1 // Copyright (c) 2015-2016 The Khronos Group Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_
16 #define LIBSPIRV_UTIL_HEX_FLOAT_H_
17
18 #include <cassert>
19 #include <cctype>
20 #include <cmath>
21 #include <cstdint>
22 #include <iomanip>
23 #include <limits>
24 #include <sstream>
25
26 #if defined(_MSC_VER) && _MSC_VER < 1800
27 namespace std {
isnan(double f)28 bool isnan(double f)
29 {
30 return ::_isnan(f) != 0;
31 }
isinf(double f)32 bool isinf(double f)
33 {
34 return ::_finite(f) == 0;
35 }
36 }
37 #endif
38
39 #include "bitutils.h"
40
41 namespace spvutils {
42
43 class Float16 {
44 public:
Float16(uint16_t v)45 Float16(uint16_t v) : val(v) {}
Float16()46 Float16() {}
isNan(const Float16 & val)47 static bool isNan(const Float16& val) {
48 return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
49 }
50 // Returns true if the given value is any kind of infinity.
isInfinity(const Float16 & val)51 static bool isInfinity(const Float16& val) {
52 return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0);
53 }
Float16(const Float16 & other)54 Float16(const Float16& other) { val = other.val; }
get_value()55 uint16_t get_value() const { return val; }
56
57 // Returns the maximum normal value.
max()58 static Float16 max() { return Float16(0x7bff); }
59 // Returns the lowest normal value.
lowest()60 static Float16 lowest() { return Float16(0xfbff); }
61
62 private:
63 uint16_t val;
64 };
65
66 // To specialize this type, you must override uint_type to define
67 // an unsigned integer that can fit your floating point type.
68 // You must also add a isNan function that returns true if
69 // a value is Nan.
70 template <typename T>
71 struct FloatProxyTraits {
72 typedef void uint_type;
73 };
74
75 template <>
76 struct FloatProxyTraits<float> {
77 typedef uint32_t uint_type;
78 static bool isNan(float f) { return std::isnan(f); }
79 // Returns true if the given value is any kind of infinity.
80 static bool isInfinity(float f) { return std::isinf(f); }
81 // Returns the maximum normal value.
82 static float max() { return std::numeric_limits<float>::max(); }
83 // Returns the lowest normal value.
84 static float lowest() { return std::numeric_limits<float>::lowest(); }
85 };
86
87 template <>
88 struct FloatProxyTraits<double> {
89 typedef uint64_t uint_type;
90 static bool isNan(double f) { return std::isnan(f); }
91 // Returns true if the given value is any kind of infinity.
92 static bool isInfinity(double f) { return std::isinf(f); }
93 // Returns the maximum normal value.
94 static double max() { return std::numeric_limits<double>::max(); }
95 // Returns the lowest normal value.
96 static double lowest() { return std::numeric_limits<double>::lowest(); }
97 };
98
99 template <>
100 struct FloatProxyTraits<Float16> {
101 typedef uint16_t uint_type;
102 static bool isNan(Float16 f) { return Float16::isNan(f); }
103 // Returns true if the given value is any kind of infinity.
104 static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
105 // Returns the maximum normal value.
106 static Float16 max() { return Float16::max(); }
107 // Returns the lowest normal value.
108 static Float16 lowest() { return Float16::lowest(); }
109 };
110
111 // Since copying a floating point number (especially if it is NaN)
112 // does not guarantee that bits are preserved, this class lets us
113 // store the type and use it as a float when necessary.
114 template <typename T>
115 class FloatProxy {
116 public:
117 typedef typename FloatProxyTraits<T>::uint_type uint_type;
118
119 // Since this is to act similar to the normal floats,
120 // do not initialize the data by default.
121 FloatProxy() {}
122
123 // Intentionally non-explicit. This is a proxy type so
124 // implicit conversions allow us to use it more transparently.
125 FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); }
126
127 // Intentionally non-explicit. This is a proxy type so
128 // implicit conversions allow us to use it more transparently.
129 FloatProxy(uint_type val) { data_ = val; }
130
131 // This is helpful to have and is guaranteed not to stomp bits.
132 FloatProxy<T> operator-() const {
133 return static_cast<uint_type>(data_ ^
134 (uint_type(0x1) << (sizeof(T) * 8 - 1)));
135 }
136
137 // Returns the data as a floating point value.
138 T getAsFloat() const { return BitwiseCast<T>(data_); }
139
140 // Returns the raw data.
141 uint_type data() const { return data_; }
142
143 // Returns true if the value represents any type of NaN.
144 bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); }
145 // Returns true if the value represents any type of infinity.
146 bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); }
147
148 // Returns the maximum normal value.
149 static FloatProxy<T> max() {
150 return FloatProxy<T>(FloatProxyTraits<T>::max());
151 }
152 // Returns the lowest normal value.
153 static FloatProxy<T> lowest() {
154 return FloatProxy<T>(FloatProxyTraits<T>::lowest());
155 }
156
157 private:
158 uint_type data_;
159 };
160
161 template <typename T>
162 bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) {
163 return first.data() == second.data();
164 }
165
166 // Reads a FloatProxy value as a normal float from a stream.
167 template <typename T>
168 std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
169 T float_val;
170 is >> float_val;
171 value = FloatProxy<T>(float_val);
172 return is;
173 }
174
175 // This is an example traits. It is not meant to be used in practice, but will
176 // be the default for any non-specialized type.
177 template <typename T>
178 struct HexFloatTraits {
179 // Integer type that can store this hex-float.
180 typedef void uint_type;
181 // Signed integer type that can store this hex-float.
182 typedef void int_type;
183 // The numerical type that this HexFloat represents.
184 typedef void underlying_type;
185 // The type needed to construct the underlying type.
186 typedef void native_type;
187 // The number of bits that are actually relevant in the uint_type.
188 // This allows us to deal with, for example, 24-bit values in a 32-bit
189 // integer.
190 static const uint32_t num_used_bits = 0;
191 // Number of bits that represent the exponent.
192 static const uint32_t num_exponent_bits = 0;
193 // Number of bits that represent the fractional part.
194 static const uint32_t num_fraction_bits = 0;
195 // The bias of the exponent. (How much we need to subtract from the stored
196 // value to get the correct value.)
197 static const uint32_t exponent_bias = 0;
198 };
199
200 // Traits for IEEE float.
201 // 1 sign bit, 8 exponent bits, 23 fractional bits.
202 template <>
203 struct HexFloatTraits<FloatProxy<float>> {
204 typedef uint32_t uint_type;
205 typedef int32_t int_type;
206 typedef FloatProxy<float> underlying_type;
207 typedef float native_type;
208 static const uint_type num_used_bits = 32;
209 static const uint_type num_exponent_bits = 8;
210 static const uint_type num_fraction_bits = 23;
211 static const uint_type exponent_bias = 127;
212 };
213
214 // Traits for IEEE double.
215 // 1 sign bit, 11 exponent bits, 52 fractional bits.
216 template <>
217 struct HexFloatTraits<FloatProxy<double>> {
218 typedef uint64_t uint_type;
219 typedef int64_t int_type;
220 typedef FloatProxy<double> underlying_type;
221 typedef double native_type;
222 static const uint_type num_used_bits = 64;
223 static const uint_type num_exponent_bits = 11;
224 static const uint_type num_fraction_bits = 52;
225 static const uint_type exponent_bias = 1023;
226 };
227
228 // Traits for IEEE half.
229 // 1 sign bit, 5 exponent bits, 10 fractional bits.
230 template <>
231 struct HexFloatTraits<FloatProxy<Float16>> {
232 typedef uint16_t uint_type;
233 typedef int16_t int_type;
234 typedef uint16_t underlying_type;
235 typedef uint16_t native_type;
236 static const uint_type num_used_bits = 16;
237 static const uint_type num_exponent_bits = 5;
238 static const uint_type num_fraction_bits = 10;
239 static const uint_type exponent_bias = 15;
240 };
241
242 enum round_direction {
243 kRoundToZero,
244 kRoundToNearestEven,
245 kRoundToPositiveInfinity,
246 kRoundToNegativeInfinity
247 };
248
249 // Template class that houses a floating pointer number.
250 // It exposes a number of constants based on the provided traits to
251 // assist in interpreting the bits of the value.
252 template <typename T, typename Traits = HexFloatTraits<T>>
253 class HexFloat {
254 public:
255 typedef typename Traits::uint_type uint_type;
256 typedef typename Traits::int_type int_type;
257 typedef typename Traits::underlying_type underlying_type;
258 typedef typename Traits::native_type native_type;
259
260 explicit HexFloat(T f) : value_(f) {}
261
262 T value() const { return value_; }
263 void set_value(T f) { value_ = f; }
264
265 // These are all written like this because it is convenient to have
266 // compile-time constants for all of these values.
267
268 // Pass-through values to save typing.
269 static const uint32_t num_used_bits = Traits::num_used_bits;
270 static const uint32_t exponent_bias = Traits::exponent_bias;
271 static const uint32_t num_exponent_bits = Traits::num_exponent_bits;
272 static const uint32_t num_fraction_bits = Traits::num_fraction_bits;
273
274 // Number of bits to shift left to set the highest relevant bit.
275 static const uint32_t top_bit_left_shift = num_used_bits - 1;
276 // How many nibbles (hex characters) the fractional part takes up.
277 static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4;
278 // If the fractional part does not fit evenly into a hex character (4-bits)
279 // then we have to left-shift to get rid of leading 0s. This is the amount
280 // we have to shift (might be 0).
281 static const uint32_t num_overflow_bits =
282 fraction_nibbles * 4 - num_fraction_bits;
283
284 // The representation of the fraction, not the actual bits. This
285 // includes the leading bit that is usually implicit.
286 static const uint_type fraction_represent_mask =
287 spvutils::SetBits<uint_type, 0,
288 num_fraction_bits + num_overflow_bits>::get;
289
290 // The topmost bit in the nibble-aligned fraction.
291 static const uint_type fraction_top_bit =
292 uint_type(1) << (num_fraction_bits + num_overflow_bits - 1);
293
294 // The least significant bit in the exponent, which is also the bit
295 // immediately to the left of the significand.
296 static const uint_type first_exponent_bit = uint_type(1)
297 << (num_fraction_bits);
298
299 // The mask for the encoded fraction. It does not include the
300 // implicit bit.
301 static const uint_type fraction_encode_mask =
302 spvutils::SetBits<uint_type, 0, num_fraction_bits>::get;
303
304 // The bit that is used as a sign.
305 static const uint_type sign_mask = uint_type(1) << top_bit_left_shift;
306
307 // The bits that represent the exponent.
308 static const uint_type exponent_mask =
309 spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get;
310
311 // How far left the exponent is shifted.
312 static const uint32_t exponent_left_shift = num_fraction_bits;
313
314 // How far from the right edge the fraction is shifted.
315 static const uint32_t fraction_right_shift =
316 static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits;
317
318 // The maximum representable unbiased exponent.
319 static const int_type max_exponent =
320 (exponent_mask >> num_fraction_bits) - exponent_bias;
321 // The minimum representable exponent for normalized numbers.
322 static const int_type min_exponent = -static_cast<int_type>(exponent_bias);
323
324 // Returns the bits associated with the value.
325 uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); }
326
327 // Returns the bits associated with the value, without the leading sign bit.
328 uint_type getUnsignedBits() const {
329 return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) &
330 ~sign_mask);
331 }
332
333 // Returns the bits associated with the exponent, shifted to start at the
334 // lsb of the type.
335 const uint_type getExponentBits() const {
336 return static_cast<uint_type>((getBits() & exponent_mask) >>
337 num_fraction_bits);
338 }
339
340 // Returns the exponent in unbiased form. This is the exponent in the
341 // human-friendly form.
342 const int_type getUnbiasedExponent() const {
343 return static_cast<int_type>(getExponentBits() - exponent_bias);
344 }
345
346 // Returns just the significand bits from the value.
347 const uint_type getSignificandBits() const {
348 return getBits() & fraction_encode_mask;
349 }
350
351 // If the number was normalized, returns the unbiased exponent.
352 // If the number was denormal, normalize the exponent first.
353 const int_type getUnbiasedNormalizedExponent() const {
354 if ((getBits() & ~sign_mask) == 0) { // special case if everything is 0
355 return 0;
356 }
357 int_type exp = getUnbiasedExponent();
358 if (exp == min_exponent) { // We are in denorm land.
359 uint_type significand_bits = getSignificandBits();
360 while ((significand_bits & (first_exponent_bit >> 1)) == 0) {
361 significand_bits = static_cast<uint_type>(significand_bits << 1);
362 exp = static_cast<int_type>(exp - 1);
363 }
364 significand_bits &= fraction_encode_mask;
365 }
366 return exp;
367 }
368
369 // Returns the signficand after it has been normalized.
370 const uint_type getNormalizedSignificand() const {
371 int_type unbiased_exponent = getUnbiasedNormalizedExponent();
372 uint_type significand = getSignificandBits();
373 for (int_type i = unbiased_exponent; i <= min_exponent; ++i) {
374 significand = static_cast<uint_type>(significand << 1);
375 }
376 significand &= fraction_encode_mask;
377 return significand;
378 }
379
380 // Returns true if this number represents a negative value.
381 bool isNegative() const { return (getBits() & sign_mask) != 0; }
382
383 // Sets this HexFloat from the individual components.
384 // Note this assumes EVERY significand is normalized, and has an implicit
385 // leading one. This means that the only way that this method will set 0,
386 // is if you set a number so denormalized that it underflows.
387 // Do not use this method with raw bits extracted from a subnormal number,
388 // since subnormals do not have an implicit leading 1 in the significand.
389 // The significand is also expected to be in the
390 // lowest-most num_fraction_bits of the uint_type.
391 // The exponent is expected to be unbiased, meaning an exponent of
392 // 0 actually means 0.
393 // If underflow_round_up is set, then on underflow, if a number is non-0
394 // and would underflow, we round up to the smallest denorm.
395 void setFromSignUnbiasedExponentAndNormalizedSignificand(
396 bool negative, int_type exponent, uint_type significand,
397 bool round_denorm_up) {
398 bool significand_is_zero = significand == 0;
399
400 if (exponent <= min_exponent) {
401 // If this was denormalized, then we have to shift the bit on, meaning
402 // the significand is not zero.
403 significand_is_zero = false;
404 significand |= first_exponent_bit;
405 significand = static_cast<uint_type>(significand >> 1);
406 }
407
408 while (exponent < min_exponent) {
409 significand = static_cast<uint_type>(significand >> 1);
410 ++exponent;
411 }
412
413 if (exponent == min_exponent) {
414 if (significand == 0 && !significand_is_zero && round_denorm_up) {
415 significand = static_cast<uint_type>(0x1);
416 }
417 }
418
419 uint_type new_value = 0;
420 if (negative) {
421 new_value = static_cast<uint_type>(new_value | sign_mask);
422 }
423 exponent = static_cast<int_type>(exponent + exponent_bias);
424 assert(exponent >= 0);
425
426 // put it all together
427 exponent = static_cast<uint_type>((exponent << exponent_left_shift) &
428 exponent_mask);
429 significand = static_cast<uint_type>(significand & fraction_encode_mask);
430 new_value = static_cast<uint_type>(new_value | (exponent | significand));
431 value_ = BitwiseCast<T>(new_value);
432 }
433
434 // Increments the significand of this number by the given amount.
435 // If this would spill the significand into the implicit bit,
436 // carry is set to true and the significand is shifted to fit into
437 // the correct location, otherwise carry is set to false.
438 // All significands and to_increment are assumed to be within the bounds
439 // for a valid significand.
440 static uint_type incrementSignificand(uint_type significand,
441 uint_type to_increment, bool* carry) {
442 significand = static_cast<uint_type>(significand + to_increment);
443 *carry = false;
444 if (significand & first_exponent_bit) {
445 *carry = true;
446 // The implicit 1-bit will have carried, so we should zero-out the
447 // top bit and shift back.
448 significand = static_cast<uint_type>(significand & ~first_exponent_bit);
449 significand = static_cast<uint_type>(significand >> 1);
450 }
451 return significand;
452 }
453
454 // These exist because MSVC throws warnings on negative right-shifts
455 // even if they are not going to be executed. Eg:
456 // constant_number < 0? 0: constant_number
457 // These convert the negative left-shifts into right shifts.
458
459 template <typename int_type>
460 uint_type negatable_left_shift(int_type N, uint_type val)
461 {
462 if(N >= 0)
463 return val << N;
464
465 return val >> -N;
466 }
467
468 template <typename int_type>
469 uint_type negatable_right_shift(int_type N, uint_type val)
470 {
471 if(N >= 0)
472 return val >> N;
473
474 return val << -N;
475 }
476
477 // Returns the significand, rounded to fit in a significand in
478 // other_T. This is shifted so that the most significant
479 // bit of the rounded number lines up with the most significant bit
480 // of the returned significand.
481 template <typename other_T>
482 typename other_T::uint_type getRoundedNormalizedSignificand(
483 round_direction dir, bool* carry_bit) {
484 typedef typename other_T::uint_type other_uint_type;
485 static const int_type num_throwaway_bits =
486 static_cast<int_type>(num_fraction_bits) -
487 static_cast<int_type>(other_T::num_fraction_bits);
488
489 static const uint_type last_significant_bit =
490 (num_throwaway_bits < 0)
491 ? 0
492 : negatable_left_shift(num_throwaway_bits, 1u);
493 static const uint_type first_rounded_bit =
494 (num_throwaway_bits < 1)
495 ? 0
496 : negatable_left_shift(num_throwaway_bits - 1, 1u);
497
498 static const uint_type throwaway_mask_bits =
499 num_throwaway_bits > 0 ? num_throwaway_bits : 0;
500 static const uint_type throwaway_mask =
501 spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get;
502
503 *carry_bit = false;
504 other_uint_type out_val = 0;
505 uint_type significand = getNormalizedSignificand();
506 // If we are up-casting, then we just have to shift to the right location.
507 if (num_throwaway_bits <= 0) {
508 out_val = static_cast<other_uint_type>(significand);
509 uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits);
510 out_val = static_cast<other_uint_type>(out_val << shift_amount);
511 return out_val;
512 }
513
514 // If every non-representable bit is 0, then we don't have any casting to
515 // do.
516 if ((significand & throwaway_mask) == 0) {
517 return static_cast<other_uint_type>(
518 negatable_right_shift(num_throwaway_bits, significand));
519 }
520
521 bool round_away_from_zero = false;
522 // We actually have to narrow the significand here, so we have to follow the
523 // rounding rules.
524 switch (dir) {
525 case kRoundToZero:
526 break;
527 case kRoundToPositiveInfinity:
528 round_away_from_zero = !isNegative();
529 break;
530 case kRoundToNegativeInfinity:
531 round_away_from_zero = isNegative();
532 break;
533 case kRoundToNearestEven:
534 // Have to round down, round bit is 0
535 if ((first_rounded_bit & significand) == 0) {
536 break;
537 }
538 if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) {
539 // If any subsequent bit of the rounded portion is non-0 then we round
540 // up.
541 round_away_from_zero = true;
542 break;
543 }
544 // We are exactly half-way between 2 numbers, pick even.
545 if ((significand & last_significant_bit) != 0) {
546 // 1 for our last bit, round up.
547 round_away_from_zero = true;
548 break;
549 }
550 break;
551 }
552
553 if (round_away_from_zero) {
554 return static_cast<other_uint_type>(
555 negatable_right_shift(num_throwaway_bits, incrementSignificand(
556 significand, last_significant_bit, carry_bit)));
557 } else {
558 return static_cast<other_uint_type>(
559 negatable_right_shift(num_throwaway_bits, significand));
560 }
561 }
562
563 // Casts this value to another HexFloat. If the cast is widening,
564 // then round_dir is ignored. If the cast is narrowing, then
565 // the result is rounded in the direction specified.
566 // This number will retain Nan and Inf values.
567 // It will also saturate to Inf if the number overflows, and
568 // underflow to (0 or min depending on rounding) if the number underflows.
569 template <typename other_T>
570 void castTo(other_T& other, round_direction round_dir) {
571 other = other_T(static_cast<typename other_T::native_type>(0));
572 bool negate = isNegative();
573 if (getUnsignedBits() == 0) {
574 if (negate) {
575 other.set_value(-other.value());
576 }
577 return;
578 }
579 uint_type significand = getSignificandBits();
580 bool carried = false;
581 typename other_T::uint_type rounded_significand =
582 getRoundedNormalizedSignificand<other_T>(round_dir, &carried);
583
584 int_type exponent = getUnbiasedExponent();
585 if (exponent == min_exponent) {
586 // If we are denormal, normalize the exponent, so that we can encode
587 // easily.
588 exponent = static_cast<int_type>(exponent + 1);
589 for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0;
590 check_bit = static_cast<uint_type>(check_bit >> 1)) {
591 exponent = static_cast<int_type>(exponent - 1);
592 if (check_bit & significand) break;
593 }
594 }
595
596 bool is_nan =
597 (getBits() & exponent_mask) == exponent_mask && significand != 0;
598 bool is_inf =
599 !is_nan &&
600 ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) ||
601 (significand == 0 && (getBits() & exponent_mask) == exponent_mask));
602
603 // If we are Nan or Inf we should pass that through.
604 if (is_inf) {
605 other.set_value(BitwiseCast<typename other_T::underlying_type>(
606 static_cast<typename other_T::uint_type>(
607 (negate ? other_T::sign_mask : 0) | other_T::exponent_mask)));
608 return;
609 }
610 if (is_nan) {
611 typename other_T::uint_type shifted_significand;
612 shifted_significand = static_cast<typename other_T::uint_type>(
613 negatable_left_shift(
614 static_cast<int_type>(other_T::num_fraction_bits) -
615 static_cast<int_type>(num_fraction_bits), significand));
616
617 // We are some sort of Nan. We try to keep the bit-pattern of the Nan
618 // as close as possible. If we had to shift off bits so we are 0, then we
619 // just set the last bit.
620 other.set_value(BitwiseCast<typename other_T::underlying_type>(
621 static_cast<typename other_T::uint_type>(
622 (negate ? other_T::sign_mask : 0) | other_T::exponent_mask |
623 (shifted_significand == 0 ? 0x1 : shifted_significand))));
624 return;
625 }
626
627 bool round_underflow_up =
628 isNegative() ? round_dir == kRoundToNegativeInfinity
629 : round_dir == kRoundToPositiveInfinity;
630 typedef typename other_T::int_type other_int_type;
631 // setFromSignUnbiasedExponentAndNormalizedSignificand will
632 // zero out any underflowing value (but retain the sign).
633 other.setFromSignUnbiasedExponentAndNormalizedSignificand(
634 negate, static_cast<other_int_type>(exponent), rounded_significand,
635 round_underflow_up);
636 return;
637 }
638
639 private:
640 T value_;
641
642 static_assert(num_used_bits ==
643 Traits::num_exponent_bits + Traits::num_fraction_bits + 1,
644 "The number of bits do not fit");
645 static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match");
646 };
647
648 // Returns 4 bits represented by the hex character.
649 inline uint8_t get_nibble_from_character(int character) {
650 const char* dec = "0123456789";
651 const char* lower = "abcdef";
652 const char* upper = "ABCDEF";
653 const char* p = nullptr;
654 if ((p = strchr(dec, character))) {
655 return static_cast<uint8_t>(p - dec);
656 } else if ((p = strchr(lower, character))) {
657 return static_cast<uint8_t>(p - lower + 0xa);
658 } else if ((p = strchr(upper, character))) {
659 return static_cast<uint8_t>(p - upper + 0xa);
660 }
661
662 assert(false && "This was called with a non-hex character");
663 return 0;
664 }
665
666 // Outputs the given HexFloat to the stream.
667 template <typename T, typename Traits>
668 std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
669 typedef HexFloat<T, Traits> HF;
670 typedef typename HF::uint_type uint_type;
671 typedef typename HF::int_type int_type;
672
673 static_assert(HF::num_used_bits != 0,
674 "num_used_bits must be non-zero for a valid float");
675 static_assert(HF::num_exponent_bits != 0,
676 "num_exponent_bits must be non-zero for a valid float");
677 static_assert(HF::num_fraction_bits != 0,
678 "num_fractin_bits must be non-zero for a valid float");
679
680 const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value());
681 const char* const sign = (bits & HF::sign_mask) ? "-" : "";
682 const uint_type exponent = static_cast<uint_type>(
683 (bits & HF::exponent_mask) >> HF::num_fraction_bits);
684
685 uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask)
686 << HF::num_overflow_bits);
687
688 const bool is_zero = exponent == 0 && fraction == 0;
689 const bool is_denorm = exponent == 0 && !is_zero;
690
691 // exponent contains the biased exponent we have to convert it back into
692 // the normal range.
693 int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias);
694 // If the number is all zeros, then we actually have to NOT shift the
695 // exponent.
696 int_exponent = is_zero ? 0 : int_exponent;
697
698 // If we are denorm, then start shifting, and decreasing the exponent until
699 // our leading bit is 1.
700
701 if (is_denorm) {
702 while ((fraction & HF::fraction_top_bit) == 0) {
703 fraction = static_cast<uint_type>(fraction << 1);
704 int_exponent = static_cast<int_type>(int_exponent - 1);
705 }
706 // Since this is denormalized, we have to consume the leading 1 since it
707 // will end up being implicit.
708 fraction = static_cast<uint_type>(fraction << 1); // eat the leading 1
709 fraction &= HF::fraction_represent_mask;
710 }
711
712 uint_type fraction_nibbles = HF::fraction_nibbles;
713 // We do not have to display any trailing 0s, since this represents the
714 // fractional part.
715 while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
716 // Shift off any trailing values;
717 fraction = static_cast<uint_type>(fraction >> 4);
718 --fraction_nibbles;
719 }
720
721 const auto saved_flags = os.flags();
722 const auto saved_fill = os.fill();
723
724 os << sign << "0x" << (is_zero ? '0' : '1');
725 if (fraction_nibbles) {
726 // Make sure to keep the leading 0s in place, since this is the fractional
727 // part.
728 os << "." << std::setw(static_cast<int>(fraction_nibbles))
729 << std::setfill('0') << std::hex << fraction;
730 }
731 os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent;
732
733 os.flags(saved_flags);
734 os.fill(saved_fill);
735
736 return os;
737 }
738
739 // Returns true if negate_value is true and the next character on the
740 // input stream is a plus or minus sign. In that case we also set the fail bit
741 // on the stream and set the value to the zero value for its type.
742 template <typename T, typename Traits>
743 inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
744 HexFloat<T, Traits>& value) {
745 if (negate_value) {
746 auto next_char = is.peek();
747 if (next_char == '-' || next_char == '+') {
748 // Fail the parse. Emulate standard behaviour by setting the value to
749 // the zero value, and set the fail bit on the stream.
750 value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
751 is.setstate(std::ios_base::failbit);
752 return true;
753 }
754 }
755 return false;
756 }
757
758 // Parses a floating point number from the given stream and stores it into the
759 // value parameter.
760 // If negate_value is true then the number may not have a leading minus or
761 // plus, and if it successfully parses, then the number is negated before
762 // being stored into the value parameter.
763 // If the value cannot be correctly parsed or overflows the target floating
764 // point type, then set the fail bit on the stream.
765 // TODO(dneto): Promise C++11 standard behavior in how the value is set in
766 // the error case, but only after all target platforms implement it correctly.
767 // In particular, the Microsoft C++ runtime appears to be out of spec.
768 template <typename T, typename Traits>
769 inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
770 HexFloat<T, Traits>& value) {
771 if (RejectParseDueToLeadingSign(is, negate_value, value)) {
772 return is;
773 }
774 T val;
775 is >> val;
776 if (negate_value) {
777 val = -val;
778 }
779 value.set_value(val);
780 // In the failure case, map -0.0 to 0.0.
781 if (is.fail() && value.getUnsignedBits() == 0u) {
782 value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
783 }
784 if (val.isInfinity()) {
785 // Fail the parse. Emulate standard behaviour by setting the value to
786 // the closest normal value, and set the fail bit on the stream.
787 value.set_value((value.isNegative() | negate_value) ? T::lowest()
788 : T::max());
789 is.setstate(std::ios_base::failbit);
790 }
791 return is;
792 }
793
794 // Specialization of ParseNormalFloat for FloatProxy<Float16> values.
795 // This will parse the float as it were a 32-bit floating point number,
796 // and then round it down to fit into a Float16 value.
797 // The number is rounded towards zero.
798 // If negate_value is true then the number may not have a leading minus or
799 // plus, and if it successfully parses, then the number is negated before
800 // being stored into the value parameter.
801 // If the value cannot be correctly parsed or overflows the target floating
802 // point type, then set the fail bit on the stream.
803 // TODO(dneto): Promise C++11 standard behavior in how the value is set in
804 // the error case, but only after all target platforms implement it correctly.
805 // In particular, the Microsoft C++ runtime appears to be out of spec.
806 template <>
807 inline std::istream&
808 ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
809 std::istream& is, bool negate_value,
810 HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) {
811 // First parse as a 32-bit float.
812 HexFloat<FloatProxy<float>> float_val(0.0f);
813 ParseNormalFloat(is, negate_value, float_val);
814
815 // Then convert to 16-bit float, saturating at infinities, and
816 // rounding toward zero.
817 float_val.castTo(value, kRoundToZero);
818
819 // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
820 // fail bit and set the lowest or highest value.
821 if (Float16::isInfinity(value.value().getAsFloat())) {
822 value.set_value(value.isNegative() ? Float16::lowest() : Float16::max());
823 is.setstate(std::ios_base::failbit);
824 }
825 return is;
826 }
827
828 // Reads a HexFloat from the given stream.
829 // If the float is not encoded as a hex-float then it will be parsed
830 // as a regular float.
831 // This may fail if your stream does not support at least one unget.
832 // Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
833 // This would normally overflow a float and round to
834 // infinity but this special pattern is the exact representation for a NaN,
835 // and therefore is actually encoded as the correct NaN. To encode inf,
836 // either 0x0p+exponent_bias can be specified or any exponent greater than
837 // exponent_bias.
838 // Examples using IEEE 32-bit float encoding.
839 // 0x1.0p+128 (+inf)
840 // -0x1.0p-128 (-inf)
841 //
842 // 0x1.1p+128 (+Nan)
843 // -0x1.1p+128 (-Nan)
844 //
845 // 0x1p+129 (+inf)
846 // -0x1p+129 (-inf)
847 template <typename T, typename Traits>
848 std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
849 using HF = HexFloat<T, Traits>;
850 using uint_type = typename HF::uint_type;
851 using int_type = typename HF::int_type;
852
853 value.set_value(static_cast<typename HF::native_type>(0.f));
854
855 if (is.flags() & std::ios::skipws) {
856 // If the user wants to skip whitespace , then we should obey that.
857 while (std::isspace(is.peek())) {
858 is.get();
859 }
860 }
861
862 auto next_char = is.peek();
863 bool negate_value = false;
864
865 if (next_char != '-' && next_char != '0') {
866 return ParseNormalFloat(is, negate_value, value);
867 }
868
869 if (next_char == '-') {
870 negate_value = true;
871 is.get();
872 next_char = is.peek();
873 }
874
875 if (next_char == '0') {
876 is.get(); // We may have to unget this.
877 auto maybe_hex_start = is.peek();
878 if (maybe_hex_start != 'x' && maybe_hex_start != 'X') {
879 is.unget();
880 return ParseNormalFloat(is, negate_value, value);
881 } else {
882 is.get(); // Throw away the 'x';
883 }
884 } else {
885 return ParseNormalFloat(is, negate_value, value);
886 }
887
888 // This "looks" like a hex-float so treat it as one.
889 bool seen_p = false;
890 bool seen_dot = false;
891 uint_type fraction_index = 0;
892
893 uint_type fraction = 0;
894 int_type exponent = HF::exponent_bias;
895
896 // Strip off leading zeros so we don't have to special-case them later.
897 while ((next_char = is.peek()) == '0') {
898 is.get();
899 }
900
901 bool is_denorm =
902 true; // Assume denorm "representation" until we hear otherwise.
903 // NB: This does not mean the value is actually denorm,
904 // it just means that it was written 0.
905 bool bits_written = false; // Stays false until we write a bit.
906 while (!seen_p && !seen_dot) {
907 // Handle characters that are left of the fractional part.
908 if (next_char == '.') {
909 seen_dot = true;
910 } else if (next_char == 'p') {
911 seen_p = true;
912 } else if (::isxdigit(next_char)) {
913 // We know this is not denormalized since we have stripped all leading
914 // zeroes and we are not a ".".
915 is_denorm = false;
916 int number = get_nibble_from_character(next_char);
917 for (int i = 0; i < 4; ++i, number <<= 1) {
918 uint_type write_bit = (number & 0x8) ? 0x1 : 0x0;
919 if (bits_written) {
920 // If we are here the bits represented belong in the fractional
921 // part of the float, and we have to adjust the exponent accordingly.
922 fraction = static_cast<uint_type>(
923 fraction |
924 static_cast<uint_type>(
925 write_bit << (HF::top_bit_left_shift - fraction_index++)));
926 exponent = static_cast<int_type>(exponent + 1);
927 }
928 bits_written |= write_bit != 0;
929 }
930 } else {
931 // We have not found our exponent yet, so we have to fail.
932 is.setstate(std::ios::failbit);
933 return is;
934 }
935 is.get();
936 next_char = is.peek();
937 }
938 bits_written = false;
939 while (seen_dot && !seen_p) {
940 // Handle only fractional parts now.
941 if (next_char == 'p') {
942 seen_p = true;
943 } else if (::isxdigit(next_char)) {
944 int number = get_nibble_from_character(next_char);
945 for (int i = 0; i < 4; ++i, number <<= 1) {
946 uint_type write_bit = (number & 0x8) ? 0x01 : 0x00;
947 bits_written |= write_bit != 0;
948 if (is_denorm && !bits_written) {
949 // Handle modifying the exponent here this way we can handle
950 // an arbitrary number of hex values without overflowing our
951 // integer.
952 exponent = static_cast<int_type>(exponent - 1);
953 } else {
954 fraction = static_cast<uint_type>(
955 fraction |
956 static_cast<uint_type>(
957 write_bit << (HF::top_bit_left_shift - fraction_index++)));
958 }
959 }
960 } else {
961 // We still have not found our 'p' exponent yet, so this is not a valid
962 // hex-float.
963 is.setstate(std::ios::failbit);
964 return is;
965 }
966 is.get();
967 next_char = is.peek();
968 }
969
970 bool seen_sign = false;
971 int8_t exponent_sign = 1;
972 int_type written_exponent = 0;
973 while (true) {
974 if ((next_char == '-' || next_char == '+')) {
975 if (seen_sign) {
976 is.setstate(std::ios::failbit);
977 return is;
978 }
979 seen_sign = true;
980 exponent_sign = (next_char == '-') ? -1 : 1;
981 } else if (::isdigit(next_char)) {
982 // Hex-floats express their exponent as decimal.
983 written_exponent = static_cast<int_type>(written_exponent * 10);
984 written_exponent =
985 static_cast<int_type>(written_exponent + (next_char - '0'));
986 } else {
987 break;
988 }
989 is.get();
990 next_char = is.peek();
991 }
992
993 written_exponent = static_cast<int_type>(written_exponent * exponent_sign);
994 exponent = static_cast<int_type>(exponent + written_exponent);
995
996 bool is_zero = is_denorm && (fraction == 0);
997 if (is_denorm && !is_zero) {
998 fraction = static_cast<uint_type>(fraction << 1);
999 exponent = static_cast<int_type>(exponent - 1);
1000 } else if (is_zero) {
1001 exponent = 0;
1002 }
1003
1004 if (exponent <= 0 && !is_zero) {
1005 fraction = static_cast<uint_type>(fraction >> 1);
1006 fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
1007 }
1008
1009 fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask;
1010
1011 const int_type max_exponent =
1012 SetBits<uint_type, 0, HF::num_exponent_bits>::get;
1013
1014 // Handle actual denorm numbers
1015 while (exponent < 0 && !is_zero) {
1016 fraction = static_cast<uint_type>(fraction >> 1);
1017 exponent = static_cast<int_type>(exponent + 1);
1018
1019 fraction &= HF::fraction_encode_mask;
1020 if (fraction == 0) {
1021 // We have underflowed our fraction. We should clamp to zero.
1022 is_zero = true;
1023 exponent = 0;
1024 }
1025 }
1026
1027 // We have overflowed so we should be inf/-inf.
1028 if (exponent > max_exponent) {
1029 exponent = max_exponent;
1030 fraction = 0;
1031 }
1032
1033 uint_type output_bits = static_cast<uint_type>(
1034 static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift);
1035 output_bits |= fraction;
1036
1037 uint_type shifted_exponent = static_cast<uint_type>(
1038 static_cast<uint_type>(exponent << HF::exponent_left_shift) &
1039 HF::exponent_mask);
1040 output_bits |= shifted_exponent;
1041
1042 T output_float = spvutils::BitwiseCast<T>(output_bits);
1043 value.set_value(output_float);
1044
1045 return is;
1046 }
1047
1048 // Writes a FloatProxy value to a stream.
1049 // Zero and normal numbers are printed in the usual notation, but with
1050 // enough digits to fully reproduce the value. Other values (subnormal,
1051 // NaN, and infinity) are printed as a hex float.
1052 template <typename T>
1053 std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) {
1054 auto float_val = value.getAsFloat();
1055 switch (std::fpclassify(float_val)) {
1056 case FP_ZERO:
1057 case FP_NORMAL: {
1058 auto saved_precision = os.precision();
1059 os.precision(std::numeric_limits<T>::digits10);
1060 os << float_val;
1061 os.precision(saved_precision);
1062 } break;
1063 default:
1064 os << HexFloat<FloatProxy<T>>(value);
1065 break;
1066 }
1067 return os;
1068 }
1069
1070 template <>
1071 inline std::ostream& operator<<<Float16>(std::ostream& os,
1072 const FloatProxy<Float16>& value) {
1073 os << HexFloat<FloatProxy<Float16>>(value);
1074 return os;
1075 }
1076 }
1077
1078 #endif // LIBSPIRV_UTIL_HEX_FLOAT_H_
1079