1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36 
37 #ifndef V8_S390_ASSEMBLER_S390_INL_H_
38 #define V8_S390_ASSEMBLER_S390_INL_H_
39 
40 #include "src/s390/assembler-s390.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 #include "src/objects-inl.h"
45 
46 namespace v8 {
47 namespace internal {
48 
SupportsOptimizer()49 bool CpuFeatures::SupportsOptimizer() { return true; }
50 
SupportsWasmSimd128()51 bool CpuFeatures::SupportsWasmSimd128() { return false; }
52 
apply(intptr_t delta)53 void RelocInfo::apply(intptr_t delta) {
54   // Absolute code pointer inside code object moves with the code object.
55   if (IsInternalReference(rmode_)) {
56     // Jump table entry
57     Address target = Memory<Address>(pc_);
58     Memory<Address>(pc_) = target + delta;
59   } else if (IsCodeTarget(rmode_)) {
60     SixByteInstr instr =
61         Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_));
62     int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2  // halfwords
63                   - static_cast<int32_t>(delta);
64     instr >>= 32;  // Clear the 4-byte displacement field.
65     instr <<= 32;
66     instr |= static_cast<uint32_t>(dis / 2);
67     Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_),
68                                                   instr);
69   } else {
70     // mov sequence
71     DCHECK(IsInternalReferenceEncoded(rmode_));
72     Address target = Assembler::target_address_at(pc_, constant_pool_);
73     Assembler::set_target_address_at(pc_, constant_pool_, target + delta,
74                                      SKIP_ICACHE_FLUSH);
75   }
76 }
77 
target_internal_reference()78 Address RelocInfo::target_internal_reference() {
79   if (IsInternalReference(rmode_)) {
80     // Jump table entry
81     return Memory<Address>(pc_);
82   } else {
83     // mov sequence
84     DCHECK(IsInternalReferenceEncoded(rmode_));
85     return Assembler::target_address_at(pc_, constant_pool_);
86   }
87 }
88 
target_internal_reference_address()89 Address RelocInfo::target_internal_reference_address() {
90   DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
91   return pc_;
92 }
93 
target_address()94 Address RelocInfo::target_address() {
95   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
96   return Assembler::target_address_at(pc_, constant_pool_);
97 }
98 
target_address_address()99 Address RelocInfo::target_address_address() {
100   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) ||
101          IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
102          IsOffHeapTarget(rmode_));
103 
104   // Read the address of the word containing the target_address in an
105   // instruction stream.
106   // The only architecture-independent user of this function is the serializer.
107   // The serializer uses it to find out how many raw bytes of instruction to
108   // output before the next target.
109   // For an instruction like LIS/ORI where the target bits are mixed into the
110   // instruction bits, the size of the target will be zero, indicating that the
111   // serializer should not step forward in memory after a target is resolved
112   // and written.
113   return pc_;
114 }
115 
constant_pool_entry_address()116 Address RelocInfo::constant_pool_entry_address() {
117   UNREACHABLE();
118 }
119 
target_address_size()120 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
121 
target_address_from_return_address(Address pc)122 Address Assembler::target_address_from_return_address(Address pc) {
123   // Returns the address of the call target from the return address that will
124   // be returned to after a call.
125   // Sequence is:
126   //    BRASL r14, RI
127   return pc - kCallTargetAddressOffset;
128 }
129 
return_address_from_call_start(Address pc)130 Address Assembler::return_address_from_call_start(Address pc) {
131   // Sequence is:
132   //    BRASL r14, RI
133   return pc + kCallTargetAddressOffset;
134 }
135 
code_target_object_handle_at(Address pc)136 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
137   SixByteInstr instr =
138       Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
139   int index = instr & 0xFFFFFFFF;
140   return GetCodeTarget(index);
141 }
142 
target_object()143 HeapObject* RelocInfo::target_object() {
144   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
145   return HeapObject::cast(reinterpret_cast<Object*>(
146       Assembler::target_address_at(pc_, constant_pool_)));
147 }
148 
target_object_handle(Assembler * origin)149 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
150   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
151   if (rmode_ == EMBEDDED_OBJECT) {
152     return Handle<HeapObject>(reinterpret_cast<HeapObject**>(
153         Assembler::target_address_at(pc_, constant_pool_)));
154   } else {
155     return Handle<HeapObject>::cast(origin->code_target_object_handle_at(pc_));
156   }
157 }
158 
set_target_object(Heap * heap,HeapObject * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)159 void RelocInfo::set_target_object(Heap* heap, HeapObject* target,
160                                   WriteBarrierMode write_barrier_mode,
161                                   ICacheFlushMode icache_flush_mode) {
162   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
163   Assembler::set_target_address_at(pc_, constant_pool_,
164                                    reinterpret_cast<Address>(target),
165                                    icache_flush_mode);
166   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) {
167     WriteBarrierForCode(host(), this, target);
168   }
169 }
170 
target_external_reference()171 Address RelocInfo::target_external_reference() {
172   DCHECK(rmode_ == EXTERNAL_REFERENCE);
173   return Assembler::target_address_at(pc_, constant_pool_);
174 }
175 
set_target_external_reference(Address target,ICacheFlushMode icache_flush_mode)176 void RelocInfo::set_target_external_reference(
177     Address target, ICacheFlushMode icache_flush_mode) {
178   DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
179   Assembler::set_target_address_at(pc_, constant_pool_, target,
180                                    icache_flush_mode);
181 }
182 
target_runtime_entry(Assembler * origin)183 Address RelocInfo::target_runtime_entry(Assembler* origin) {
184   DCHECK(IsRuntimeEntry(rmode_));
185   return target_address();
186 }
187 
target_off_heap_target()188 Address RelocInfo::target_off_heap_target() {
189   DCHECK(IsOffHeapTarget(rmode_));
190   return Assembler::target_address_at(pc_, constant_pool_);
191 }
192 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)193 void RelocInfo::set_target_runtime_entry(Address target,
194                                          WriteBarrierMode write_barrier_mode,
195                                          ICacheFlushMode icache_flush_mode) {
196   DCHECK(IsRuntimeEntry(rmode_));
197   if (target_address() != target)
198     set_target_address(target, write_barrier_mode, icache_flush_mode);
199 }
200 
WipeOut()201 void RelocInfo::WipeOut() {
202   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
203          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
204          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
205          IsOffHeapTarget(rmode_));
206   if (IsInternalReference(rmode_)) {
207     // Jump table entry
208     Memory<Address>(pc_) = kNullAddress;
209   } else if (IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)) {
210     // mov sequence
211     // Currently used only by deserializer, no need to flush.
212     Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress,
213                                      SKIP_ICACHE_FLUSH);
214   } else {
215     Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
216   }
217 }
218 
219 template <typename ObjectVisitor>
Visit(ObjectVisitor * visitor)220 void RelocInfo::Visit(ObjectVisitor* visitor) {
221   RelocInfo::Mode mode = rmode();
222   if (mode == RelocInfo::EMBEDDED_OBJECT) {
223     visitor->VisitEmbeddedPointer(host(), this);
224   } else if (RelocInfo::IsCodeTargetMode(mode)) {
225     visitor->VisitCodeTarget(host(), this);
226   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
227     visitor->VisitExternalReference(host(), this);
228   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
229     visitor->VisitInternalReference(host(), this);
230   } else if (IsRuntimeEntry(mode)) {
231     visitor->VisitRuntimeEntry(host(), this);
232   } else if (RelocInfo::IsOffHeapTarget(mode)) {
233     visitor->VisitOffHeapTarget(host(), this);
234   }
235 }
236 
237 // Operand constructors
Operand(Register rm)238 Operand::Operand(Register rm) : rm_(rm), rmode_(RelocInfo::NONE) {}
239 
240 // Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF
target_address_at(Address pc,Address constant_pool)241 Address Assembler::target_address_at(Address pc, Address constant_pool) {
242   // S390 Instruction!
243   // We want to check for instructions generated by Asm::mov()
244   Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
245   SixByteInstr instr_1 =
246       Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
247 
248   if (BRASL == op1 || BRCL == op1) {
249     int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2;
250     return pc + dis;
251   }
252 
253 #if V8_TARGET_ARCH_S390X
254   int instr1_length =
255       Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
256   Opcode op2 = Instruction::S390OpcodeValue(
257       reinterpret_cast<const byte*>(pc + instr1_length));
258   SixByteInstr instr_2 = Instruction::InstructionBits(
259       reinterpret_cast<const byte*>(pc + instr1_length));
260   // IIHF for hi_32, IILF for lo_32
261   if (IIHF == op1 && IILF == op2) {
262     return static_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) |
263                                 ((instr_2 & 0xFFFFFFFF)));
264   }
265 #else
266   // IILF loads 32-bits
267   if (IILF == op1 || CFI == op1) {
268     return static_cast<Address>((instr_1 & 0xFFFFFFFF));
269   }
270 #endif
271 
272   UNIMPLEMENTED();
273   return 0;
274 }
275 
276 // This sets the branch destination (which gets loaded at the call address).
277 // This is for calls and branches within generated code.  The serializer
278 // has already deserialized the mov instructions etc.
279 // There is a FIXED_SEQUENCE assumption here
deserialization_set_special_target_at(Address instruction_payload,Code * code,Address target)280 void Assembler::deserialization_set_special_target_at(
281     Address instruction_payload, Code* code, Address target) {
282   set_target_address_at(instruction_payload,
283                         code ? code->constant_pool() : kNullAddress, target);
284 }
285 
deserialization_special_target_size(Address instruction_payload)286 int Assembler::deserialization_special_target_size(
287     Address instruction_payload) {
288   return kSpecialTargetSize;
289 }
290 
deserialization_set_target_internal_reference_at(Address pc,Address target,RelocInfo::Mode mode)291 void Assembler::deserialization_set_target_internal_reference_at(
292     Address pc, Address target, RelocInfo::Mode mode) {
293   if (RelocInfo::IsInternalReferenceEncoded(mode)) {
294     set_target_address_at(pc, kNullAddress, target, SKIP_ICACHE_FLUSH);
295   } else {
296     Memory<Address>(pc) = target;
297   }
298 }
299 
300 // This code assumes the FIXED_SEQUENCE of IIHF/IILF
set_target_address_at(Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode)301 void Assembler::set_target_address_at(Address pc, Address constant_pool,
302                                       Address target,
303                                       ICacheFlushMode icache_flush_mode) {
304   // Check for instructions generated by Asm::mov()
305   Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
306   SixByteInstr instr_1 =
307       Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
308   bool patched = false;
309 
310   if (BRASL == op1 || BRCL == op1) {
311     instr_1 >>= 32;  // Zero out the lower 32-bits
312     instr_1 <<= 32;
313     int32_t halfwords = (target - pc) / 2;  // number of halfwords
314     instr_1 |= static_cast<uint32_t>(halfwords);
315     Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
316                                                   instr_1);
317     if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
318       Assembler::FlushICache(pc, 6);
319     }
320     patched = true;
321   } else {
322 #if V8_TARGET_ARCH_S390X
323     int instr1_length =
324         Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
325     Opcode op2 = Instruction::S390OpcodeValue(
326         reinterpret_cast<const byte*>(pc + instr1_length));
327     SixByteInstr instr_2 = Instruction::InstructionBits(
328         reinterpret_cast<const byte*>(pc + instr1_length));
329     // IIHF for hi_32, IILF for lo_32
330     if (IIHF == op1 && IILF == op2) {
331       // IIHF
332       instr_1 >>= 32;  // Zero out the lower 32-bits
333       instr_1 <<= 32;
334       instr_1 |= reinterpret_cast<uint64_t>(target) >> 32;
335 
336       Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
337                                                     instr_1);
338 
339       // IILF
340       instr_2 >>= 32;
341       instr_2 <<= 32;
342       instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF;
343 
344       Instruction::SetInstructionBits<SixByteInstr>(
345           reinterpret_cast<byte*>(pc + instr1_length), instr_2);
346       if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
347         Assembler::FlushICache(pc, 12);
348       }
349       patched = true;
350     }
351 #else
352     // IILF loads 32-bits
353     if (IILF == op1 || CFI == op1) {
354       instr_1 >>= 32;  // Zero out the lower 32-bits
355       instr_1 <<= 32;
356       instr_1 |= reinterpret_cast<uint32_t>(target);
357 
358       Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
359                                                     instr_1);
360       if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
361         Assembler::FlushICache(pc, 6);
362       }
363       patched = true;
364     }
365 #endif
366   }
367   if (!patched) UNREACHABLE();
368 }
369 
370 }  // namespace internal
371 }  // namespace v8
372 
373 #endif  // V8_S390_ASSEMBLER_S390_INL_H_
374