1 // Copyright 2017 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_MEMORY_SCOPED_REFPTR_H_
6 #define BASE_MEMORY_SCOPED_REFPTR_H_
7 
8 #include <stddef.h>
9 
10 #include <iosfwd>
11 #include <type_traits>
12 #include <utility>
13 
14 #include "base/compiler_specific.h"
15 #include "base/logging.h"
16 #include "base/macros.h"
17 
18 template <class T>
19 class scoped_refptr;
20 
21 namespace base {
22 
23 template <class, typename>
24 class RefCounted;
25 template <class, typename>
26 class RefCountedThreadSafe;
27 
28 template <typename T>
29 scoped_refptr<T> AdoptRef(T* t);
30 
31 namespace subtle {
32 
33 enum AdoptRefTag { kAdoptRefTag };
34 enum StartRefCountFromZeroTag { kStartRefCountFromZeroTag };
35 enum StartRefCountFromOneTag { kStartRefCountFromOneTag };
36 
37 template <typename T, typename U, typename V>
IsRefCountPreferenceOverridden(const T *,const RefCounted<U,V> *)38 constexpr bool IsRefCountPreferenceOverridden(const T*,
39                                               const RefCounted<U, V>*) {
40   return !std::is_same<std::decay_t<decltype(T::kRefCountPreference)>,
41                        std::decay_t<decltype(U::kRefCountPreference)>>::value;
42 }
43 
44 template <typename T, typename U, typename V>
IsRefCountPreferenceOverridden(const T *,const RefCountedThreadSafe<U,V> *)45 constexpr bool IsRefCountPreferenceOverridden(
46     const T*,
47     const RefCountedThreadSafe<U, V>*) {
48   return !std::is_same<std::decay_t<decltype(T::kRefCountPreference)>,
49                        std::decay_t<decltype(U::kRefCountPreference)>>::value;
50 }
51 
IsRefCountPreferenceOverridden(...)52 constexpr bool IsRefCountPreferenceOverridden(...) {
53   return false;
54 }
55 
56 }  // namespace subtle
57 
58 // Creates a scoped_refptr from a raw pointer without incrementing the reference
59 // count. Use this only for a newly created object whose reference count starts
60 // from 1 instead of 0.
61 template <typename T>
AdoptRef(T * obj)62 scoped_refptr<T> AdoptRef(T* obj) {
63   using Tag = std::decay_t<decltype(T::kRefCountPreference)>;
64   static_assert(std::is_same<subtle::StartRefCountFromOneTag, Tag>::value,
65                 "Use AdoptRef only for the reference count starts from one.");
66 
67   DCHECK(obj);
68   DCHECK(obj->HasOneRef());
69   obj->Adopted();
70   return scoped_refptr<T>(obj, subtle::kAdoptRefTag);
71 }
72 
73 namespace subtle {
74 
75 template <typename T>
AdoptRefIfNeeded(T * obj,StartRefCountFromZeroTag)76 scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromZeroTag) {
77   return scoped_refptr<T>(obj);
78 }
79 
80 template <typename T>
AdoptRefIfNeeded(T * obj,StartRefCountFromOneTag)81 scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromOneTag) {
82   return AdoptRef(obj);
83 }
84 
85 }  // namespace subtle
86 
87 // Constructs an instance of T, which is a ref counted type, and wraps the
88 // object into a scoped_refptr<T>.
89 template <typename T, typename... Args>
MakeRefCounted(Args &&...args)90 scoped_refptr<T> MakeRefCounted(Args&&... args) {
91   T* obj = new T(std::forward<Args>(args)...);
92   return subtle::AdoptRefIfNeeded(obj, T::kRefCountPreference);
93 }
94 
95 // Takes an instance of T, which is a ref counted type, and wraps the object
96 // into a scoped_refptr<T>.
97 template <typename T>
WrapRefCounted(T * t)98 scoped_refptr<T> WrapRefCounted(T* t) {
99   return scoped_refptr<T>(t);
100 }
101 
102 }  // namespace base
103 
104 //
105 // A smart pointer class for reference counted objects.  Use this class instead
106 // of calling AddRef and Release manually on a reference counted object to
107 // avoid common memory leaks caused by forgetting to Release an object
108 // reference.  Sample usage:
109 //
110 //   class MyFoo : public RefCounted<MyFoo> {
111 //    ...
112 //    private:
113 //     friend class RefCounted<MyFoo>;  // Allow destruction by RefCounted<>.
114 //     ~MyFoo();                        // Destructor must be private/protected.
115 //   };
116 //
117 //   void some_function() {
118 //     scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>();
119 //     foo->Method(param);
120 //     // |foo| is released when this function returns
121 //   }
122 //
123 //   void some_other_function() {
124 //     scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>();
125 //     ...
126 //     foo.reset();  // explicitly releases |foo|
127 //     ...
128 //     if (foo)
129 //       foo->Method(param);
130 //   }
131 //
132 // The above examples show how scoped_refptr<T> acts like a pointer to T.
133 // Given two scoped_refptr<T> classes, it is also possible to exchange
134 // references between the two objects, like so:
135 //
136 //   {
137 //     scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>();
138 //     scoped_refptr<MyFoo> b;
139 //
140 //     b.swap(a);
141 //     // now, |b| references the MyFoo object, and |a| references nullptr.
142 //   }
143 //
144 // To make both |a| and |b| in the above example reference the same MyFoo
145 // object, simply use the assignment operator:
146 //
147 //   {
148 //     scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>();
149 //     scoped_refptr<MyFoo> b;
150 //
151 //     b = a;
152 //     // now, |a| and |b| each own a reference to the same MyFoo object.
153 //   }
154 //
155 // Also see Chromium's ownership and calling conventions:
156 // https://chromium.googlesource.com/chromium/src/+/lkgr/styleguide/c++/c++.md#object-ownership-and-calling-conventions
157 // Specifically:
158 //   If the function (at least sometimes) takes a ref on a refcounted object,
159 //   declare the param as scoped_refptr<T>. The caller can decide whether it
160 //   wishes to transfer ownership (by calling std::move(t) when passing t) or
161 //   retain its ref (by simply passing t directly).
162 //   In other words, use scoped_refptr like you would a std::unique_ptr except
163 //   in the odd case where it's required to hold on to a ref while handing one
164 //   to another component (if a component merely needs to use t on the stack
165 //   without keeping a ref: pass t as a raw T*).
166 template <class T>
167 class scoped_refptr {
168  public:
169   typedef T element_type;
170 
171   constexpr scoped_refptr() = default;
172 
173   // Constructs from raw pointer. constexpr if |p| is null.
scoped_refptr(T * p)174   constexpr scoped_refptr(T* p) : ptr_(p) {
175     if (ptr_)
176       AddRef(ptr_);
177   }
178 
179   // Copy constructor. This is required in addition to the copy conversion
180   // constructor below.
scoped_refptr(const scoped_refptr & r)181   scoped_refptr(const scoped_refptr& r) : scoped_refptr(r.ptr_) {}
182 
183   // Copy conversion constructor.
184   template <typename U,
185             typename = typename std::enable_if<
186                 std::is_convertible<U*, T*>::value>::type>
scoped_refptr(const scoped_refptr<U> & r)187   scoped_refptr(const scoped_refptr<U>& r) : scoped_refptr(r.ptr_) {}
188 
189   // Move constructor. This is required in addition to the move conversion
190   // constructor below.
scoped_refptr(scoped_refptr && r)191   scoped_refptr(scoped_refptr&& r) noexcept : ptr_(r.ptr_) { r.ptr_ = nullptr; }
192 
193   // Move conversion constructor.
194   template <typename U,
195             typename = typename std::enable_if<
196                 std::is_convertible<U*, T*>::value>::type>
scoped_refptr(scoped_refptr<U> && r)197   scoped_refptr(scoped_refptr<U>&& r) noexcept : ptr_(r.ptr_) {
198     r.ptr_ = nullptr;
199   }
200 
~scoped_refptr()201   ~scoped_refptr() {
202     static_assert(!base::subtle::IsRefCountPreferenceOverridden(
203                       static_cast<T*>(nullptr), static_cast<T*>(nullptr)),
204                   "It's unsafe to override the ref count preference."
205                   " Please remove REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE"
206                   " from subclasses.");
207     if (ptr_)
208       Release(ptr_);
209   }
210 
get()211   T* get() const { return ptr_; }
212 
213   T& operator*() const {
214     DCHECK(ptr_);
215     return *ptr_;
216   }
217 
218   T* operator->() const {
219     DCHECK(ptr_);
220     return ptr_;
221   }
222 
223   scoped_refptr& operator=(T* p) { return *this = scoped_refptr(p); }
224 
225   // Unified assignment operator.
226   scoped_refptr& operator=(scoped_refptr r) noexcept {
227     swap(r);
228     return *this;
229   }
230 
231   // Sets managed object to null and releases reference to the previous managed
232   // object, if it existed.
reset()233   void reset() { scoped_refptr().swap(*this); }
234 
swap(scoped_refptr & r)235   void swap(scoped_refptr& r) noexcept { std::swap(ptr_, r.ptr_); }
236 
237   explicit operator bool() const { return ptr_ != nullptr; }
238 
239   template <typename U>
240   bool operator==(const scoped_refptr<U>& rhs) const {
241     return ptr_ == rhs.get();
242   }
243 
244   template <typename U>
245   bool operator!=(const scoped_refptr<U>& rhs) const {
246     return !operator==(rhs);
247   }
248 
249   template <typename U>
250   bool operator<(const scoped_refptr<U>& rhs) const {
251     return ptr_ < rhs.get();
252   }
253 
254  protected:
255   T* ptr_ = nullptr;
256 
257  private:
258   template <typename U>
259   friend scoped_refptr<U> base::AdoptRef(U*);
260 
scoped_refptr(T * p,base::subtle::AdoptRefTag)261   scoped_refptr(T* p, base::subtle::AdoptRefTag) : ptr_(p) {}
262 
263   // Friend required for move constructors that set r.ptr_ to null.
264   template <typename U>
265   friend class scoped_refptr;
266 
267   // Non-inline helpers to allow:
268   //     class Opaque;
269   //     extern template class scoped_refptr<Opaque>;
270   // Otherwise the compiler will complain that Opaque is an incomplete type.
271   static void AddRef(T* ptr);
272   static void Release(T* ptr);
273 };
274 
275 // static
276 template <typename T>
AddRef(T * ptr)277 void scoped_refptr<T>::AddRef(T* ptr) {
278   ptr->AddRef();
279 }
280 
281 // static
282 template <typename T>
Release(T * ptr)283 void scoped_refptr<T>::Release(T* ptr) {
284   ptr->Release();
285 }
286 
287 template <typename T, typename U>
288 bool operator==(const scoped_refptr<T>& lhs, const U* rhs) {
289   return lhs.get() == rhs;
290 }
291 
292 template <typename T, typename U>
293 bool operator==(const T* lhs, const scoped_refptr<U>& rhs) {
294   return lhs == rhs.get();
295 }
296 
297 template <typename T>
298 bool operator==(const scoped_refptr<T>& lhs, std::nullptr_t null) {
299   return !static_cast<bool>(lhs);
300 }
301 
302 template <typename T>
303 bool operator==(std::nullptr_t null, const scoped_refptr<T>& rhs) {
304   return !static_cast<bool>(rhs);
305 }
306 
307 template <typename T, typename U>
308 bool operator!=(const scoped_refptr<T>& lhs, const U* rhs) {
309   return !operator==(lhs, rhs);
310 }
311 
312 template <typename T, typename U>
313 bool operator!=(const T* lhs, const scoped_refptr<U>& rhs) {
314   return !operator==(lhs, rhs);
315 }
316 
317 template <typename T>
318 bool operator!=(const scoped_refptr<T>& lhs, std::nullptr_t null) {
319   return !operator==(lhs, null);
320 }
321 
322 template <typename T>
323 bool operator!=(std::nullptr_t null, const scoped_refptr<T>& rhs) {
324   return !operator==(null, rhs);
325 }
326 
327 template <typename T>
328 std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) {
329   return out << p.get();
330 }
331 
332 template <typename T>
swap(scoped_refptr<T> & lhs,scoped_refptr<T> & rhs)333 void swap(scoped_refptr<T>& lhs, scoped_refptr<T>& rhs) noexcept {
334   lhs.swap(rhs);
335 }
336 
337 #endif  // BASE_MEMORY_SCOPED_REFPTR_H_
338