1 // Copyright (c) 2015-2016 The Khronos Group Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_
16 #define LIBSPIRV_UTIL_HEX_FLOAT_H_
17 
18 #include <cassert>
19 #include <cctype>
20 #include <cmath>
21 #include <cstdint>
22 #include <iomanip>
23 #include <limits>
24 #include <sstream>
25 
26 #if defined(_MSC_VER) && _MSC_VER < 1800
27 namespace std {
isnan(double f)28 bool isnan(double f)
29 {
30   return ::_isnan(f) != 0;
31 }
isinf(double f)32 bool isinf(double f)
33 {
34   return ::_finite(f) == 0;
35 }
36 }
37 #endif
38 
39 #include "bitutils.h"
40 
41 namespace spvutils {
42 
43 class Float16 {
44  public:
Float16(uint16_t v)45   Float16(uint16_t v) : val(v) {}
Float16()46   Float16() {}
isNan(const Float16 & val)47   static bool isNan(const Float16& val) {
48     return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
49   }
50   // Returns true if the given value is any kind of infinity.
isInfinity(const Float16 & val)51   static bool isInfinity(const Float16& val) {
52     return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0);
53   }
Float16(const Float16 & other)54   Float16(const Float16& other) { val = other.val; }
get_value()55   uint16_t get_value() const { return val; }
56 
57   // Returns the maximum normal value.
max()58   static Float16 max() { return Float16(0x7bff); }
59   // Returns the lowest normal value.
lowest()60   static Float16 lowest() { return Float16(0xfbff); }
61 
62  private:
63   uint16_t val;
64 };
65 
66 // To specialize this type, you must override uint_type to define
67 // an unsigned integer that can fit your floating point type.
68 // You must also add a isNan function that returns true if
69 // a value is Nan.
70 template <typename T>
71 struct FloatProxyTraits {
72   typedef void uint_type;
73 };
74 
75 template <>
76 struct FloatProxyTraits<float> {
77   typedef uint32_t uint_type;
78   static bool isNan(float f) { return std::isnan(f); }
79   // Returns true if the given value is any kind of infinity.
80   static bool isInfinity(float f) { return std::isinf(f); }
81   // Returns the maximum normal value.
82   static float max() { return std::numeric_limits<float>::max(); }
83   // Returns the lowest normal value.
84   static float lowest() { return std::numeric_limits<float>::lowest(); }
85 };
86 
87 template <>
88 struct FloatProxyTraits<double> {
89   typedef uint64_t uint_type;
90   static bool isNan(double f) { return std::isnan(f); }
91   // Returns true if the given value is any kind of infinity.
92   static bool isInfinity(double f) { return std::isinf(f); }
93   // Returns the maximum normal value.
94   static double max() { return std::numeric_limits<double>::max(); }
95   // Returns the lowest normal value.
96   static double lowest() { return std::numeric_limits<double>::lowest(); }
97 };
98 
99 template <>
100 struct FloatProxyTraits<Float16> {
101   typedef uint16_t uint_type;
102   static bool isNan(Float16 f) { return Float16::isNan(f); }
103   // Returns true if the given value is any kind of infinity.
104   static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
105   // Returns the maximum normal value.
106   static Float16 max() { return Float16::max(); }
107   // Returns the lowest normal value.
108   static Float16 lowest() { return Float16::lowest(); }
109 };
110 
111 // Since copying a floating point number (especially if it is NaN)
112 // does not guarantee that bits are preserved, this class lets us
113 // store the type and use it as a float when necessary.
114 template <typename T>
115 class FloatProxy {
116  public:
117   typedef typename FloatProxyTraits<T>::uint_type uint_type;
118 
119   // Since this is to act similar to the normal floats,
120   // do not initialize the data by default.
121   FloatProxy() {}
122 
123   // Intentionally non-explicit. This is a proxy type so
124   // implicit conversions allow us to use it more transparently.
125   FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); }
126 
127   // Intentionally non-explicit. This is a proxy type so
128   // implicit conversions allow us to use it more transparently.
129   FloatProxy(uint_type val) { data_ = val; }
130 
131   // This is helpful to have and is guaranteed not to stomp bits.
132   FloatProxy<T> operator-() const {
133     return static_cast<uint_type>(data_ ^
134                                   (uint_type(0x1) << (sizeof(T) * 8 - 1)));
135   }
136 
137   // Returns the data as a floating point value.
138   T getAsFloat() const { return BitwiseCast<T>(data_); }
139 
140   // Returns the raw data.
141   uint_type data() const { return data_; }
142 
143   // Returns true if the value represents any type of NaN.
144   bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); }
145   // Returns true if the value represents any type of infinity.
146   bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); }
147 
148   // Returns the maximum normal value.
149   static FloatProxy<T> max() {
150     return FloatProxy<T>(FloatProxyTraits<T>::max());
151   }
152   // Returns the lowest normal value.
153   static FloatProxy<T> lowest() {
154     return FloatProxy<T>(FloatProxyTraits<T>::lowest());
155   }
156 
157  private:
158   uint_type data_;
159 };
160 
161 template <typename T>
162 bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) {
163   return first.data() == second.data();
164 }
165 
166 // Reads a FloatProxy value as a normal float from a stream.
167 template <typename T>
168 std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
169   T float_val;
170   is >> float_val;
171   value = FloatProxy<T>(float_val);
172   return is;
173 }
174 
175 // This is an example traits. It is not meant to be used in practice, but will
176 // be the default for any non-specialized type.
177 template <typename T>
178 struct HexFloatTraits {
179   // Integer type that can store this hex-float.
180   typedef void uint_type;
181   // Signed integer type that can store this hex-float.
182   typedef void int_type;
183   // The numerical type that this HexFloat represents.
184   typedef void underlying_type;
185   // The type needed to construct the underlying type.
186   typedef void native_type;
187   // The number of bits that are actually relevant in the uint_type.
188   // This allows us to deal with, for example, 24-bit values in a 32-bit
189   // integer.
190   static const uint32_t num_used_bits = 0;
191   // Number of bits that represent the exponent.
192   static const uint32_t num_exponent_bits = 0;
193   // Number of bits that represent the fractional part.
194   static const uint32_t num_fraction_bits = 0;
195   // The bias of the exponent. (How much we need to subtract from the stored
196   // value to get the correct value.)
197   static const uint32_t exponent_bias = 0;
198 };
199 
200 // Traits for IEEE float.
201 // 1 sign bit, 8 exponent bits, 23 fractional bits.
202 template <>
203 struct HexFloatTraits<FloatProxy<float>> {
204   typedef uint32_t uint_type;
205   typedef int32_t int_type;
206   typedef FloatProxy<float> underlying_type;
207   typedef float native_type;
208   static const uint_type num_used_bits = 32;
209   static const uint_type num_exponent_bits = 8;
210   static const uint_type num_fraction_bits = 23;
211   static const uint_type exponent_bias = 127;
212 };
213 
214 // Traits for IEEE double.
215 // 1 sign bit, 11 exponent bits, 52 fractional bits.
216 template <>
217 struct HexFloatTraits<FloatProxy<double>> {
218   typedef uint64_t uint_type;
219   typedef int64_t int_type;
220   typedef FloatProxy<double> underlying_type;
221   typedef double native_type;
222   static const uint_type num_used_bits = 64;
223   static const uint_type num_exponent_bits = 11;
224   static const uint_type num_fraction_bits = 52;
225   static const uint_type exponent_bias = 1023;
226 };
227 
228 // Traits for IEEE half.
229 // 1 sign bit, 5 exponent bits, 10 fractional bits.
230 template <>
231 struct HexFloatTraits<FloatProxy<Float16>> {
232   typedef uint16_t uint_type;
233   typedef int16_t int_type;
234   typedef uint16_t underlying_type;
235   typedef uint16_t native_type;
236   static const uint_type num_used_bits = 16;
237   static const uint_type num_exponent_bits = 5;
238   static const uint_type num_fraction_bits = 10;
239   static const uint_type exponent_bias = 15;
240 };
241 
242 enum round_direction {
243   kRoundToZero,
244   kRoundToNearestEven,
245   kRoundToPositiveInfinity,
246   kRoundToNegativeInfinity
247 };
248 
249 // Template class that houses a floating pointer number.
250 // It exposes a number of constants based on the provided traits to
251 // assist in interpreting the bits of the value.
252 template <typename T, typename Traits = HexFloatTraits<T>>
253 class HexFloat {
254  public:
255   typedef typename Traits::uint_type uint_type;
256   typedef typename Traits::int_type int_type;
257   typedef typename Traits::underlying_type underlying_type;
258   typedef typename Traits::native_type native_type;
259 
260   explicit HexFloat(T f) : value_(f) {}
261 
262   T value() const { return value_; }
263   void set_value(T f) { value_ = f; }
264 
265   // These are all written like this because it is convenient to have
266   // compile-time constants for all of these values.
267 
268   // Pass-through values to save typing.
269   static const uint32_t num_used_bits = Traits::num_used_bits;
270   static const uint32_t exponent_bias = Traits::exponent_bias;
271   static const uint32_t num_exponent_bits = Traits::num_exponent_bits;
272   static const uint32_t num_fraction_bits = Traits::num_fraction_bits;
273 
274   // Number of bits to shift left to set the highest relevant bit.
275   static const uint32_t top_bit_left_shift = num_used_bits - 1;
276   // How many nibbles (hex characters) the fractional part takes up.
277   static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4;
278   // If the fractional part does not fit evenly into a hex character (4-bits)
279   // then we have to left-shift to get rid of leading 0s. This is the amount
280   // we have to shift (might be 0).
281   static const uint32_t num_overflow_bits =
282       fraction_nibbles * 4 - num_fraction_bits;
283 
284   // The representation of the fraction, not the actual bits. This
285   // includes the leading bit that is usually implicit.
286   static const uint_type fraction_represent_mask =
287       spvutils::SetBits<uint_type, 0,
288                         num_fraction_bits + num_overflow_bits>::get;
289 
290   // The topmost bit in the nibble-aligned fraction.
291   static const uint_type fraction_top_bit =
292       uint_type(1) << (num_fraction_bits + num_overflow_bits - 1);
293 
294   // The least significant bit in the exponent, which is also the bit
295   // immediately to the left of the significand.
296   static const uint_type first_exponent_bit = uint_type(1)
297                                               << (num_fraction_bits);
298 
299   // The mask for the encoded fraction. It does not include the
300   // implicit bit.
301   static const uint_type fraction_encode_mask =
302       spvutils::SetBits<uint_type, 0, num_fraction_bits>::get;
303 
304   // The bit that is used as a sign.
305   static const uint_type sign_mask = uint_type(1) << top_bit_left_shift;
306 
307   // The bits that represent the exponent.
308   static const uint_type exponent_mask =
309       spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get;
310 
311   // How far left the exponent is shifted.
312   static const uint32_t exponent_left_shift = num_fraction_bits;
313 
314   // How far from the right edge the fraction is shifted.
315   static const uint32_t fraction_right_shift =
316       static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits;
317 
318   // The maximum representable unbiased exponent.
319   static const int_type max_exponent =
320       (exponent_mask >> num_fraction_bits) - exponent_bias;
321   // The minimum representable exponent for normalized numbers.
322   static const int_type min_exponent = -static_cast<int_type>(exponent_bias);
323 
324   // Returns the bits associated with the value.
325   uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); }
326 
327   // Returns the bits associated with the value, without the leading sign bit.
328   uint_type getUnsignedBits() const {
329     return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) &
330                                   ~sign_mask);
331   }
332 
333   // Returns the bits associated with the exponent, shifted to start at the
334   // lsb of the type.
335   const uint_type getExponentBits() const {
336     return static_cast<uint_type>((getBits() & exponent_mask) >>
337                                   num_fraction_bits);
338   }
339 
340   // Returns the exponent in unbiased form. This is the exponent in the
341   // human-friendly form.
342   const int_type getUnbiasedExponent() const {
343     return static_cast<int_type>(getExponentBits() - exponent_bias);
344   }
345 
346   // Returns just the significand bits from the value.
347   const uint_type getSignificandBits() const {
348     return getBits() & fraction_encode_mask;
349   }
350 
351   // If the number was normalized, returns the unbiased exponent.
352   // If the number was denormal, normalize the exponent first.
353   const int_type getUnbiasedNormalizedExponent() const {
354     if ((getBits() & ~sign_mask) == 0) {  // special case if everything is 0
355       return 0;
356     }
357     int_type exp = getUnbiasedExponent();
358     if (exp == min_exponent) {  // We are in denorm land.
359       uint_type significand_bits = getSignificandBits();
360       while ((significand_bits & (first_exponent_bit >> 1)) == 0) {
361         significand_bits = static_cast<uint_type>(significand_bits << 1);
362         exp = static_cast<int_type>(exp - 1);
363       }
364       significand_bits &= fraction_encode_mask;
365     }
366     return exp;
367   }
368 
369   // Returns the signficand after it has been normalized.
370   const uint_type getNormalizedSignificand() const {
371     int_type unbiased_exponent = getUnbiasedNormalizedExponent();
372     uint_type significand = getSignificandBits();
373     for (int_type i = unbiased_exponent; i <= min_exponent; ++i) {
374       significand = static_cast<uint_type>(significand << 1);
375     }
376     significand &= fraction_encode_mask;
377     return significand;
378   }
379 
380   // Returns true if this number represents a negative value.
381   bool isNegative() const { return (getBits() & sign_mask) != 0; }
382 
383   // Sets this HexFloat from the individual components.
384   // Note this assumes EVERY significand is normalized, and has an implicit
385   // leading one. This means that the only way that this method will set 0,
386   // is if you set a number so denormalized that it underflows.
387   // Do not use this method with raw bits extracted from a subnormal number,
388   // since subnormals do not have an implicit leading 1 in the significand.
389   // The significand is also expected to be in the
390   // lowest-most num_fraction_bits of the uint_type.
391   // The exponent is expected to be unbiased, meaning an exponent of
392   // 0 actually means 0.
393   // If underflow_round_up is set, then on underflow, if a number is non-0
394   // and would underflow, we round up to the smallest denorm.
395   void setFromSignUnbiasedExponentAndNormalizedSignificand(
396       bool negative, int_type exponent, uint_type significand,
397       bool round_denorm_up) {
398     bool significand_is_zero = significand == 0;
399 
400     if (exponent <= min_exponent) {
401       // If this was denormalized, then we have to shift the bit on, meaning
402       // the significand is not zero.
403       significand_is_zero = false;
404       significand |= first_exponent_bit;
405       significand = static_cast<uint_type>(significand >> 1);
406     }
407 
408     while (exponent < min_exponent) {
409       significand = static_cast<uint_type>(significand >> 1);
410       ++exponent;
411     }
412 
413     if (exponent == min_exponent) {
414       if (significand == 0 && !significand_is_zero && round_denorm_up) {
415         significand = static_cast<uint_type>(0x1);
416       }
417     }
418 
419     uint_type new_value = 0;
420     if (negative) {
421       new_value = static_cast<uint_type>(new_value | sign_mask);
422     }
423     exponent = static_cast<int_type>(exponent + exponent_bias);
424     assert(exponent >= 0);
425 
426     // put it all together
427     exponent = static_cast<uint_type>((exponent << exponent_left_shift) &
428                                       exponent_mask);
429     significand = static_cast<uint_type>(significand & fraction_encode_mask);
430     new_value = static_cast<uint_type>(new_value | (exponent | significand));
431     value_ = BitwiseCast<T>(new_value);
432   }
433 
434   // Increments the significand of this number by the given amount.
435   // If this would spill the significand into the implicit bit,
436   // carry is set to true and the significand is shifted to fit into
437   // the correct location, otherwise carry is set to false.
438   // All significands and to_increment are assumed to be within the bounds
439   // for a valid significand.
440   static uint_type incrementSignificand(uint_type significand,
441                                         uint_type to_increment, bool* carry) {
442     significand = static_cast<uint_type>(significand + to_increment);
443     *carry = false;
444     if (significand & first_exponent_bit) {
445       *carry = true;
446       // The implicit 1-bit will have carried, so we should zero-out the
447       // top bit and shift back.
448       significand = static_cast<uint_type>(significand & ~first_exponent_bit);
449       significand = static_cast<uint_type>(significand >> 1);
450     }
451     return significand;
452   }
453 
454   // These exist because MSVC throws warnings on negative right-shifts
455   // even if they are not going to be executed. Eg:
456   // constant_number < 0? 0: constant_number
457   // These convert the negative left-shifts into right shifts.
458 
459   template <typename int_type>
460   uint_type negatable_left_shift(int_type N, uint_type val)
461   {
462     if(N >= 0)
463       return val << N;
464 
465     return val >> -N;
466   }
467 
468   template <typename int_type>
469   uint_type negatable_right_shift(int_type N, uint_type val)
470   {
471     if(N >= 0)
472       return val >> N;
473 
474     return val << -N;
475   }
476 
477   // Returns the significand, rounded to fit in a significand in
478   // other_T. This is shifted so that the most significant
479   // bit of the rounded number lines up with the most significant bit
480   // of the returned significand.
481   template <typename other_T>
482   typename other_T::uint_type getRoundedNormalizedSignificand(
483       round_direction dir, bool* carry_bit) {
484     typedef typename other_T::uint_type other_uint_type;
485     static const int_type num_throwaway_bits =
486         static_cast<int_type>(num_fraction_bits) -
487         static_cast<int_type>(other_T::num_fraction_bits);
488 
489     static const uint_type last_significant_bit =
490         (num_throwaway_bits < 0)
491             ? 0
492             : negatable_left_shift(num_throwaway_bits, 1u);
493     static const uint_type first_rounded_bit =
494         (num_throwaway_bits < 1)
495             ? 0
496             : negatable_left_shift(num_throwaway_bits - 1, 1u);
497 
498     static const uint_type throwaway_mask_bits =
499         num_throwaway_bits > 0 ? num_throwaway_bits : 0;
500     static const uint_type throwaway_mask =
501         spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get;
502 
503     *carry_bit = false;
504     other_uint_type out_val = 0;
505     uint_type significand = getNormalizedSignificand();
506     // If we are up-casting, then we just have to shift to the right location.
507     if (num_throwaway_bits <= 0) {
508       out_val = static_cast<other_uint_type>(significand);
509       uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits);
510       out_val = static_cast<other_uint_type>(out_val << shift_amount);
511       return out_val;
512     }
513 
514     // If every non-representable bit is 0, then we don't have any casting to
515     // do.
516     if ((significand & throwaway_mask) == 0) {
517       return static_cast<other_uint_type>(
518           negatable_right_shift(num_throwaway_bits, significand));
519     }
520 
521     bool round_away_from_zero = false;
522     // We actually have to narrow the significand here, so we have to follow the
523     // rounding rules.
524     switch (dir) {
525       case kRoundToZero:
526         break;
527       case kRoundToPositiveInfinity:
528         round_away_from_zero = !isNegative();
529         break;
530       case kRoundToNegativeInfinity:
531         round_away_from_zero = isNegative();
532         break;
533       case kRoundToNearestEven:
534         // Have to round down, round bit is 0
535         if ((first_rounded_bit & significand) == 0) {
536           break;
537         }
538         if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) {
539           // If any subsequent bit of the rounded portion is non-0 then we round
540           // up.
541           round_away_from_zero = true;
542           break;
543         }
544         // We are exactly half-way between 2 numbers, pick even.
545         if ((significand & last_significant_bit) != 0) {
546           // 1 for our last bit, round up.
547           round_away_from_zero = true;
548           break;
549         }
550         break;
551     }
552 
553     if (round_away_from_zero) {
554       return static_cast<other_uint_type>(
555           negatable_right_shift(num_throwaway_bits, incrementSignificand(
556               significand, last_significant_bit, carry_bit)));
557     } else {
558       return static_cast<other_uint_type>(
559           negatable_right_shift(num_throwaway_bits, significand));
560     }
561   }
562 
563   // Casts this value to another HexFloat. If the cast is widening,
564   // then round_dir is ignored. If the cast is narrowing, then
565   // the result is rounded in the direction specified.
566   // This number will retain Nan and Inf values.
567   // It will also saturate to Inf if the number overflows, and
568   // underflow to (0 or min depending on rounding) if the number underflows.
569   template <typename other_T>
570   void castTo(other_T& other, round_direction round_dir) {
571     other = other_T(static_cast<typename other_T::native_type>(0));
572     bool negate = isNegative();
573     if (getUnsignedBits() == 0) {
574       if (negate) {
575         other.set_value(-other.value());
576       }
577       return;
578     }
579     uint_type significand = getSignificandBits();
580     bool carried = false;
581     typename other_T::uint_type rounded_significand =
582         getRoundedNormalizedSignificand<other_T>(round_dir, &carried);
583 
584     int_type exponent = getUnbiasedExponent();
585     if (exponent == min_exponent) {
586       // If we are denormal, normalize the exponent, so that we can encode
587       // easily.
588       exponent = static_cast<int_type>(exponent + 1);
589       for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0;
590            check_bit = static_cast<uint_type>(check_bit >> 1)) {
591         exponent = static_cast<int_type>(exponent - 1);
592         if (check_bit & significand) break;
593       }
594     }
595 
596     bool is_nan =
597         (getBits() & exponent_mask) == exponent_mask && significand != 0;
598     bool is_inf =
599         !is_nan &&
600         ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) ||
601          (significand == 0 && (getBits() & exponent_mask) == exponent_mask));
602 
603     // If we are Nan or Inf we should pass that through.
604     if (is_inf) {
605       other.set_value(BitwiseCast<typename other_T::underlying_type>(
606           static_cast<typename other_T::uint_type>(
607               (negate ? other_T::sign_mask : 0) | other_T::exponent_mask)));
608       return;
609     }
610     if (is_nan) {
611       typename other_T::uint_type shifted_significand;
612       shifted_significand = static_cast<typename other_T::uint_type>(
613           negatable_left_shift(
614               static_cast<int_type>(other_T::num_fraction_bits) -
615               static_cast<int_type>(num_fraction_bits), significand));
616 
617       // We are some sort of Nan. We try to keep the bit-pattern of the Nan
618       // as close as possible. If we had to shift off bits so we are 0, then we
619       // just set the last bit.
620       other.set_value(BitwiseCast<typename other_T::underlying_type>(
621           static_cast<typename other_T::uint_type>(
622               (negate ? other_T::sign_mask : 0) | other_T::exponent_mask |
623               (shifted_significand == 0 ? 0x1 : shifted_significand))));
624       return;
625     }
626 
627     bool round_underflow_up =
628         isNegative() ? round_dir == kRoundToNegativeInfinity
629                      : round_dir == kRoundToPositiveInfinity;
630     typedef typename other_T::int_type other_int_type;
631     // setFromSignUnbiasedExponentAndNormalizedSignificand will
632     // zero out any underflowing value (but retain the sign).
633     other.setFromSignUnbiasedExponentAndNormalizedSignificand(
634         negate, static_cast<other_int_type>(exponent), rounded_significand,
635         round_underflow_up);
636     return;
637   }
638 
639  private:
640   T value_;
641 
642   static_assert(num_used_bits ==
643                     Traits::num_exponent_bits + Traits::num_fraction_bits + 1,
644                 "The number of bits do not fit");
645   static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match");
646 };
647 
648 // Returns 4 bits represented by the hex character.
649 inline uint8_t get_nibble_from_character(int character) {
650   const char* dec = "0123456789";
651   const char* lower = "abcdef";
652   const char* upper = "ABCDEF";
653   const char* p = nullptr;
654   if ((p = strchr(dec, character))) {
655     return static_cast<uint8_t>(p - dec);
656   } else if ((p = strchr(lower, character))) {
657     return static_cast<uint8_t>(p - lower + 0xa);
658   } else if ((p = strchr(upper, character))) {
659     return static_cast<uint8_t>(p - upper + 0xa);
660   }
661 
662   assert(false && "This was called with a non-hex character");
663   return 0;
664 }
665 
666 // Outputs the given HexFloat to the stream.
667 template <typename T, typename Traits>
668 std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
669   typedef HexFloat<T, Traits> HF;
670   typedef typename HF::uint_type uint_type;
671   typedef typename HF::int_type int_type;
672 
673   static_assert(HF::num_used_bits != 0,
674                 "num_used_bits must be non-zero for a valid float");
675   static_assert(HF::num_exponent_bits != 0,
676                 "num_exponent_bits must be non-zero for a valid float");
677   static_assert(HF::num_fraction_bits != 0,
678                 "num_fractin_bits must be non-zero for a valid float");
679 
680   const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value());
681   const char* const sign = (bits & HF::sign_mask) ? "-" : "";
682   const uint_type exponent = static_cast<uint_type>(
683       (bits & HF::exponent_mask) >> HF::num_fraction_bits);
684 
685   uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask)
686                                               << HF::num_overflow_bits);
687 
688   const bool is_zero = exponent == 0 && fraction == 0;
689   const bool is_denorm = exponent == 0 && !is_zero;
690 
691   // exponent contains the biased exponent we have to convert it back into
692   // the normal range.
693   int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias);
694   // If the number is all zeros, then we actually have to NOT shift the
695   // exponent.
696   int_exponent = is_zero ? 0 : int_exponent;
697 
698   // If we are denorm, then start shifting, and decreasing the exponent until
699   // our leading bit is 1.
700 
701   if (is_denorm) {
702     while ((fraction & HF::fraction_top_bit) == 0) {
703       fraction = static_cast<uint_type>(fraction << 1);
704       int_exponent = static_cast<int_type>(int_exponent - 1);
705     }
706     // Since this is denormalized, we have to consume the leading 1 since it
707     // will end up being implicit.
708     fraction = static_cast<uint_type>(fraction << 1);  // eat the leading 1
709     fraction &= HF::fraction_represent_mask;
710   }
711 
712   uint_type fraction_nibbles = HF::fraction_nibbles;
713   // We do not have to display any trailing 0s, since this represents the
714   // fractional part.
715   while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
716     // Shift off any trailing values;
717     fraction = static_cast<uint_type>(fraction >> 4);
718     --fraction_nibbles;
719   }
720 
721   const auto saved_flags = os.flags();
722   const auto saved_fill = os.fill();
723 
724   os << sign << "0x" << (is_zero ? '0' : '1');
725   if (fraction_nibbles) {
726     // Make sure to keep the leading 0s in place, since this is the fractional
727     // part.
728     os << "." << std::setw(static_cast<int>(fraction_nibbles))
729        << std::setfill('0') << std::hex << fraction;
730   }
731   os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent;
732 
733   os.flags(saved_flags);
734   os.fill(saved_fill);
735 
736   return os;
737 }
738 
739 // Returns true if negate_value is true and the next character on the
740 // input stream is a plus or minus sign.  In that case we also set the fail bit
741 // on the stream and set the value to the zero value for its type.
742 template <typename T, typename Traits>
743 inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
744                                         HexFloat<T, Traits>& value) {
745   if (negate_value) {
746     auto next_char = is.peek();
747     if (next_char == '-' || next_char == '+') {
748       // Fail the parse.  Emulate standard behaviour by setting the value to
749       // the zero value, and set the fail bit on the stream.
750       value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
751       is.setstate(std::ios_base::failbit);
752       return true;
753     }
754   }
755   return false;
756 }
757 
758 // Parses a floating point number from the given stream and stores it into the
759 // value parameter.
760 // If negate_value is true then the number may not have a leading minus or
761 // plus, and if it successfully parses, then the number is negated before
762 // being stored into the value parameter.
763 // If the value cannot be correctly parsed or overflows the target floating
764 // point type, then set the fail bit on the stream.
765 // TODO(dneto): Promise C++11 standard behavior in how the value is set in
766 // the error case, but only after all target platforms implement it correctly.
767 // In particular, the Microsoft C++ runtime appears to be out of spec.
768 template <typename T, typename Traits>
769 inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
770                                       HexFloat<T, Traits>& value) {
771   if (RejectParseDueToLeadingSign(is, negate_value, value)) {
772     return is;
773   }
774   T val;
775   is >> val;
776   if (negate_value) {
777     val = -val;
778   }
779   value.set_value(val);
780   // In the failure case, map -0.0 to 0.0.
781   if (is.fail() && value.getUnsignedBits() == 0u) {
782     value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
783   }
784   if (val.isInfinity()) {
785     // Fail the parse.  Emulate standard behaviour by setting the value to
786     // the closest normal value, and set the fail bit on the stream.
787     value.set_value((value.isNegative() | negate_value) ? T::lowest()
788                                                         : T::max());
789     is.setstate(std::ios_base::failbit);
790   }
791   return is;
792 }
793 
794 // Specialization of ParseNormalFloat for FloatProxy<Float16> values.
795 // This will parse the float as it were a 32-bit floating point number,
796 // and then round it down to fit into a Float16 value.
797 // The number is rounded towards zero.
798 // If negate_value is true then the number may not have a leading minus or
799 // plus, and if it successfully parses, then the number is negated before
800 // being stored into the value parameter.
801 // If the value cannot be correctly parsed or overflows the target floating
802 // point type, then set the fail bit on the stream.
803 // TODO(dneto): Promise C++11 standard behavior in how the value is set in
804 // the error case, but only after all target platforms implement it correctly.
805 // In particular, the Microsoft C++ runtime appears to be out of spec.
806 template <>
807 inline std::istream&
808 ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
809     std::istream& is, bool negate_value,
810     HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) {
811   // First parse as a 32-bit float.
812   HexFloat<FloatProxy<float>> float_val(0.0f);
813   ParseNormalFloat(is, negate_value, float_val);
814 
815   // Then convert to 16-bit float, saturating at infinities, and
816   // rounding toward zero.
817   float_val.castTo(value, kRoundToZero);
818 
819   // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
820   // fail bit and set the lowest or highest value.
821   if (Float16::isInfinity(value.value().getAsFloat())) {
822     value.set_value(value.isNegative() ? Float16::lowest() : Float16::max());
823     is.setstate(std::ios_base::failbit);
824   }
825   return is;
826 }
827 
828 // Reads a HexFloat from the given stream.
829 // If the float is not encoded as a hex-float then it will be parsed
830 // as a regular float.
831 // This may fail if your stream does not support at least one unget.
832 // Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
833 // This would normally overflow a float and round to
834 // infinity but this special pattern is the exact representation for a NaN,
835 // and therefore is actually encoded as the correct NaN. To encode inf,
836 // either 0x0p+exponent_bias can be specified or any exponent greater than
837 // exponent_bias.
838 // Examples using IEEE 32-bit float encoding.
839 //    0x1.0p+128 (+inf)
840 //    -0x1.0p-128 (-inf)
841 //
842 //    0x1.1p+128 (+Nan)
843 //    -0x1.1p+128 (-Nan)
844 //
845 //    0x1p+129 (+inf)
846 //    -0x1p+129 (-inf)
847 template <typename T, typename Traits>
848 std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
849   using HF = HexFloat<T, Traits>;
850   using uint_type = typename HF::uint_type;
851   using int_type = typename HF::int_type;
852 
853   value.set_value(static_cast<typename HF::native_type>(0.f));
854 
855   if (is.flags() & std::ios::skipws) {
856     // If the user wants to skip whitespace , then we should obey that.
857     while (std::isspace(is.peek())) {
858       is.get();
859     }
860   }
861 
862   auto next_char = is.peek();
863   bool negate_value = false;
864 
865   if (next_char != '-' && next_char != '0') {
866     return ParseNormalFloat(is, negate_value, value);
867   }
868 
869   if (next_char == '-') {
870     negate_value = true;
871     is.get();
872     next_char = is.peek();
873   }
874 
875   if (next_char == '0') {
876     is.get();  // We may have to unget this.
877     auto maybe_hex_start = is.peek();
878     if (maybe_hex_start != 'x' && maybe_hex_start != 'X') {
879       is.unget();
880       return ParseNormalFloat(is, negate_value, value);
881     } else {
882       is.get();  // Throw away the 'x';
883     }
884   } else {
885     return ParseNormalFloat(is, negate_value, value);
886   }
887 
888   // This "looks" like a hex-float so treat it as one.
889   bool seen_p = false;
890   bool seen_dot = false;
891   uint_type fraction_index = 0;
892 
893   uint_type fraction = 0;
894   int_type exponent = HF::exponent_bias;
895 
896   // Strip off leading zeros so we don't have to special-case them later.
897   while ((next_char = is.peek()) == '0') {
898     is.get();
899   }
900 
901   bool is_denorm =
902       true;  // Assume denorm "representation" until we hear otherwise.
903              // NB: This does not mean the value is actually denorm,
904              // it just means that it was written 0.
905   bool bits_written = false;  // Stays false until we write a bit.
906   while (!seen_p && !seen_dot) {
907     // Handle characters that are left of the fractional part.
908     if (next_char == '.') {
909       seen_dot = true;
910     } else if (next_char == 'p') {
911       seen_p = true;
912     } else if (::isxdigit(next_char)) {
913       // We know this is not denormalized since we have stripped all leading
914       // zeroes and we are not a ".".
915       is_denorm = false;
916       int number = get_nibble_from_character(next_char);
917       for (int i = 0; i < 4; ++i, number <<= 1) {
918         uint_type write_bit = (number & 0x8) ? 0x1 : 0x0;
919         if (bits_written) {
920           // If we are here the bits represented belong in the fractional
921           // part of the float, and we have to adjust the exponent accordingly.
922           fraction = static_cast<uint_type>(
923               fraction |
924               static_cast<uint_type>(
925                   write_bit << (HF::top_bit_left_shift - fraction_index++)));
926           exponent = static_cast<int_type>(exponent + 1);
927         }
928         bits_written |= write_bit != 0;
929       }
930     } else {
931       // We have not found our exponent yet, so we have to fail.
932       is.setstate(std::ios::failbit);
933       return is;
934     }
935     is.get();
936     next_char = is.peek();
937   }
938   bits_written = false;
939   while (seen_dot && !seen_p) {
940     // Handle only fractional parts now.
941     if (next_char == 'p') {
942       seen_p = true;
943     } else if (::isxdigit(next_char)) {
944       int number = get_nibble_from_character(next_char);
945       for (int i = 0; i < 4; ++i, number <<= 1) {
946         uint_type write_bit = (number & 0x8) ? 0x01 : 0x00;
947         bits_written |= write_bit != 0;
948         if (is_denorm && !bits_written) {
949           // Handle modifying the exponent here this way we can handle
950           // an arbitrary number of hex values without overflowing our
951           // integer.
952           exponent = static_cast<int_type>(exponent - 1);
953         } else {
954           fraction = static_cast<uint_type>(
955               fraction |
956               static_cast<uint_type>(
957                   write_bit << (HF::top_bit_left_shift - fraction_index++)));
958         }
959       }
960     } else {
961       // We still have not found our 'p' exponent yet, so this is not a valid
962       // hex-float.
963       is.setstate(std::ios::failbit);
964       return is;
965     }
966     is.get();
967     next_char = is.peek();
968   }
969 
970   bool seen_sign = false;
971   int8_t exponent_sign = 1;
972   int_type written_exponent = 0;
973   while (true) {
974     if ((next_char == '-' || next_char == '+')) {
975       if (seen_sign) {
976         is.setstate(std::ios::failbit);
977         return is;
978       }
979       seen_sign = true;
980       exponent_sign = (next_char == '-') ? -1 : 1;
981     } else if (::isdigit(next_char)) {
982       // Hex-floats express their exponent as decimal.
983       written_exponent = static_cast<int_type>(written_exponent * 10);
984       written_exponent =
985           static_cast<int_type>(written_exponent + (next_char - '0'));
986     } else {
987       break;
988     }
989     is.get();
990     next_char = is.peek();
991   }
992 
993   written_exponent = static_cast<int_type>(written_exponent * exponent_sign);
994   exponent = static_cast<int_type>(exponent + written_exponent);
995 
996   bool is_zero = is_denorm && (fraction == 0);
997   if (is_denorm && !is_zero) {
998     fraction = static_cast<uint_type>(fraction << 1);
999     exponent = static_cast<int_type>(exponent - 1);
1000   } else if (is_zero) {
1001     exponent = 0;
1002   }
1003 
1004   if (exponent <= 0 && !is_zero) {
1005     fraction = static_cast<uint_type>(fraction >> 1);
1006     fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
1007   }
1008 
1009   fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask;
1010 
1011   const int_type max_exponent =
1012       SetBits<uint_type, 0, HF::num_exponent_bits>::get;
1013 
1014   // Handle actual denorm numbers
1015   while (exponent < 0 && !is_zero) {
1016     fraction = static_cast<uint_type>(fraction >> 1);
1017     exponent = static_cast<int_type>(exponent + 1);
1018 
1019     fraction &= HF::fraction_encode_mask;
1020     if (fraction == 0) {
1021       // We have underflowed our fraction. We should clamp to zero.
1022       is_zero = true;
1023       exponent = 0;
1024     }
1025   }
1026 
1027   // We have overflowed so we should be inf/-inf.
1028   if (exponent > max_exponent) {
1029     exponent = max_exponent;
1030     fraction = 0;
1031   }
1032 
1033   uint_type output_bits = static_cast<uint_type>(
1034       static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift);
1035   output_bits |= fraction;
1036 
1037   uint_type shifted_exponent = static_cast<uint_type>(
1038       static_cast<uint_type>(exponent << HF::exponent_left_shift) &
1039       HF::exponent_mask);
1040   output_bits |= shifted_exponent;
1041 
1042   T output_float = spvutils::BitwiseCast<T>(output_bits);
1043   value.set_value(output_float);
1044 
1045   return is;
1046 }
1047 
1048 // Writes a FloatProxy value to a stream.
1049 // Zero and normal numbers are printed in the usual notation, but with
1050 // enough digits to fully reproduce the value.  Other values (subnormal,
1051 // NaN, and infinity) are printed as a hex float.
1052 template <typename T>
1053 std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) {
1054   auto float_val = value.getAsFloat();
1055   switch (std::fpclassify(float_val)) {
1056     case FP_ZERO:
1057     case FP_NORMAL: {
1058       auto saved_precision = os.precision();
1059       os.precision(std::numeric_limits<T>::digits10);
1060       os << float_val;
1061       os.precision(saved_precision);
1062     } break;
1063     default:
1064       os << HexFloat<FloatProxy<T>>(value);
1065       break;
1066   }
1067   return os;
1068 }
1069 
1070 template <>
1071 inline std::ostream& operator<<<Float16>(std::ostream& os,
1072                                          const FloatProxy<Float16>& value) {
1073   os << HexFloat<FloatProxy<Float16>>(value);
1074   return os;
1075 }
1076 }
1077 
1078 #endif  // LIBSPIRV_UTIL_HEX_FLOAT_H_
1079