• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the RISC-V instructions from the standard 'D',
11// Double-Precision Floating-Point instruction set extension.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// RISC-V specific DAG Nodes.
17//===----------------------------------------------------------------------===//
18
19def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
20                                                 SDTCisVT<1, i32>,
21                                                 SDTCisSameAs<1, 2>]>;
22def SDT_RISCVSplitF64     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>,
23                                                 SDTCisVT<1, i32>,
24                                                 SDTCisVT<2, f64>]>;
25
26def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>;
27def RISCVSplitF64     : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>;
28
29//===----------------------------------------------------------------------===//
30// Instruction Class Templates
31//===----------------------------------------------------------------------===//
32
33let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
34class FPFMAD_rrr_frm<RISCVOpcode opcode, string opcodestr>
35    : RVInstR4<0b01, opcode, (outs FPR64:$rd),
36               (ins FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, frmarg:$funct3),
37                opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
38
39class FPFMADDynFrmAlias<FPFMAD_rrr_frm Inst, string OpcodeStr>
40    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
41                (Inst FPR64:$rd, FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
42
43let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
44class FPALUD_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
45    : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR64:$rd),
46              (ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">;
47
48let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
49class FPALUD_rr_frm<bits<7> funct7, string opcodestr>
50    : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR64:$rd),
51                (ins FPR64:$rs1, FPR64:$rs2, frmarg:$funct3), opcodestr,
52                 "$rd, $rs1, $rs2, $funct3">;
53
54class FPALUDDynFrmAlias<FPALUD_rr_frm Inst, string OpcodeStr>
55    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
56                (Inst FPR64:$rd, FPR64:$rs1, FPR64:$rs2, 0b111)>;
57
58let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
59class FPCmpD_rr<bits<3> funct3, string opcodestr>
60    : RVInstR<0b1010001, funct3, OPC_OP_FP, (outs GPR:$rd),
61              (ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">;
62
63//===----------------------------------------------------------------------===//
64// Instructions
65//===----------------------------------------------------------------------===//
66
67let Predicates = [HasStdExtD] in {
68
69let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
70def FLD : RVInstI<0b011, OPC_LOAD_FP, (outs FPR64:$rd),
71                  (ins GPR:$rs1, simm12:$imm12),
72                  "fld", "$rd, ${imm12}(${rs1})">;
73
74// Operands for stores are in the order srcreg, base, offset rather than
75// reflecting the order these fields are specified in the instruction
76// encoding.
77let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
78def FSD : RVInstS<0b011, OPC_STORE_FP, (outs),
79                  (ins FPR64:$rs2, GPR:$rs1, simm12:$imm12),
80                   "fsd", "$rs2, ${imm12}(${rs1})">;
81
82def FMADD_D  : FPFMAD_rrr_frm<OPC_MADD, "fmadd.d">;
83def          : FPFMADDynFrmAlias<FMADD_D, "fmadd.d">;
84def FMSUB_D  : FPFMAD_rrr_frm<OPC_MSUB, "fmsub.d">;
85def          : FPFMADDynFrmAlias<FMSUB_D, "fmsub.d">;
86def FNMSUB_D : FPFMAD_rrr_frm<OPC_NMSUB, "fnmsub.d">;
87def          : FPFMADDynFrmAlias<FNMSUB_D, "fnmsub.d">;
88def FNMADD_D : FPFMAD_rrr_frm<OPC_NMADD, "fnmadd.d">;
89def          : FPFMADDynFrmAlias<FNMADD_D, "fnmadd.d">;
90
91def FADD_D : FPALUD_rr_frm<0b0000001, "fadd.d">;
92def        : FPALUDDynFrmAlias<FADD_D, "fadd.d">;
93def FSUB_D : FPALUD_rr_frm<0b0000101, "fsub.d">;
94def        : FPALUDDynFrmAlias<FSUB_D, "fsub.d">;
95def FMUL_D : FPALUD_rr_frm<0b0001001, "fmul.d">;
96def        : FPALUDDynFrmAlias<FMUL_D, "fmul.d">;
97def FDIV_D : FPALUD_rr_frm<0b0001101, "fdiv.d">;
98def        : FPALUDDynFrmAlias<FDIV_D, "fdiv.d">;
99
100def FSQRT_D : FPUnaryOp_r_frm<0b0101101, FPR64, FPR64, "fsqrt.d"> {
101  let rs2 = 0b00000;
102}
103def         : FPUnaryOpDynFrmAlias<FSQRT_D, "fsqrt.d", FPR64, FPR64>;
104
105def FSGNJ_D  : FPALUD_rr<0b0010001, 0b000, "fsgnj.d">;
106def FSGNJN_D : FPALUD_rr<0b0010001, 0b001, "fsgnjn.d">;
107def FSGNJX_D : FPALUD_rr<0b0010001, 0b010, "fsgnjx.d">;
108def FMIN_D   : FPALUD_rr<0b0010101, 0b000, "fmin.d">;
109def FMAX_D   : FPALUD_rr<0b0010101, 0b001, "fmax.d">;
110
111def FCVT_S_D : FPUnaryOp_r_frm<0b0100000, FPR32, FPR64, "fcvt.s.d"> {
112  let rs2 = 0b00001;
113}
114def          : FPUnaryOpDynFrmAlias<FCVT_S_D, "fcvt.s.d", FPR32, FPR64>;
115
116def FCVT_D_S : FPUnaryOp_r<0b0100001, 0b000, FPR64, FPR32, "fcvt.d.s"> {
117  let rs2 = 0b00000;
118}
119
120def FEQ_D : FPCmpD_rr<0b010, "feq.d">;
121def FLT_D : FPCmpD_rr<0b001, "flt.d">;
122def FLE_D : FPCmpD_rr<0b000, "fle.d">;
123
124def FCLASS_D : FPUnaryOp_r<0b1110001, 0b001, GPR, FPR64, "fclass.d"> {
125  let rs2 = 0b00000;
126}
127
128def FCVT_W_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.w.d"> {
129  let rs2 = 0b00000;
130}
131def          : FPUnaryOpDynFrmAlias<FCVT_W_D, "fcvt.w.d", GPR, FPR64>;
132
133def FCVT_WU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.wu.d"> {
134  let rs2 = 0b00001;
135}
136def           : FPUnaryOpDynFrmAlias<FCVT_WU_D, "fcvt.wu.d", GPR, FPR64>;
137
138def FCVT_D_W : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.w"> {
139  let rs2 = 0b00000;
140}
141
142def FCVT_D_WU : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.wu"> {
143  let rs2 = 0b00001;
144}
145} // Predicates = [HasStdExtD]
146
147let Predicates = [HasStdExtD, IsRV64] in {
148def FCVT_L_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.l.d"> {
149  let rs2 = 0b00010;
150}
151def          : FPUnaryOpDynFrmAlias<FCVT_L_D, "fcvt.l.d", GPR, FPR64>;
152
153def FCVT_LU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.lu.d"> {
154  let rs2 = 0b00011;
155}
156def           : FPUnaryOpDynFrmAlias<FCVT_LU_D, "fcvt.lu.d", GPR, FPR64>;
157
158def FMV_X_D : FPUnaryOp_r<0b1110001, 0b000, GPR, FPR64, "fmv.x.d"> {
159  let rs2 = 0b00000;
160}
161
162def FCVT_D_L : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.l"> {
163  let rs2 = 0b00010;
164}
165def          : FPUnaryOpDynFrmAlias<FCVT_D_L, "fcvt.d.l", FPR64, GPR>;
166
167def FCVT_D_LU : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.lu"> {
168  let rs2 = 0b00011;
169}
170def           : FPUnaryOpDynFrmAlias<FCVT_D_LU, "fcvt.d.lu", FPR64, GPR>;
171
172def FMV_D_X : FPUnaryOp_r<0b1111001, 0b000, FPR64, GPR, "fmv.d.x"> {
173  let rs2 = 0b00000;
174}
175} // Predicates = [HasStdExtD, IsRV64]
176
177//===----------------------------------------------------------------------===//
178// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
179//===----------------------------------------------------------------------===//
180
181let Predicates = [HasStdExtD] in {
182// TODO fld
183// TODO fsd
184
185def : InstAlias<"fmv.d $rd, $rs",  (FSGNJ_D  FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
186def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
187def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
188
189// fgt.d/fge.d are recognised by the GNU assembler but the canonical
190// flt.d/fle.d forms will always be printed. Therefore, set a zero weight.
191def : InstAlias<"fgt.d $rd, $rs, $rt",
192                (FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
193def : InstAlias<"fge.d $rd, $rs, $rt",
194                (FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
195} // Predicates = [HasStdExtD]
196
197//===----------------------------------------------------------------------===//
198// Pseudo-instructions and codegen patterns
199//===----------------------------------------------------------------------===//
200
201class PatFpr64Fpr64<SDPatternOperator OpNode, RVInstR Inst>
202    : Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2)>;
203
204class PatFpr64Fpr64DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
205    : Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2, 0b111)>;
206
207let Predicates = [HasStdExtD] in {
208
209/// Float conversion operations
210
211// f64 -> f32, f32 -> f64
212def : Pat<(fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, 0b111)>;
213def : Pat<(fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1)>;
214
215// FP->[u]int. Round-to-zero must be used
216def : Pat<(fp_to_sint FPR64:$rs1), (FCVT_W_D FPR64:$rs1, 0b001)>;
217def : Pat<(fp_to_uint FPR64:$rs1), (FCVT_WU_D FPR64:$rs1, 0b001)>;
218
219// [u]int->fp
220def : Pat<(sint_to_fp GPR:$rs1), (FCVT_D_W GPR:$rs1)>;
221def : Pat<(uint_to_fp GPR:$rs1), (FCVT_D_WU GPR:$rs1)>;
222
223/// Float arithmetic operations
224
225def : PatFpr64Fpr64DynFrm<fadd, FADD_D>;
226def : PatFpr64Fpr64DynFrm<fsub, FSUB_D>;
227def : PatFpr64Fpr64DynFrm<fmul, FMUL_D>;
228def : PatFpr64Fpr64DynFrm<fdiv, FDIV_D>;
229
230def : Pat<(fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, 0b111)>;
231
232def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>;
233def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>;
234
235def : PatFpr64Fpr64<fcopysign, FSGNJ_D>;
236def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>;
237
238// The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the
239// canonical NaN when giving a signaling NaN. This doesn't match the LLVM
240// behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the
241// draft 2.3 ISA spec changes the definition of fmin and fmax in a way that
242// matches LLVM's fminnum and fmaxnum
243// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
244def : PatFpr64Fpr64<fminnum, FMIN_D>;
245def : PatFpr64Fpr64<fmaxnum, FMAX_D>;
246
247/// Setcc
248
249def : PatFpr64Fpr64<seteq, FEQ_D>;
250def : PatFpr64Fpr64<setoeq, FEQ_D>;
251def : PatFpr64Fpr64<setlt, FLT_D>;
252def : PatFpr64Fpr64<setolt, FLT_D>;
253def : PatFpr64Fpr64<setle, FLE_D>;
254def : PatFpr64Fpr64<setole, FLE_D>;
255
256// Define pattern expansions for setcc operations which aren't directly
257// handled by a RISC-V instruction and aren't expanded in the SelectionDAG
258// Legalizer.
259
260def : Pat<(setuo FPR64:$rs1, FPR64:$rs2),
261          (SLTIU (AND (FEQ_D FPR64:$rs1, FPR64:$rs1),
262                      (FEQ_D FPR64:$rs2, FPR64:$rs2)),
263                 1)>;
264
265def Select_FPR64_Using_CC_GPR : SelectCC_rrirr<FPR64, GPR>;
266
267/// Loads
268
269defm : LdPat<load, FLD>;
270
271/// Stores
272
273defm : StPat<store, FSD, FPR64>;
274
275/// Pseudo-instructions needed for the soft-float ABI with RV32D
276
277// Moves two GPRs to an FPR.
278let usesCustomInserter = 1 in
279def BuildPairF64Pseudo
280    : Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2),
281             [(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;
282
283// Moves an FPR to two GPRs.
284let usesCustomInserter = 1 in
285def SplitF64Pseudo
286    : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src),
287             [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>;
288
289} // Predicates = [HasStdExtD]
290