1 /* 2 * Copyright (C) 2018 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 // Feature processing for FFModel (feed-forward SmartSelection model). 18 19 #ifndef LIBTEXTCLASSIFIER_ANNOTATOR_FEATURE_PROCESSOR_H_ 20 #define LIBTEXTCLASSIFIER_ANNOTATOR_FEATURE_PROCESSOR_H_ 21 22 #include <map> 23 #include <memory> 24 #include <set> 25 #include <string> 26 #include <vector> 27 28 #include "annotator/cached-features.h" 29 #include "annotator/model_generated.h" 30 #include "annotator/types.h" 31 #include "utils/base/integral_types.h" 32 #include "utils/base/logging.h" 33 #include "utils/token-feature-extractor.h" 34 #include "utils/tokenizer.h" 35 #include "utils/utf8/unicodetext.h" 36 #include "utils/utf8/unilib.h" 37 38 namespace libtextclassifier3 { 39 40 constexpr int kInvalidLabel = -1; 41 42 namespace internal { 43 44 Tokenizer BuildTokenizer(const FeatureProcessorOptions* options, 45 const UniLib* unilib); 46 47 TokenFeatureExtractorOptions BuildTokenFeatureExtractorOptions( 48 const FeatureProcessorOptions* options); 49 50 // Splits tokens that contain the selection boundary inside them. 51 // E.g. "foo{bar}@google.com" -> "foo", "bar", "@google.com" 52 void SplitTokensOnSelectionBoundaries(CodepointSpan selection, 53 std::vector<Token>* tokens); 54 55 // Returns the index of token that corresponds to the codepoint span. 56 int CenterTokenFromClick(CodepointSpan span, const std::vector<Token>& tokens); 57 58 // Returns the index of token that corresponds to the middle of the codepoint 59 // span. 60 int CenterTokenFromMiddleOfSelection( 61 CodepointSpan span, const std::vector<Token>& selectable_tokens); 62 63 // Strips the tokens from the tokens vector that are not used for feature 64 // extraction because they are out of scope, or pads them so that there is 65 // enough tokens in the required context_size for all inferences with a click 66 // in relative_click_span. 67 void StripOrPadTokens(TokenSpan relative_click_span, int context_size, 68 std::vector<Token>* tokens, int* click_pos); 69 70 } // namespace internal 71 72 // Converts a codepoint span to a token span in the given list of tokens. 73 // If snap_boundaries_to_containing_tokens is set to true, it is enough for a 74 // token to overlap with the codepoint range to be considered part of it. 75 // Otherwise it must be fully included in the range. 76 TokenSpan CodepointSpanToTokenSpan( 77 const std::vector<Token>& selectable_tokens, CodepointSpan codepoint_span, 78 bool snap_boundaries_to_containing_tokens = false); 79 80 // Converts a token span to a codepoint span in the given list of tokens. 81 CodepointSpan TokenSpanToCodepointSpan( 82 const std::vector<Token>& selectable_tokens, TokenSpan token_span); 83 84 // Takes care of preparing features for the span prediction model. 85 class FeatureProcessor { 86 public: 87 // A cache mapping codepoint spans to embedded tokens features. An instance 88 // can be provided to multiple calls to ExtractFeatures() operating on the 89 // same context (the same codepoint spans corresponding to the same tokens), 90 // as an optimization. Note that the tokenizations do not have to be 91 // identical. 92 typedef std::map<CodepointSpan, std::vector<float>> EmbeddingCache; 93 FeatureProcessor(const FeatureProcessorOptions * options,const UniLib * unilib)94 FeatureProcessor(const FeatureProcessorOptions* options, const UniLib* unilib) 95 : feature_extractor_(internal::BuildTokenFeatureExtractorOptions(options), 96 *unilib), 97 options_(options), 98 tokenizer_(internal::BuildTokenizer(options, unilib)) { 99 MakeLabelMaps(); 100 if (options->supported_codepoint_ranges() != nullptr) { 101 SortCodepointRanges({options->supported_codepoint_ranges()->begin(), 102 options->supported_codepoint_ranges()->end()}, 103 &supported_codepoint_ranges_); 104 } 105 PrepareIgnoredSpanBoundaryCodepoints(); 106 } 107 108 // Tokenizes the input string using the selected tokenization method. 109 std::vector<Token> Tokenize(const std::string& text) const; 110 111 // Same as above but takes UnicodeText. 112 std::vector<Token> Tokenize(const UnicodeText& text_unicode) const; 113 114 // Converts a label into a token span. 115 bool LabelToTokenSpan(int label, TokenSpan* token_span) const; 116 117 // Gets the total number of selection labels. GetSelectionLabelCount()118 int GetSelectionLabelCount() const { return label_to_selection_.size(); } 119 120 // Gets the string value for given collection label. 121 std::string LabelToCollection(int label) const; 122 123 // Gets the total number of collections of the model. NumCollections()124 int NumCollections() const { return collection_to_label_.size(); } 125 126 // Gets the name of the default collection. 127 std::string GetDefaultCollection() const; 128 GetOptions()129 const FeatureProcessorOptions* GetOptions() const { return options_; } 130 131 // Retokenizes the context and input span, and finds the click position. 132 // Depending on the options, might modify tokens (split them or remove them). 133 void RetokenizeAndFindClick(const std::string& context, 134 CodepointSpan input_span, 135 bool only_use_line_with_click, 136 std::vector<Token>* tokens, int* click_pos) const; 137 138 // Same as above but takes UnicodeText. 139 void RetokenizeAndFindClick(const UnicodeText& context_unicode, 140 CodepointSpan input_span, 141 bool only_use_line_with_click, 142 std::vector<Token>* tokens, int* click_pos) const; 143 144 // Returns true if the token span has enough supported codepoints (as defined 145 // in the model config) or not and model should not run. 146 bool HasEnoughSupportedCodepoints(const std::vector<Token>& tokens, 147 TokenSpan token_span) const; 148 149 // Extracts features as a CachedFeatures object that can be used for repeated 150 // inference over token spans in the given context. 151 bool ExtractFeatures(const std::vector<Token>& tokens, TokenSpan token_span, 152 CodepointSpan selection_span_for_feature, 153 const EmbeddingExecutor* embedding_executor, 154 EmbeddingCache* embedding_cache, int feature_vector_size, 155 std::unique_ptr<CachedFeatures>* cached_features) const; 156 157 // Fills selection_label_spans with CodepointSpans that correspond to the 158 // selection labels. The CodepointSpans are based on the codepoint ranges of 159 // given tokens. 160 bool SelectionLabelSpans( 161 VectorSpan<Token> tokens, 162 std::vector<CodepointSpan>* selection_label_spans) const; 163 DenseFeaturesCount()164 int DenseFeaturesCount() const { 165 return feature_extractor_.DenseFeaturesCount(); 166 } 167 EmbeddingSize()168 int EmbeddingSize() const { return options_->embedding_size(); } 169 170 // Splits context to several segments. 171 std::vector<UnicodeTextRange> SplitContext( 172 const UnicodeText& context_unicode) const; 173 174 // Strips boundary codepoints from the span in context and returns the new 175 // start and end indices. If the span comprises entirely of boundary 176 // codepoints, the first index of span is returned for both indices. 177 CodepointSpan StripBoundaryCodepoints(const std::string& context, 178 CodepointSpan span) const; 179 180 // Same as above but takes UnicodeText. 181 CodepointSpan StripBoundaryCodepoints(const UnicodeText& context_unicode, 182 CodepointSpan span) const; 183 184 // Same as above but takes a pair of iterators for the span, for efficiency. 185 CodepointSpan StripBoundaryCodepoints( 186 const UnicodeText::const_iterator& span_begin, 187 const UnicodeText::const_iterator& span_end, CodepointSpan span) const; 188 189 // Same as above, but takes an optional buffer for saving the modified value. 190 // As an optimization, returns pointer to 'value' if nothing was stripped, or 191 // pointer to 'buffer' if something was stripped. 192 const std::string& StripBoundaryCodepoints(const std::string& value, 193 std::string* buffer) const; 194 195 protected: 196 // Returns the class id corresponding to the given string collection 197 // identifier. There is a catch-all class id that the function returns for 198 // unknown collections. 199 int CollectionToLabel(const std::string& collection) const; 200 201 // Prepares mapping from collection names to labels. 202 void MakeLabelMaps(); 203 204 // Gets the number of spannable tokens for the model. 205 // 206 // Spannable tokens are those tokens of context, which the model predicts 207 // selection spans over (i.e., there is 1:1 correspondence between the output 208 // classes of the model and each of the spannable tokens). GetNumContextTokens()209 int GetNumContextTokens() const { return options_->context_size() * 2 + 1; } 210 211 // Converts a label into a span of codepoint indices corresponding to it 212 // given output_tokens. 213 bool LabelToSpan(int label, const VectorSpan<Token>& output_tokens, 214 CodepointSpan* span) const; 215 216 // Converts a span to the corresponding label given output_tokens. 217 bool SpanToLabel(const std::pair<CodepointIndex, CodepointIndex>& span, 218 const std::vector<Token>& output_tokens, int* label) const; 219 220 // Converts a token span to the corresponding label. 221 int TokenSpanToLabel(const std::pair<TokenIndex, TokenIndex>& span) const; 222 223 // Returns the ratio of supported codepoints to total number of codepoints in 224 // the given token span. 225 float SupportedCodepointsRatio(const TokenSpan& token_span, 226 const std::vector<Token>& tokens) const; 227 228 void PrepareIgnoredSpanBoundaryCodepoints(); 229 230 // Counts the number of span boundary codepoints. If count_from_beginning is 231 // True, the counting will start at the span_start iterator (inclusive) and at 232 // maximum end at span_end (exclusive). If count_from_beginning is True, the 233 // counting will start from span_end (exclusive) and end at span_start 234 // (inclusive). 235 int CountIgnoredSpanBoundaryCodepoints( 236 const UnicodeText::const_iterator& span_start, 237 const UnicodeText::const_iterator& span_end, 238 bool count_from_beginning) const; 239 240 // Finds the center token index in tokens vector, using the method defined 241 // in options_. 242 int FindCenterToken(CodepointSpan span, 243 const std::vector<Token>& tokens) const; 244 245 // Removes all tokens from tokens that are not on a line (defined by calling 246 // SplitContext on the context) to which span points. 247 void StripTokensFromOtherLines(const std::string& context, CodepointSpan span, 248 std::vector<Token>* tokens) const; 249 250 // Same as above but takes UnicodeText. 251 void StripTokensFromOtherLines(const UnicodeText& context_unicode, 252 CodepointSpan span, 253 std::vector<Token>* tokens) const; 254 255 // Extracts the features of a token and appends them to the output vector. 256 // Uses the embedding cache to to avoid re-extracting the re-embedding the 257 // sparse features for the same token. 258 bool AppendTokenFeaturesWithCache(const Token& token, 259 CodepointSpan selection_span_for_feature, 260 const EmbeddingExecutor* embedding_executor, 261 EmbeddingCache* embedding_cache, 262 std::vector<float>* output_features) const; 263 264 protected: 265 const TokenFeatureExtractor feature_extractor_; 266 267 // Codepoint ranges that define what codepoints are supported by the model. 268 // NOTE: Must be sorted. 269 std::vector<CodepointRangeStruct> supported_codepoint_ranges_; 270 271 private: 272 // Set of codepoints that will be stripped from beginning and end of 273 // predicted spans. 274 std::set<int32> ignored_span_boundary_codepoints_; 275 276 const FeatureProcessorOptions* const options_; 277 278 // Mapping between token selection spans and labels ids. 279 std::map<TokenSpan, int> selection_to_label_; 280 std::vector<TokenSpan> label_to_selection_; 281 282 // Mapping between collections and labels. 283 std::map<std::string, int> collection_to_label_; 284 285 Tokenizer tokenizer_; 286 }; 287 288 } // namespace libtextclassifier3 289 290 #endif // LIBTEXTCLASSIFIER_ANNOTATOR_FEATURE_PROCESSOR_H_ 291