1 //===- OptimalEdgeProfiling.cpp - Insert counters for opt. edge profiling -===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass instruments the specified program with counters for edge profiling.
11 // Edge profiling can give a reasonable approximation of the hot paths through a
12 // program, and is used for a wide variety of program transformations.
13 //
14 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "insert-optimal-edge-profiling"
16 #include "ProfilingUtils.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/Pass.h"
20 #include "llvm/Analysis/Passes.h"
21 #include "llvm/Analysis/ProfileInfo.h"
22 #include "llvm/Analysis/ProfileInfoLoader.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include "llvm/Transforms/Instrumentation.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "MaximumSpanningTree.h"
30 using namespace llvm;
31 
32 STATISTIC(NumEdgesInserted, "The # of edges inserted.");
33 
34 namespace {
35   class OptimalEdgeProfiler : public ModulePass {
36     bool runOnModule(Module &M);
37   public:
38     static char ID; // Pass identification, replacement for typeid
OptimalEdgeProfiler()39     OptimalEdgeProfiler() : ModulePass(ID) {
40       initializeOptimalEdgeProfilerPass(*PassRegistry::getPassRegistry());
41     }
42 
getAnalysisUsage(AnalysisUsage & AU) const43     void getAnalysisUsage(AnalysisUsage &AU) const {
44       AU.addRequiredID(ProfileEstimatorPassID);
45       AU.addRequired<ProfileInfo>();
46     }
47 
getPassName() const48     virtual const char *getPassName() const {
49       return "Optimal Edge Profiler";
50     }
51   };
52 }
53 
54 char OptimalEdgeProfiler::ID = 0;
55 INITIALIZE_PASS_BEGIN(OptimalEdgeProfiler, "insert-optimal-edge-profiling",
56                 "Insert optimal instrumentation for edge profiling",
57                 false, false)
INITIALIZE_PASS_DEPENDENCY(ProfileEstimatorPass)58 INITIALIZE_PASS_DEPENDENCY(ProfileEstimatorPass)
59 INITIALIZE_AG_DEPENDENCY(ProfileInfo)
60 INITIALIZE_PASS_END(OptimalEdgeProfiler, "insert-optimal-edge-profiling",
61                 "Insert optimal instrumentation for edge profiling",
62                 false, false)
63 
64 ModulePass *llvm::createOptimalEdgeProfilerPass() {
65   return new OptimalEdgeProfiler();
66 }
67 
printEdgeCounter(ProfileInfo::Edge e,BasicBlock * b,unsigned i)68 inline static void printEdgeCounter(ProfileInfo::Edge e,
69                                     BasicBlock* b,
70                                     unsigned i) {
71   DEBUG(dbgs() << "--Edge Counter for " << (e) << " in " \
72                << ((b)?(b)->getNameStr():"0") << " (# " << (i) << ")\n");
73 }
74 
runOnModule(Module & M)75 bool OptimalEdgeProfiler::runOnModule(Module &M) {
76   Function *Main = M.getFunction("main");
77   if (Main == 0) {
78     errs() << "WARNING: cannot insert edge profiling into a module"
79            << " with no main function!\n";
80     return false;  // No main, no instrumentation!
81   }
82 
83   // NumEdges counts all the edges that may be instrumented. Later on its
84   // decided which edges to actually instrument, to achieve optimal profiling.
85   // For the entry block a virtual edge (0,entry) is reserved, for each block
86   // with no successors an edge (BB,0) is reserved. These edges are necessary
87   // to calculate a truly optimal maximum spanning tree and thus an optimal
88   // instrumentation.
89   unsigned NumEdges = 0;
90 
91   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
92     if (F->isDeclaration()) continue;
93     // Reserve space for (0,entry) edge.
94     ++NumEdges;
95     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
96       // Keep track of which blocks need to be instrumented.  We don't want to
97       // instrument blocks that are added as the result of breaking critical
98       // edges!
99       if (BB->getTerminator()->getNumSuccessors() == 0) {
100         // Reserve space for (BB,0) edge.
101         ++NumEdges;
102       } else {
103         NumEdges += BB->getTerminator()->getNumSuccessors();
104       }
105     }
106   }
107 
108   // In the profiling output a counter for each edge is reserved, but only few
109   // are used. This is done to be able to read back in the profile without
110   // calulating the maximum spanning tree again, instead each edge counter that
111   // is not used is initialised with -1 to signal that this edge counter has to
112   // be calculated from other edge counters on reading the profile info back
113   // in.
114 
115   Type *Int32 = Type::getInt32Ty(M.getContext());
116   ArrayType *ATy = ArrayType::get(Int32, NumEdges);
117   GlobalVariable *Counters =
118     new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
119                        Constant::getNullValue(ATy), "OptEdgeProfCounters");
120   NumEdgesInserted = 0;
121 
122   std::vector<Constant*> Initializer(NumEdges);
123   Constant *Zero = ConstantInt::get(Int32, 0);
124   Constant *Uncounted = ConstantInt::get(Int32, ProfileInfoLoader::Uncounted);
125 
126   // Instrument all of the edges not in MST...
127   unsigned i = 0;
128   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
129     if (F->isDeclaration()) continue;
130     DEBUG(dbgs() << "Working on " << F->getNameStr() << "\n");
131 
132     // Calculate a Maximum Spanning Tree with the edge weights determined by
133     // ProfileEstimator. ProfileEstimator also assign weights to the virtual
134     // edges (0,entry) and (BB,0) (for blocks with no successors) and this
135     // edges also participate in the maximum spanning tree calculation.
136     // The third parameter of MaximumSpanningTree() has the effect that not the
137     // actual MST is returned but the edges _not_ in the MST.
138 
139     ProfileInfo::EdgeWeights ECs =
140       getAnalysis<ProfileInfo>(*F).getEdgeWeights(F);
141     std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end());
142     MaximumSpanningTree<BasicBlock> MST(EdgeVector);
143     std::stable_sort(MST.begin(), MST.end());
144 
145     // Check if (0,entry) not in the MST. If not, instrument edge
146     // (IncrementCounterInBlock()) and set the counter initially to zero, if
147     // the edge is in the MST the counter is initialised to -1.
148 
149     BasicBlock *entry = &(F->getEntryBlock());
150     ProfileInfo::Edge edge = ProfileInfo::getEdge(0, entry);
151     if (!std::binary_search(MST.begin(), MST.end(), edge)) {
152       printEdgeCounter(edge, entry, i);
153       IncrementCounterInBlock(entry, i, Counters); ++NumEdgesInserted;
154       Initializer[i++] = (Zero);
155     } else{
156       Initializer[i++] = (Uncounted);
157     }
158 
159     // InsertedBlocks contains all blocks that were inserted for splitting an
160     // edge, this blocks do not have to be instrumented.
161     DenseSet<BasicBlock*> InsertedBlocks;
162     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
163       // Check if block was not inserted and thus does not have to be
164       // instrumented.
165       if (InsertedBlocks.count(BB)) continue;
166 
167       // Okay, we have to add a counter of each outgoing edge not in MST. If
168       // the outgoing edge is not critical don't split it, just insert the
169       // counter in the source or destination of the edge. Also, if the block
170       // has no successors, the virtual edge (BB,0) is processed.
171       TerminatorInst *TI = BB->getTerminator();
172       if (TI->getNumSuccessors() == 0) {
173         ProfileInfo::Edge edge = ProfileInfo::getEdge(BB, 0);
174         if (!std::binary_search(MST.begin(), MST.end(), edge)) {
175           printEdgeCounter(edge, BB, i);
176           IncrementCounterInBlock(BB, i, Counters); ++NumEdgesInserted;
177           Initializer[i++] = (Zero);
178         } else{
179           Initializer[i++] = (Uncounted);
180         }
181       }
182       for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) {
183         BasicBlock *Succ = TI->getSuccessor(s);
184         ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,Succ);
185         if (!std::binary_search(MST.begin(), MST.end(), edge)) {
186 
187           // If the edge is critical, split it.
188           bool wasInserted = SplitCriticalEdge(TI, s, this);
189           Succ = TI->getSuccessor(s);
190           if (wasInserted)
191             InsertedBlocks.insert(Succ);
192 
193           // Okay, we are guaranteed that the edge is no longer critical.  If
194           // we only have a single successor, insert the counter in this block,
195           // otherwise insert it in the successor block.
196           if (TI->getNumSuccessors() == 1) {
197             // Insert counter at the start of the block
198             printEdgeCounter(edge, BB, i);
199             IncrementCounterInBlock(BB, i, Counters); ++NumEdgesInserted;
200           } else {
201             // Insert counter at the start of the block
202             printEdgeCounter(edge, Succ, i);
203             IncrementCounterInBlock(Succ, i, Counters); ++NumEdgesInserted;
204           }
205           Initializer[i++] = (Zero);
206         } else {
207           Initializer[i++] = (Uncounted);
208         }
209       }
210     }
211   }
212 
213   // Check if the number of edges counted at first was the number of edges we
214   // considered for instrumentation.
215   assert(i == NumEdges && "the number of edges in counting array is wrong");
216 
217   // Assign the now completely defined initialiser to the array.
218   Constant *init = ConstantArray::get(ATy, Initializer);
219   Counters->setInitializer(init);
220 
221   // Add the initialization call to main.
222   InsertProfilingInitCall(Main, "llvm_start_opt_edge_profiling", Counters);
223   return true;
224 }
225 
226