1 //===- ThreadSafetyUtil.h --------------------------------------*- C++ --*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines some basic utility classes for use by ThreadSafetyTIL.h
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H
15 #define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H
16 
17 #include "clang/AST/ExprCXX.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Support/AlignOf.h"
20 #include "llvm/Support/Allocator.h"
21 #include "llvm/Support/Compiler.h"
22 #include <cassert>
23 #include <cstddef>
24 #include <ostream>
25 #include <utility>
26 #include <vector>
27 
28 namespace clang {
29 namespace threadSafety {
30 namespace til {
31 
32 // Simple wrapper class to abstract away from the details of memory management.
33 // SExprs are allocated in pools, and deallocated all at once.
34 class MemRegionRef {
35 private:
36   union AlignmentType {
37     double d;
38     void *p;
39     long double dd;
40     long long ii;
41   };
42 
43 public:
MemRegionRef()44   MemRegionRef() : Allocator(nullptr) {}
MemRegionRef(llvm::BumpPtrAllocator * A)45   MemRegionRef(llvm::BumpPtrAllocator *A) : Allocator(A) {}
46 
allocate(size_t Sz)47   void *allocate(size_t Sz) {
48     return Allocator->Allocate(Sz, llvm::AlignOf<AlignmentType>::Alignment);
49   }
50 
allocateT()51   template <typename T> T *allocateT() { return Allocator->Allocate<T>(); }
52 
allocateT(size_t NumElems)53   template <typename T> T *allocateT(size_t NumElems) {
54     return Allocator->Allocate<T>(NumElems);
55   }
56 
57 private:
58   llvm::BumpPtrAllocator *Allocator;
59 };
60 
61 } // end namespace til
62 } // end namespace threadSafety
63 } // end namespace clang
64 
new(size_t Sz,clang::threadSafety::til::MemRegionRef & R)65 inline void *operator new(size_t Sz,
66                           clang::threadSafety::til::MemRegionRef &R) {
67   return R.allocate(Sz);
68 }
69 
70 namespace clang {
71 namespace threadSafety {
72 
73 std::string getSourceLiteralString(const clang::Expr *CE);
74 
75 using llvm::StringRef;
76 using clang::SourceLocation;
77 
78 namespace til {
79 
80 // A simple fixed size array class that does not manage its own memory,
81 // suitable for use with bump pointer allocation.
82 template <class T> class SimpleArray {
83 public:
SimpleArray()84   SimpleArray() : Data(nullptr), Size(0), Capacity(0) {}
85   SimpleArray(T *Dat, size_t Cp, size_t Sz = 0)
Data(Dat)86       : Data(Dat), Size(Sz), Capacity(Cp) {}
SimpleArray(MemRegionRef A,size_t Cp)87   SimpleArray(MemRegionRef A, size_t Cp)
88       : Data(Cp == 0 ? nullptr : A.allocateT<T>(Cp)), Size(0), Capacity(Cp) {}
SimpleArray(SimpleArray<T> && A)89   SimpleArray(SimpleArray<T> &&A)
90       : Data(A.Data), Size(A.Size), Capacity(A.Capacity) {
91     A.Data = nullptr;
92     A.Size = 0;
93     A.Capacity = 0;
94   }
95 
96   SimpleArray &operator=(SimpleArray &&RHS) {
97     if (this != &RHS) {
98       Data = RHS.Data;
99       Size = RHS.Size;
100       Capacity = RHS.Capacity;
101 
102       RHS.Data = nullptr;
103       RHS.Size = RHS.Capacity = 0;
104     }
105     return *this;
106   }
107 
108   // Reserve space for at least Ncp items, reallocating if necessary.
reserve(size_t Ncp,MemRegionRef A)109   void reserve(size_t Ncp, MemRegionRef A) {
110     if (Ncp <= Capacity)
111       return;
112     T *Odata = Data;
113     Data = A.allocateT<T>(Ncp);
114     Capacity = Ncp;
115     memcpy(Data, Odata, sizeof(T) * Size);
116   }
117 
118   // Reserve space for at least N more items.
reserveCheck(size_t N,MemRegionRef A)119   void reserveCheck(size_t N, MemRegionRef A) {
120     if (Capacity == 0)
121       reserve(u_max(InitialCapacity, N), A);
122     else if (Size + N < Capacity)
123       reserve(u_max(Size + N, Capacity * 2), A);
124   }
125 
126   typedef T *iterator;
127   typedef const T *const_iterator;
128   typedef std::reverse_iterator<iterator> reverse_iterator;
129   typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
130 
size()131   size_t size() const { return Size; }
capacity()132   size_t capacity() const { return Capacity; }
133 
134   T &operator[](unsigned i) {
135     assert(i < Size && "Array index out of bounds.");
136     return Data[i];
137   }
138   const T &operator[](unsigned i) const {
139     assert(i < Size && "Array index out of bounds.");
140     return Data[i];
141   }
back()142   T &back() {
143     assert(Size && "No elements in the array.");
144     return Data[Size - 1];
145   }
back()146   const T &back() const {
147     assert(Size && "No elements in the array.");
148     return Data[Size - 1];
149   }
150 
begin()151   iterator begin() { return Data; }
end()152   iterator end()   { return Data + Size; }
153 
begin()154   const_iterator begin() const { return Data; }
end()155   const_iterator end()   const { return Data + Size; }
156 
cbegin()157   const_iterator cbegin() const { return Data; }
cend()158   const_iterator cend()   const { return Data + Size; }
159 
rbegin()160   reverse_iterator rbegin() { return reverse_iterator(end()); }
rend()161   reverse_iterator rend() { return reverse_iterator(begin()); }
162 
rbegin()163   const_reverse_iterator rbegin() const {
164     return const_reverse_iterator(end());
165   }
rend()166   const_reverse_iterator rend() const {
167     return const_reverse_iterator(begin());
168   }
169 
push_back(const T & Elem)170   void push_back(const T &Elem) {
171     assert(Size < Capacity);
172     Data[Size++] = Elem;
173   }
174 
175   // drop last n elements from array
176   void drop(unsigned n = 0) {
177     assert(Size > n);
178     Size -= n;
179   }
180 
setValues(unsigned Sz,const T & C)181   void setValues(unsigned Sz, const T& C) {
182     assert(Sz <= Capacity);
183     Size = Sz;
184     for (unsigned i = 0; i < Sz; ++i) {
185       Data[i] = C;
186     }
187   }
188 
append(Iter I,Iter E)189   template <class Iter> unsigned append(Iter I, Iter E) {
190     size_t Osz = Size;
191     size_t J = Osz;
192     for (; J < Capacity && I != E; ++J, ++I)
193       Data[J] = *I;
194     Size = J;
195     return J - Osz;
196   }
197 
reverse()198   llvm::iterator_range<reverse_iterator> reverse() {
199     return llvm::make_range(rbegin(), rend());
200   }
reverse()201   llvm::iterator_range<const_reverse_iterator> reverse() const {
202     return llvm::make_range(rbegin(), rend());
203   }
204 
205 private:
206   // std::max is annoying here, because it requires a reference,
207   // thus forcing InitialCapacity to be initialized outside the .h file.
u_max(size_t i,size_t j)208   size_t u_max(size_t i, size_t j) { return (i < j) ? j : i; }
209 
210   static const size_t InitialCapacity = 4;
211 
212   SimpleArray(const SimpleArray<T> &A) = delete;
213 
214   T *Data;
215   size_t Size;
216   size_t Capacity;
217 };
218 
219 }  // end namespace til
220 
221 // A copy on write vector.
222 // The vector can be in one of three states:
223 // * invalid -- no operations are permitted.
224 // * read-only -- read operations are permitted.
225 // * writable -- read and write operations are permitted.
226 // The init(), destroy(), and makeWritable() methods will change state.
227 template<typename T>
228 class CopyOnWriteVector {
229   class VectorData {
230   public:
VectorData()231     VectorData() : NumRefs(1) { }
VectorData(const VectorData & VD)232     VectorData(const VectorData &VD) : NumRefs(1), Vect(VD.Vect) { }
233 
234     unsigned NumRefs;
235     std::vector<T> Vect;
236   };
237 
238   // No copy constructor or copy assignment.  Use clone() with move assignment.
239   CopyOnWriteVector(const CopyOnWriteVector &V) = delete;
240   void operator=(const CopyOnWriteVector &V) = delete;
241 
242 public:
CopyOnWriteVector()243   CopyOnWriteVector() : Data(nullptr) {}
CopyOnWriteVector(CopyOnWriteVector && V)244   CopyOnWriteVector(CopyOnWriteVector &&V) : Data(V.Data) { V.Data = nullptr; }
~CopyOnWriteVector()245   ~CopyOnWriteVector() { destroy(); }
246 
247   // Returns true if this holds a valid vector.
valid()248   bool valid() const  { return Data; }
249 
250   // Returns true if this vector is writable.
writable()251   bool writable() const { return Data && Data->NumRefs == 1; }
252 
253   // If this vector is not valid, initialize it to a valid vector.
init()254   void init() {
255     if (!Data) {
256       Data = new VectorData();
257     }
258   }
259 
260   // Destroy this vector; thus making it invalid.
destroy()261   void destroy() {
262     if (!Data)
263       return;
264     if (Data->NumRefs <= 1)
265       delete Data;
266     else
267       --Data->NumRefs;
268     Data = nullptr;
269   }
270 
271   // Make this vector writable, creating a copy if needed.
makeWritable()272   void makeWritable() {
273     if (!Data) {
274       Data = new VectorData();
275       return;
276     }
277     if (Data->NumRefs == 1)
278       return;   // already writeable.
279     --Data->NumRefs;
280     Data = new VectorData(*Data);
281   }
282 
283   // Create a lazy copy of this vector.
clone()284   CopyOnWriteVector clone() { return CopyOnWriteVector(Data); }
285 
286   CopyOnWriteVector &operator=(CopyOnWriteVector &&V) {
287     destroy();
288     Data = V.Data;
289     V.Data = nullptr;
290     return *this;
291   }
292 
293   typedef typename std::vector<T>::const_iterator const_iterator;
294 
elements()295   const std::vector<T> &elements() const { return Data->Vect; }
296 
begin()297   const_iterator begin() const { return elements().cbegin(); }
end()298   const_iterator end() const { return elements().cend(); }
299 
300   const T& operator[](unsigned i) const { return elements()[i]; }
301 
size()302   unsigned size() const { return Data ? elements().size() : 0; }
303 
304   // Return true if V and this vector refer to the same data.
sameAs(const CopyOnWriteVector & V)305   bool sameAs(const CopyOnWriteVector &V) const { return Data == V.Data; }
306 
307   // Clear vector.  The vector must be writable.
clear()308   void clear() {
309     assert(writable() && "Vector is not writable!");
310     Data->Vect.clear();
311   }
312 
313   // Push a new element onto the end.  The vector must be writable.
push_back(const T & Elem)314   void push_back(const T &Elem) {
315     assert(writable() && "Vector is not writable!");
316     Data->Vect.push_back(Elem);
317   }
318 
319   // Gets a mutable reference to the element at index(i).
320   // The vector must be writable.
elem(unsigned i)321   T& elem(unsigned i) {
322     assert(writable() && "Vector is not writable!");
323     return Data->Vect[i];
324   }
325 
326   // Drops elements from the back until the vector has size i.
downsize(unsigned i)327   void downsize(unsigned i) {
328     assert(writable() && "Vector is not writable!");
329     Data->Vect.erase(Data->Vect.begin() + i, Data->Vect.end());
330   }
331 
332 private:
CopyOnWriteVector(VectorData * D)333   CopyOnWriteVector(VectorData *D) : Data(D) {
334     if (!Data)
335       return;
336     ++Data->NumRefs;
337   }
338 
339   VectorData *Data;
340 };
341 
342 inline std::ostream& operator<<(std::ostream& ss, const StringRef str) {
343   return ss.write(str.data(), str.size());
344 }
345 
346 } // end namespace threadSafety
347 } // end namespace clang
348 
349 #endif // LLVM_CLANG_THREAD_SAFETY_UTIL_H
350