1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 // 5 // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 6 // PLEASE READ: Do you really need a singleton? If possible, use a 7 // function-local static of type base::NoDestructor<T> instead: 8 // 9 // Factory& Factory::GetInstance() { 10 // static base::NoDestructor<Factory> instance; 11 // return *instance; 12 // } 13 // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 14 // 15 // Singletons make it hard to determine the lifetime of an object, which can 16 // lead to buggy code and spurious crashes. 17 // 18 // Instead of adding another singleton into the mix, try to identify either: 19 // a) An existing singleton that can manage your object's lifetime 20 // b) Locations where you can deterministically create the object and pass 21 // into other objects 22 // 23 // If you absolutely need a singleton, please keep them as trivial as possible 24 // and ideally a leaf dependency. Singletons get problematic when they attempt 25 // to do too much in their destructor or have circular dependencies. 26 27 #ifndef BASE_MEMORY_SINGLETON_H_ 28 #define BASE_MEMORY_SINGLETON_H_ 29 30 #include "base/at_exit.h" 31 #include "base/atomicops.h" 32 #include "base/base_export.h" 33 #include "base/lazy_instance_helpers.h" 34 #include "base/logging.h" 35 #include "base/macros.h" 36 #include "base/threading/thread_restrictions.h" 37 38 namespace base { 39 40 // Default traits for Singleton<Type>. Calls operator new and operator delete on 41 // the object. Registers automatic deletion at process exit. 42 // Overload if you need arguments or another memory allocation function. 43 template<typename Type> 44 struct DefaultSingletonTraits { 45 // Allocates the object. NewDefaultSingletonTraits46 static Type* New() { 47 // The parenthesis is very important here; it forces POD type 48 // initialization. 49 return new Type(); 50 } 51 52 // Destroys the object. DeleteDefaultSingletonTraits53 static void Delete(Type* x) { 54 delete x; 55 } 56 57 // Set to true to automatically register deletion of the object on process 58 // exit. See below for the required call that makes this happen. 59 static const bool kRegisterAtExit = true; 60 61 #if DCHECK_IS_ON() 62 // Set to false to disallow access on a non-joinable thread. This is 63 // different from kRegisterAtExit because StaticMemorySingletonTraits allows 64 // access on non-joinable threads, and gracefully handles this. 65 static const bool kAllowedToAccessOnNonjoinableThread = false; 66 #endif 67 }; 68 69 70 // Alternate traits for use with the Singleton<Type>. Identical to 71 // DefaultSingletonTraits except that the Singleton will not be cleaned up 72 // at exit. 73 template<typename Type> 74 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> { 75 static const bool kRegisterAtExit = false; 76 #if DCHECK_IS_ON() 77 static const bool kAllowedToAccessOnNonjoinableThread = true; 78 #endif 79 }; 80 81 // Alternate traits for use with the Singleton<Type>. Allocates memory 82 // for the singleton instance from a static buffer. The singleton will 83 // be cleaned up at exit, but can't be revived after destruction unless 84 // the ResurrectForTesting() method is called. 85 // 86 // This is useful for a certain category of things, notably logging and 87 // tracing, where the singleton instance is of a type carefully constructed to 88 // be safe to access post-destruction. 89 // In logging and tracing you'll typically get stray calls at odd times, like 90 // during static destruction, thread teardown and the like, and there's a 91 // termination race on the heap-based singleton - e.g. if one thread calls 92 // get(), but then another thread initiates AtExit processing, the first thread 93 // may call into an object residing in unallocated memory. If the instance is 94 // allocated from the data segment, then this is survivable. 95 // 96 // The destructor is to deallocate system resources, in this case to unregister 97 // a callback the system will invoke when logging levels change. Note that 98 // this is also used in e.g. Chrome Frame, where you have to allow for the 99 // possibility of loading briefly into someone else's process space, and 100 // so leaking is not an option, as that would sabotage the state of your host 101 // process once you've unloaded. 102 template <typename Type> 103 struct StaticMemorySingletonTraits { 104 // WARNING: User has to support a New() which returns null. NewStaticMemorySingletonTraits105 static Type* New() { 106 // Only constructs once and returns pointer; otherwise returns null. 107 if (subtle::NoBarrier_AtomicExchange(&dead_, 1)) 108 return nullptr; 109 110 return new (buffer_) Type(); 111 } 112 DeleteStaticMemorySingletonTraits113 static void Delete(Type* p) { 114 if (p) 115 p->Type::~Type(); 116 } 117 118 static const bool kRegisterAtExit = true; 119 120 #if DCHECK_IS_ON() 121 static const bool kAllowedToAccessOnNonjoinableThread = true; 122 #endif 123 ResurrectForTestingStaticMemorySingletonTraits124 static void ResurrectForTesting() { subtle::NoBarrier_Store(&dead_, 0); } 125 126 private: 127 alignas(Type) static char buffer_[sizeof(Type)]; 128 // Signal the object was already deleted, so it is not revived. 129 static subtle::Atomic32 dead_; 130 }; 131 132 template <typename Type> 133 alignas(Type) char StaticMemorySingletonTraits<Type>::buffer_[sizeof(Type)]; 134 template <typename Type> 135 subtle::Atomic32 StaticMemorySingletonTraits<Type>::dead_ = 0; 136 137 // The Singleton<Type, Traits, DifferentiatingType> class manages a single 138 // instance of Type which will be created on first use and will be destroyed at 139 // normal process exit). The Trait::Delete function will not be called on 140 // abnormal process exit. 141 // 142 // DifferentiatingType is used as a key to differentiate two different 143 // singletons having the same memory allocation functions but serving a 144 // different purpose. This is mainly used for Locks serving different purposes. 145 // 146 // Example usage: 147 // 148 // In your header: 149 // namespace base { 150 // template <typename T> 151 // struct DefaultSingletonTraits; 152 // } 153 // class FooClass { 154 // public: 155 // static FooClass* GetInstance(); <-- See comment below on this. 156 // void Bar() { ... } 157 // private: 158 // FooClass() { ... } 159 // friend struct base::DefaultSingletonTraits<FooClass>; 160 // 161 // DISALLOW_COPY_AND_ASSIGN(FooClass); 162 // }; 163 // 164 // In your source file: 165 // #include "base/memory/singleton.h" 166 // FooClass* FooClass::GetInstance() { 167 // return base::Singleton<FooClass>::get(); 168 // } 169 // 170 // Or for leaky singletons: 171 // #include "base/memory/singleton.h" 172 // FooClass* FooClass::GetInstance() { 173 // return base::Singleton< 174 // FooClass, base::LeakySingletonTraits<FooClass>>::get(); 175 // } 176 // 177 // And to call methods on FooClass: 178 // FooClass::GetInstance()->Bar(); 179 // 180 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance 181 // and it is important that FooClass::GetInstance() is not inlined in the 182 // header. This makes sure that when source files from multiple targets include 183 // this header they don't end up with different copies of the inlined code 184 // creating multiple copies of the singleton. 185 // 186 // Singleton<> has no non-static members and doesn't need to actually be 187 // instantiated. 188 // 189 // This class is itself thread-safe. The underlying Type must of course be 190 // thread-safe if you want to use it concurrently. Two parameters may be tuned 191 // depending on the user's requirements. 192 // 193 // Glossary: 194 // RAE = kRegisterAtExit 195 // 196 // On every platform, if Traits::RAE is true, the singleton will be destroyed at 197 // process exit. More precisely it uses AtExitManager which requires an 198 // object of this type to be instantiated. AtExitManager mimics the semantics 199 // of atexit() such as LIFO order but under Windows is safer to call. For more 200 // information see at_exit.h. 201 // 202 // If Traits::RAE is false, the singleton will not be freed at process exit, 203 // thus the singleton will be leaked if it is ever accessed. Traits::RAE 204 // shouldn't be false unless absolutely necessary. Remember that the heap where 205 // the object is allocated may be destroyed by the CRT anyway. 206 // 207 // Caveats: 208 // (a) Every call to get(), operator->() and operator*() incurs some overhead 209 // (16ns on my P4/2.8GHz) to check whether the object has already been 210 // initialized. You may wish to cache the result of get(); it will not 211 // change. 212 // 213 // (b) Your factory function must never throw an exception. This class is not 214 // exception-safe. 215 // 216 217 template <typename Type, 218 typename Traits = DefaultSingletonTraits<Type>, 219 typename DifferentiatingType = Type> 220 class Singleton { 221 private: 222 // Classes using the Singleton<T> pattern should declare a GetInstance() 223 // method and call Singleton::get() from within that. 224 friend Type* Type::GetInstance(); 225 226 // This class is safe to be constructed and copy-constructed since it has no 227 // member. 228 229 // Return a pointer to the one true instance of the class. get()230 static Type* get() { 231 #if DCHECK_IS_ON() 232 if (!Traits::kAllowedToAccessOnNonjoinableThread) 233 ThreadRestrictions::AssertSingletonAllowed(); 234 #endif 235 236 return subtle::GetOrCreateLazyPointer( 237 &instance_, &CreatorFunc, nullptr, 238 Traits::kRegisterAtExit ? OnExit : nullptr, nullptr); 239 } 240 241 // Internal method used as an adaptor for GetOrCreateLazyPointer(). Do not use 242 // outside of that use case. CreatorFunc(void *)243 static Type* CreatorFunc(void* /* creator_arg*/) { return Traits::New(); } 244 245 // Adapter function for use with AtExit(). This should be called single 246 // threaded, so don't use atomic operations. 247 // Calling OnExit while singleton is in use by other threads is a mistake. OnExit(void *)248 static void OnExit(void* /*unused*/) { 249 // AtExit should only ever be register after the singleton instance was 250 // created. We should only ever get here with a valid instance_ pointer. 251 Traits::Delete(reinterpret_cast<Type*>(subtle::NoBarrier_Load(&instance_))); 252 instance_ = 0; 253 } 254 static subtle::AtomicWord instance_; 255 }; 256 257 template <typename Type, typename Traits, typename DifferentiatingType> 258 subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::instance_ = 0; 259 260 } // namespace base 261 262 #endif // BASE_MEMORY_SINGLETON_H_ 263