
491   if (C.canAssignObjCInterfaces(StaticLowerBound, *Current)) {
492     return false;
493   }
494 
495   // Case (4)
496   if (C.canAssignObjCInterfaces(*Current, StaticUpperBound)) {
497     // The type arguments might not be forwarded at any point of inheritance.
498     const ObjCObjectPointerType *WithMostInfo =
499         getMostInformativeDerivedClass(*Current, StaticUpperBound, C);
500     WithMostInfo =
501         getMostInformativeDerivedClass(WithMostInfo, StaticLowerBound, C);
502     if (WithMostInfo == *Current)
503       return false;
504     State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
505     return true;
506   }
507 
508   // Case (2)
509   const ObjCObjectPointerType *WithMostInfo =
510       getMostInformativeDerivedClass(*Current, StaticLowerBound, C);
511   if (WithMostInfo != *Current) {
512     State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
513     return true;
514   }
515 
516   return false;
517 }
518 
519 /// Type inference based on static type information that is available for the
520 /// cast and the tracked type information for the given symbol. When the tracked
521 /// symbol and the destination type of the cast are unrelated, report an error.
checkPostStmt(const CastExpr * CE,CheckerContext & C) const522 void DynamicTypePropagation::checkPostStmt(const CastExpr *CE,
523                                            CheckerContext &C) const {
524   if (CE->getCastKind() != CK_BitCast)
525     return;
526 
527   QualType OriginType = CE->getSubExpr()->getType();
528   QualType DestType = CE->getType();
529 
530   const auto *OrigObjectPtrType = OriginType->getAs<ObjCObjectPointerType>();
531   const auto *DestObjectPtrType = DestType->getAs<ObjCObjectPointerType>();
532 
533   if (!OrigObjectPtrType || !DestObjectPtrType)
534     return;
535 
536   ProgramStateRef State = C.getState();
537   ExplodedNode *AfterTypeProp = dynamicTypePropagationOnCasts(CE, State, C);
538 
539   ASTContext &ASTCtxt = C.getASTContext();
540 
541   // This checker detects the subtyping relationships using the assignment
542   // rules. In order to be able to do this the kindofness must be stripped
543   // first. The checker treats every type as kindof type anyways: when the
544   // tracked type is the subtype of the static type it tries to look up the
545   // methods in the tracked type first.
546   OrigObjectPtrType = OrigObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
547   DestObjectPtrType = DestObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
548 
549   // TODO: erase tracked information when there is a cast to unrelated type
550   //       and everything is unspecialized statically.
551   if (OrigObjectPtrType->isUnspecialized() &&
552       DestObjectPtrType->isUnspecialized())
553     return;
554 
555   SymbolRef Sym = State->getSVal(CE, C.getLocationContext()).getAsSymbol();
556   if (!Sym)
557     return;
558 
559   // Check which assignments are legal.
560   bool OrigToDest =
561       ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, OrigObjectPtrType);
562   bool DestToOrig =
563       ASTCtxt.canAssignObjCInterfaces(OrigObjectPtrType, DestObjectPtrType);
564   const ObjCObjectPointerType *const *TrackedType =
565       State->get<MostSpecializedTypeArgsMap>(Sym);
566 
567   // Downcasts and upcasts handled in an uniform way regardless of being
568   // explicit. Explicit casts however can happen between mismatched types.
569   if (isa<ExplicitCastExpr>(CE) && !OrigToDest && !DestToOrig) {
570     // Mismatched types. If the DestType specialized, store it. Forget the
571     // tracked type otherwise.
572     if (DestObjectPtrType->isSpecialized()) {
573       State = State->set<MostSpecializedTypeArgsMap>(Sym, DestObjectPtrType);
574       C.addTransition(State, AfterTypeProp);
575     } else if (TrackedType) {
576       State = State->remove<MostSpecializedTypeArgsMap>(Sym);
577       C.addTransition(State, AfterTypeProp);
578     }
579     return;
580   }
581 
582   // The tracked type should be the sub or super class of the static destination
583   // type. When an (implicit) upcast or a downcast happens according to static
584   // types, and there is no subtyping relationship between the tracked and the
585   // static destination types, it indicates an error.
586   if (TrackedType &&
587       !ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, *TrackedType) &&
588       !ASTCtxt.canAssignObjCInterfaces(*TrackedType, DestObjectPtrType)) {
589     static CheckerProgramPointTag IllegalConv(this, "IllegalConversion");
590     ExplodedNode *N = C.addTransition(State, AfterTypeProp, &IllegalConv);
591     reportGenericsBug(*TrackedType, DestObjectPtrType, N, Sym, C);
592     return;
593   }
594 
595   // Handle downcasts and upcasts.
596 
597   const ObjCObjectPointerType *LowerBound = DestObjectPtrType;
598   const ObjCObjectPointerType *UpperBound = OrigObjectPtrType;
599   if (OrigToDest && !DestToOrig)
600     std::swap(LowerBound, UpperBound);
601 
602   // The id type is not a real bound. Eliminate it.
603   LowerBound = LowerBound->isObjCIdType() ? UpperBound : LowerBound;
604   UpperBound = UpperBound->isObjCIdType() ? LowerBound : UpperBound;
605 
606   if (storeWhenMoreInformative(State, Sym, TrackedType, LowerBound, UpperBound,
607                                ASTCtxt)) {
608     C.addTransition(State, AfterTypeProp);
609   }
610 }
611 
stripCastsAndSugar(const Expr * E)612 static const Expr *stripCastsAndSugar(const Expr *E) {
613   E = E->IgnoreParenImpCasts();
614   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
615     E = POE->getSyntacticForm()->IgnoreParenImpCasts();
616   if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
617     E = OVE->getSourceExpr()->IgnoreParenImpCasts();
618   return E;
619 }
620 
isObjCTypeParamDependent(QualType Type)621 static bool isObjCTypeParamDependent(QualType Type) {
622   // It is illegal to typedef parameterized types inside an interface. Therfore
623   // an Objective-C type can only be dependent on a type parameter when the type
624   // parameter structurally present in the type itself.
625   class IsObjCTypeParamDependentTypeVisitor
626       : public RecursiveASTVisitor<IsObjCTypeParamDependentTypeVisitor> {
627   public:
628     IsObjCTypeParamDependentTypeVisitor() : Result(false) {}
629     bool VisitTypedefType(const TypedefType *Type) {
630       if (isa<ObjCTypeParamDecl>(Type->getDecl())) {
631         Result = true;
632         return false;
633       }
634       return true;
635     }
636 
637     bool Result;
638   };
639 
640   IsObjCTypeParamDependentTypeVisitor Visitor;
641   Visitor.TraverseType(Type);
642   return Visitor.Result;
643 }
644 
645 /// A method might not be available in the interface indicated by the static
646 /// type. However it might be available in the tracked type. In order to
647 /// properly substitute the type parameters we need the declaration context of
648 /// the method. The more specialized the enclosing class of the method is, the
649 /// more likely that the parameter substitution will be successful.
650 static const ObjCMethodDecl *
findMethodDecl(const ObjCMessageExpr * MessageExpr,const ObjCObjectPointerType * TrackedType,ASTContext & ASTCtxt)651 findMethodDecl(const ObjCMessageExpr *MessageExpr,
652                const ObjCObjectPointerType *TrackedType, ASTContext &ASTCtxt) {
653   const ObjCMethodDecl *Method = nullptr;
654 
655   QualType ReceiverType = MessageExpr->getReceiverType();
656   const auto *ReceiverObjectPtrType =
657       ReceiverType->getAs<ObjCObjectPointerType>();
658 
659   // Do this "devirtualization" on instance and class methods only. Trust the
660   // static type on super and super class calls.
661   if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Instance ||
662       MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
663     // When the receiver type is id, Class, or some super class of the tracked
664     // type, look up the method in the tracked type, not in the receiver type.
665     // This way we preserve more information.
666     if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType() ||
667         ASTCtxt.canAssignObjCInterfaces(ReceiverObjectPtrType, TrackedType)) {
668       const ObjCInterfaceDecl *InterfaceDecl = TrackedType->getInterfaceDecl();
669       // The method might not be found.
670       Selector Sel = MessageExpr->getSelector();
671       Method = InterfaceDecl->lookupInstanceMethod(Sel);
672       if (!Method)
673         Method = InterfaceDecl->lookupClassMethod(Sel);
674     }
675   }
676 
677   // Fallback to statick method lookup when the one based on the tracked type
678   // failed.
679   return Method ? Method : MessageExpr->getMethodDecl();
680 }
681 
682 /// Get the returned ObjCObjectPointerType by a method based on the tracked type
683 /// information, or null pointer when the returned type is not an
684 /// ObjCObjectPointerType.
getReturnTypeForMethod(const ObjCMethodDecl * Method,ArrayRef<QualType> TypeArgs,const ObjCObjectPointerType * SelfType,ASTContext & C)685 static QualType getReturnTypeForMethod(
686     const ObjCMethodDecl *Method, ArrayRef<QualType> TypeArgs,
687     const ObjCObjectPointerType *SelfType, ASTContext &C) {
688   QualType StaticResultType = Method->getReturnType();
689 
690   // Is the return type declared as instance type?
691   if (StaticResultType == C.getObjCInstanceType())
692     return QualType(SelfType, 0);
693 
694   // Check whether the result type depends on a type parameter.
695   if (!isObjCTypeParamDependent(StaticResultType))
696     return QualType();
697 
698   QualType ResultType = StaticResultType.substObjCTypeArgs(
699       C, TypeArgs, ObjCSubstitutionContext::Result);
700 
701   return ResultType;
702 }
703 
704 /// When the receiver has a tracked type, use that type to validate the
705 /// argumments of the message expression and the return value.
checkPreObjCMessage(const ObjCMethodCall & M,CheckerContext & C) const706 void DynamicTypePropagation::checkPreObjCMessage(const ObjCMethodCall &M,
707                                                  CheckerContext &C) const {
708   ProgramStateRef State = C.getState();
709   SymbolRef Sym = M.getReceiverSVal().getAsSymbol();
710   if (!Sym)
711     return;
712 
713   const ObjCObjectPointerType *const *TrackedType =
714       State->get<MostSpecializedTypeArgsMap>(Sym);
715   if (!TrackedType)
716     return;
717 
718   // Get the type arguments from tracked type and substitute type arguments
719   // before do the semantic check.
720 
721   ASTContext &ASTCtxt = C.getASTContext();
722   const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
723   const ObjCMethodDecl *Method =
724       findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
725 
726   // It is possible to call non-existent methods in Obj-C.
727   if (!Method)
728     return;
729 
730   Optional<ArrayRef<QualType>> TypeArgs =
731       (*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
732   // This case might happen when there is an unspecialized override of a
733   // specialized method.
734   if (!TypeArgs)
735     return;
736 
737   for (unsigned i = 0; i < Method->param_size(); i++) {
738     const Expr *Arg = MessageExpr->getArg(i);
739     const ParmVarDecl *Param = Method->parameters()[i];
740 
741     QualType OrigParamType = Param->getType();
742     if (!isObjCTypeParamDependent(OrigParamType))
743       continue;
744 
745     QualType ParamType = OrigParamType.substObjCTypeArgs(
746         ASTCtxt, *TypeArgs, ObjCSubstitutionContext::Parameter);
747     // Check if it can be assigned
748     const auto *ParamObjectPtrType = ParamType->getAs<ObjCObjectPointerType>();
749     const auto *ArgObjectPtrType =
750         stripCastsAndSugar(Arg)->getType()->getAs<ObjCObjectPointerType>();
751     if (!ParamObjectPtrType || !ArgObjectPtrType)
752       continue;
753 
754     // Check if we have more concrete tracked type that is not a super type of
755     // the static argument type.
756     SVal ArgSVal = M.getArgSVal(i);
757     SymbolRef ArgSym = ArgSVal.getAsSymbol();
758     if (ArgSym) {
759       const ObjCObjectPointerType *const *TrackedArgType =
760           State->get<MostSpecializedTypeArgsMap>(ArgSym);
761       if (TrackedArgType &&
762           ASTCtxt.canAssignObjCInterfaces(ArgObjectPtrType, *TrackedArgType)) {
763         ArgObjectPtrType = *TrackedArgType;
764       }
765     }
766 
767     // Warn when argument is incompatible with the parameter.
768     if (!ASTCtxt.canAssignObjCInterfaces(ParamObjectPtrType,
769                                          ArgObjectPtrType)) {
770       static CheckerProgramPointTag Tag(this, "ArgTypeMismatch");
771       ExplodedNode *N = C.addTransition(State, &Tag);
772       reportGenericsBug(ArgObjectPtrType, ParamObjectPtrType, N, Sym, C, Arg);
773       return;
774     }
775   }
776 }
777 
778 /// This callback is used to infer the types for Class variables. This info is
779 /// used later to validate messages that sent to classes. Class variables are
780 /// initialized with by invoking the 'class' method on a class.
781 /// This method is also used to infer the type information for the return
782 /// types.
783 // TODO: right now it only tracks generic types. Extend this to track every
784 // type in the DynamicTypeMap and diagnose type errors!
checkPostObjCMessage(const ObjCMethodCall & M,CheckerContext & C) const785 void DynamicTypePropagation::checkPostObjCMessage(const ObjCMethodCall &M,
786                                                   CheckerContext &C) const {
787   const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
788 
789   SymbolRef RetSym = M.getReturnValue().getAsSymbol();
790   if (!RetSym)
791     return;
792 
793   Selector Sel = MessageExpr->getSelector();
794   ProgramStateRef State = C.getState();
795   // Inference for class variables.
796   // We are only interested in cases where the class method is invoked on a
797   // class. This method is provided by the runtime and available on all classes.
798   if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Class &&
799       Sel.getAsString() == "class") {
800     QualType ReceiverType = MessageExpr->getClassReceiver();
801     const auto *ReceiverClassType = ReceiverType->getAs<ObjCObjectType>();
802     QualType ReceiverClassPointerType =
803         C.getASTContext().getObjCObjectPointerType(
804             QualType(ReceiverClassType, 0));
805 
806     if (!ReceiverClassType->isSpecialized())
807       return;
808     const auto *InferredType =
809         ReceiverClassPointerType->getAs<ObjCObjectPointerType>();
810     assert(InferredType);
811 
812     State = State->set<MostSpecializedTypeArgsMap>(RetSym, InferredType);
813     C.addTransition(State);
814     return;
815   }
816 
817   // Tracking for return types.
818   SymbolRef RecSym = M.getReceiverSVal().getAsSymbol();
819   if (!RecSym)
820     return;
821 
822   const ObjCObjectPointerType *const *TrackedType =
823       State->get<MostSpecializedTypeArgsMap>(RecSym);
824   if (!TrackedType)
825     return;
826 
827   ASTContext &ASTCtxt = C.getASTContext();
828   const ObjCMethodDecl *Method =
829       findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
830   if (!Method)
831     return;
832 
833   Optional<ArrayRef<QualType>> TypeArgs =
834       (*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
835   if (!TypeArgs)
836     return;
837 
838   QualType ResultType =
839       getReturnTypeForMethod(Method, *TypeArgs, *TrackedType, ASTCtxt);
840   // The static type is the same as the deduced type.
841   if (ResultType.isNull())
842     return;
843 
844   const MemRegion *RetRegion = M.getReturnValue().getAsRegion();
845   ExplodedNode *Pred = C.getPredecessor();
846   // When there is an entry available for the return symbol in DynamicTypeMap,
847   // the call was inlined, and the information in the DynamicTypeMap is should
848   // be precise.
849   if (RetRegion && !State->get<DynamicTypeMap>(RetRegion)) {
850     // TODO: we have duplicated information in DynamicTypeMap and
851     // MostSpecializedTypeArgsMap. We should only store anything in the later if
852     // the stored data differs from the one stored in the former.
853     State = setDynamicTypeInfo(State, RetRegion, ResultType,
854                                /*CanBeSubclass=*/true);
855     Pred = C.addTransition(State);
856   }
857 
858   const auto *ResultPtrType = ResultType->getAs<ObjCObjectPointerType>();
859 
860   if (!ResultPtrType || ResultPtrType->isUnspecialized())
861     return;
862 
863   // When the result is a specialized type and it is not tracked yet, track it
864   // for the result symbol.
865   if (!State->get<MostSpecializedTypeArgsMap>(RetSym)) {
866     State = State->set<MostSpecializedTypeArgsMap>(RetSym, ResultPtrType);
867     C.addTransition(State, Pred);
868   }
869 }
870 
reportGenericsBug(const ObjCObjectPointerType * From,const ObjCObjectPointerType * To,ExplodedNode * N,SymbolRef Sym,CheckerContext & C,const Stmt * ReportedNode) const871 void DynamicTypePropagation::reportGenericsBug(
872     const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
873     ExplodedNode *N, SymbolRef Sym, CheckerContext &C,
874     const Stmt *ReportedNode) const {
875   if (!CheckGenerics)
876     return;
877 
878   initBugType();
879   SmallString<192> Buf;
880   llvm::raw_svector_ostream OS(Buf);
881   OS << "Conversion from value of type '";
882   QualType::print(From, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
883   OS << "' to incompatible type '";
884   QualType::print(To, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
885   OS << "'";
886   std::unique_ptr<BugReport> R(
887       new BugReport(*ObjCGenericsBugType, OS.str(), N));
888   R->markInteresting(Sym);
889   R->addVisitor(llvm::make_unique<GenericsBugVisitor>(Sym));
890   if (ReportedNode)
891     R->addRange(ReportedNode->getSourceRange());
892   C.emitReport(std::move(R));
893 }
894 
VisitNode(const ExplodedNode * N,const ExplodedNode * PrevN,BugReporterContext & BRC,BugReport & BR)895 PathDiagnosticPiece *DynamicTypePropagation::GenericsBugVisitor::VisitNode(
896     const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC,
897     BugReport &BR) {
898   ProgramStateRef state = N->getState();
899   ProgramStateRef statePrev = PrevN->getState();
900 
901   const ObjCObjectPointerType *const *TrackedType =
902       state->get<MostSpecializedTypeArgsMap>(Sym);
903   const ObjCObjectPointerType *const *TrackedTypePrev =
904       statePrev->get<MostSpecializedTypeArgsMap>(Sym);
905   if (!TrackedType)
906     return nullptr;
907 
908   if (TrackedTypePrev && *TrackedTypePrev == *TrackedType)
909     return nullptr;
910 
911   // Retrieve the associated statement.
912   const Stmt *S = nullptr;
913   ProgramPoint ProgLoc = N->getLocation();
914   if (Optional<StmtPoint> SP = ProgLoc.getAs<StmtPoint>()) {
915     S = SP->getStmt();
916   }
917 
918   if (!S)
919     return nullptr;
920 
921   const LangOptions &LangOpts = BRC.getASTContext().getLangOpts();
922 
923   SmallString<256> Buf;
924   llvm::raw_svector_ostream OS(Buf);
925   OS << "Type '";
926   QualType::print(*TrackedType, Qualifiers(), OS, LangOpts, llvm::Twine());
927   OS << "' is inferred from ";
928 
929   if (const auto *ExplicitCast = dyn_cast<ExplicitCastExpr>(S)) {
930     OS << "explicit cast (from '";
931     QualType::print(ExplicitCast->getSubExpr()->getType().getTypePtr(),
932                     Qualifiers(), OS, LangOpts, llvm::Twine());
933     OS << "' to '";
934     QualType::print(ExplicitCast->getType().getTypePtr(), Qualifiers(), OS,
935                     LangOpts, llvm::Twine());
936     OS << "')";
937   } else if (const auto *ImplicitCast = dyn_cast<ImplicitCastExpr>(S)) {
938     OS << "implicit cast (from '";
939     QualType::print(ImplicitCast->getSubExpr()->getType().getTypePtr(),
940                     Qualifiers(), OS, LangOpts, llvm::Twine());
941     OS << "' to '";
942     QualType::print(ImplicitCast->getType().getTypePtr(), Qualifiers(), OS,
943                     LangOpts, llvm::Twine());
944     OS << "')";
945   } else {
946     OS << "this context";
947   }
948 
949   // Generate the extra diagnostic.
950   PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
951                              N->getLocationContext());
952   return new PathDiagnosticEventPiece(Pos, OS.str(), true, nullptr);
953 }
954 
955 /// Register checkers.
registerObjCGenericsChecker(CheckerManager & mgr)956 void ento::registerObjCGenericsChecker(CheckerManager &mgr) {
957   DynamicTypePropagation *checker =
958       mgr.registerChecker<DynamicTypePropagation>();
959   checker->CheckGenerics = true;
960 }
961 
registerDynamicTypePropagation(CheckerManager & mgr)962 void ento::registerDynamicTypePropagation(CheckerManager &mgr) {
963   mgr.registerChecker<DynamicTypePropagation>();
964 }
965