1
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35
36
37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39
40 #include "src/mips/assembler-mips.h"
41
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 #include "src/objects-inl.h"
45
46 namespace v8 {
47 namespace internal {
48
SupportsOptimizer()49 bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); }
50
SupportsWasmSimd128()51 bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); }
52
53 // -----------------------------------------------------------------------------
54 // Operand and MemOperand.
55
is_reg()56 bool Operand::is_reg() const {
57 return rm_.is_valid();
58 }
59
immediate()60 int32_t Operand::immediate() const {
61 DCHECK(!is_reg());
62 DCHECK(!IsHeapObjectRequest());
63 return value_.immediate;
64 }
65
66 // -----------------------------------------------------------------------------
67 // RelocInfo.
68
apply(intptr_t delta)69 void RelocInfo::apply(intptr_t delta) {
70 if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
71 // Absolute code pointer inside code object moves with the code object.
72 Assembler::RelocateInternalReference(rmode_, pc_, delta);
73 }
74 }
75
76
target_address()77 Address RelocInfo::target_address() {
78 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
79 return Assembler::target_address_at(pc_, constant_pool_);
80 }
81
target_address_address()82 Address RelocInfo::target_address_address() {
83 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) ||
84 IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
85 IsOffHeapTarget(rmode_));
86 // Read the address of the word containing the target_address in an
87 // instruction stream.
88 // The only architecture-independent user of this function is the serializer.
89 // The serializer uses it to find out how many raw bytes of instruction to
90 // output before the next target.
91 // For an instruction like LUI/ORI where the target bits are mixed into the
92 // instruction bits, the size of the target will be zero, indicating that the
93 // serializer should not step forward in memory after a target is resolved
94 // and written. In this case the target_address_address function should
95 // return the end of the instructions to be patched, allowing the
96 // deserializer to deserialize the instructions as raw bytes and put them in
97 // place, ready to be patched with the target. After jump optimization,
98 // that is the address of the instruction that follows J/JAL/JR/JALR
99 // instruction.
100 if (IsMipsArchVariant(kMips32r6)) {
101 // On R6 we don't move to the end of the instructions to be patched, but one
102 // instruction before, because if these instructions are at the end of the
103 // code object it can cause errors in the deserializer.
104 return pc_ + (Assembler::kInstructionsFor32BitConstant - 1) * kInstrSize;
105 } else {
106 return pc_ + Assembler::kInstructionsFor32BitConstant * kInstrSize;
107 }
108 }
109
constant_pool_entry_address()110 Address RelocInfo::constant_pool_entry_address() {
111 UNREACHABLE();
112 }
113
114
target_address_size()115 int RelocInfo::target_address_size() {
116 return Assembler::kSpecialTargetSize;
117 }
118
target_address_from_return_address(Address pc)119 Address Assembler::target_address_from_return_address(Address pc) {
120 return pc - kCallTargetAddressOffset;
121 }
122
deserialization_set_special_target_at(Address instruction_payload,Code * code,Address target)123 void Assembler::deserialization_set_special_target_at(
124 Address instruction_payload, Code* code, Address target) {
125 if (IsMipsArchVariant(kMips32r6)) {
126 // On R6 the address location is shifted by one instruction
127 set_target_address_at(
128 instruction_payload - (kInstructionsFor32BitConstant - 1) * kInstrSize,
129 code ? code->constant_pool() : kNullAddress, target);
130 } else {
131 set_target_address_at(
132 instruction_payload - kInstructionsFor32BitConstant * kInstrSize,
133 code ? code->constant_pool() : kNullAddress, target);
134 }
135 }
136
deserialization_special_target_size(Address instruction_payload)137 int Assembler::deserialization_special_target_size(
138 Address instruction_payload) {
139 return kSpecialTargetSize;
140 }
141
set_target_internal_reference_encoded_at(Address pc,Address target)142 void Assembler::set_target_internal_reference_encoded_at(Address pc,
143 Address target) {
144 Instr instr1 = Assembler::instr_at(pc + 0 * kInstrSize);
145 Instr instr2 = Assembler::instr_at(pc + 1 * kInstrSize);
146 DCHECK(Assembler::IsLui(instr1));
147 DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
148 instr1 &= ~kImm16Mask;
149 instr2 &= ~kImm16Mask;
150 int32_t imm = static_cast<int32_t>(target);
151 DCHECK_EQ(imm & 3, 0);
152 if (Assembler::IsJicOrJialc(instr2)) {
153 // Encoded internal references are lui/jic load of 32-bit absolute address.
154 uint32_t lui_offset_u, jic_offset_u;
155 Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
156
157 Assembler::instr_at_put(pc + 0 * kInstrSize, instr1 | lui_offset_u);
158 Assembler::instr_at_put(pc + 1 * kInstrSize, instr2 | jic_offset_u);
159 } else {
160 // Encoded internal references are lui/ori load of 32-bit absolute address.
161 Assembler::instr_at_put(pc + 0 * kInstrSize,
162 instr1 | ((imm >> kLuiShift) & kImm16Mask));
163 Assembler::instr_at_put(pc + 1 * kInstrSize, instr2 | (imm & kImm16Mask));
164 }
165
166 // Currently used only by deserializer, and all code will be flushed
167 // after complete deserialization, no need to flush on each reference.
168 }
169
deserialization_set_target_internal_reference_at(Address pc,Address target,RelocInfo::Mode mode)170 void Assembler::deserialization_set_target_internal_reference_at(
171 Address pc, Address target, RelocInfo::Mode mode) {
172 if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
173 DCHECK(IsLui(instr_at(pc)));
174 set_target_internal_reference_encoded_at(pc, target);
175 } else {
176 DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
177 Memory<Address>(pc) = target;
178 }
179 }
180
target_object()181 HeapObject* RelocInfo::target_object() {
182 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
183 return HeapObject::cast(reinterpret_cast<Object*>(
184 Assembler::target_address_at(pc_, constant_pool_)));
185 }
186
target_object_handle(Assembler * origin)187 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
188 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
189 return Handle<HeapObject>(reinterpret_cast<HeapObject**>(
190 Assembler::target_address_at(pc_, constant_pool_)));
191 }
192
set_target_object(Heap * heap,HeapObject * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)193 void RelocInfo::set_target_object(Heap* heap, HeapObject* target,
194 WriteBarrierMode write_barrier_mode,
195 ICacheFlushMode icache_flush_mode) {
196 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
197 Assembler::set_target_address_at(pc_, constant_pool_,
198 reinterpret_cast<Address>(target),
199 icache_flush_mode);
200 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) {
201 WriteBarrierForCode(host(), this, target);
202 }
203 }
204
205
target_external_reference()206 Address RelocInfo::target_external_reference() {
207 DCHECK(rmode_ == EXTERNAL_REFERENCE);
208 return Assembler::target_address_at(pc_, constant_pool_);
209 }
210
set_target_external_reference(Address target,ICacheFlushMode icache_flush_mode)211 void RelocInfo::set_target_external_reference(
212 Address target, ICacheFlushMode icache_flush_mode) {
213 DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
214 Assembler::set_target_address_at(pc_, constant_pool_, target,
215 icache_flush_mode);
216 }
217
target_internal_reference()218 Address RelocInfo::target_internal_reference() {
219 if (rmode_ == INTERNAL_REFERENCE) {
220 return Memory<Address>(pc_);
221 } else {
222 // Encoded internal references are lui/ori or lui/jic load of 32-bit
223 // absolute address.
224 DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
225 Instr instr1 = Assembler::instr_at(pc_ + 0 * kInstrSize);
226 Instr instr2 = Assembler::instr_at(pc_ + 1 * kInstrSize);
227 DCHECK(Assembler::IsLui(instr1));
228 DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
229 if (Assembler::IsJicOrJialc(instr2)) {
230 return static_cast<Address>(
231 Assembler::CreateTargetAddress(instr1, instr2));
232 }
233 int32_t imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
234 imm |= (instr2 & static_cast<int32_t>(kImm16Mask));
235 return static_cast<Address>(imm);
236 }
237 }
238
239
target_internal_reference_address()240 Address RelocInfo::target_internal_reference_address() {
241 DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
242 return pc_;
243 }
244
target_runtime_entry(Assembler * origin)245 Address RelocInfo::target_runtime_entry(Assembler* origin) {
246 DCHECK(IsRuntimeEntry(rmode_));
247 return target_address();
248 }
249
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)250 void RelocInfo::set_target_runtime_entry(Address target,
251 WriteBarrierMode write_barrier_mode,
252 ICacheFlushMode icache_flush_mode) {
253 DCHECK(IsRuntimeEntry(rmode_));
254 if (target_address() != target)
255 set_target_address(target, write_barrier_mode, icache_flush_mode);
256 }
257
target_off_heap_target()258 Address RelocInfo::target_off_heap_target() {
259 DCHECK(IsOffHeapTarget(rmode_));
260 return Assembler::target_address_at(pc_, constant_pool_);
261 }
262
WipeOut()263 void RelocInfo::WipeOut() {
264 DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
265 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
266 IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
267 IsOffHeapTarget(rmode_));
268 if (IsInternalReference(rmode_)) {
269 Memory<Address>(pc_) = kNullAddress;
270 } else if (IsInternalReferenceEncoded(rmode_)) {
271 Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress);
272 } else {
273 Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
274 }
275 }
276
277 template <typename ObjectVisitor>
Visit(ObjectVisitor * visitor)278 void RelocInfo::Visit(ObjectVisitor* visitor) {
279 RelocInfo::Mode mode = rmode();
280 if (mode == RelocInfo::EMBEDDED_OBJECT) {
281 visitor->VisitEmbeddedPointer(host(), this);
282 } else if (RelocInfo::IsCodeTargetMode(mode)) {
283 visitor->VisitCodeTarget(host(), this);
284 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
285 visitor->VisitExternalReference(host(), this);
286 } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
287 mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
288 visitor->VisitInternalReference(host(), this);
289 } else if (RelocInfo::IsRuntimeEntry(mode)) {
290 visitor->VisitRuntimeEntry(host(), this);
291 } else if (RelocInfo::IsOffHeapTarget(mode)) {
292 visitor->VisitOffHeapTarget(host(), this);
293 }
294 }
295
296 // -----------------------------------------------------------------------------
297 // Assembler.
298
299
CheckBuffer()300 void Assembler::CheckBuffer() {
301 if (buffer_space() <= kGap) {
302 GrowBuffer();
303 }
304 }
305
306
CheckForEmitInForbiddenSlot()307 void Assembler::CheckForEmitInForbiddenSlot() {
308 if (!is_buffer_growth_blocked()) {
309 CheckBuffer();
310 }
311 if (IsPrevInstrCompactBranch()) {
312 // Nop instruction to precede a CTI in forbidden slot:
313 Instr nop = SPECIAL | SLL;
314 *reinterpret_cast<Instr*>(pc_) = nop;
315 pc_ += kInstrSize;
316
317 ClearCompactBranchState();
318 }
319 }
320
321
EmitHelper(Instr x,CompactBranchType is_compact_branch)322 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
323 if (IsPrevInstrCompactBranch()) {
324 if (Instruction::IsForbiddenAfterBranchInstr(x)) {
325 // Nop instruction to precede a CTI in forbidden slot:
326 Instr nop = SPECIAL | SLL;
327 *reinterpret_cast<Instr*>(pc_) = nop;
328 pc_ += kInstrSize;
329 }
330 ClearCompactBranchState();
331 }
332 *reinterpret_cast<Instr*>(pc_) = x;
333 pc_ += kInstrSize;
334 if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
335 EmittedCompactBranchInstruction();
336 }
337 CheckTrampolinePoolQuick();
338 }
339
340 template <>
341 inline void Assembler::EmitHelper(uint8_t x);
342
343 template <typename T>
EmitHelper(T x)344 void Assembler::EmitHelper(T x) {
345 *reinterpret_cast<T*>(pc_) = x;
346 pc_ += sizeof(x);
347 CheckTrampolinePoolQuick();
348 }
349
350 template <>
EmitHelper(uint8_t x)351 void Assembler::EmitHelper(uint8_t x) {
352 *reinterpret_cast<uint8_t*>(pc_) = x;
353 pc_ += sizeof(x);
354 if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
355 CheckTrampolinePoolQuick();
356 }
357 }
358
emit(Instr x,CompactBranchType is_compact_branch)359 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
360 if (!is_buffer_growth_blocked()) {
361 CheckBuffer();
362 }
363 EmitHelper(x, is_compact_branch);
364 }
365
EnsureSpace(Assembler * assembler)366 EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
367
368 } // namespace internal
369 } // namespace v8
370
371 #endif // V8_MIPS_ASSEMBLER_MIPS_INL_H_
372