1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "util/ralloc.h"
25 
26 #include "main/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
27 #include "util/format_rgb9e5.h"
28 #include "util/format_srgb.h"
29 
30 #include "blorp_priv.h"
31 #include "compiler/brw_eu_defines.h"
32 
33 #include "blorp_nir_builder.h"
34 
35 #define FILE_DEBUG_FLAG DEBUG_BLORP
36 
37 struct brw_blorp_const_color_prog_key
38 {
39    enum blorp_shader_type shader_type; /* Must be BLORP_SHADER_TYPE_CLEAR */
40    bool use_simd16_replicated_data;
41    bool pad[3];
42 };
43 
44 static bool
blorp_params_get_clear_kernel(struct blorp_context * blorp,struct blorp_params * params,bool use_replicated_data)45 blorp_params_get_clear_kernel(struct blorp_context *blorp,
46                               struct blorp_params *params,
47                               bool use_replicated_data)
48 {
49    const struct brw_blorp_const_color_prog_key blorp_key = {
50       .shader_type = BLORP_SHADER_TYPE_CLEAR,
51       .use_simd16_replicated_data = use_replicated_data,
52    };
53 
54    if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
55                             &params->wm_prog_kernel, &params->wm_prog_data))
56       return true;
57 
58    void *mem_ctx = ralloc_context(NULL);
59 
60    nir_builder b;
61    nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
62    b.shader->info.name = ralloc_strdup(b.shader, "BLORP-clear");
63 
64    nir_variable *v_color =
65       BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
66 
67    nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
68                                                   glsl_vec4_type(),
69                                                   "gl_FragColor");
70    frag_color->data.location = FRAG_RESULT_COLOR;
71 
72    nir_copy_var(&b, frag_color, v_color);
73 
74    struct brw_wm_prog_key wm_key;
75    brw_blorp_init_wm_prog_key(&wm_key);
76 
77    struct brw_wm_prog_data prog_data;
78    const unsigned *program =
79       blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
80                        &prog_data);
81 
82    bool result =
83       blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
84                            program, prog_data.base.program_size,
85                            &prog_data.base, sizeof(prog_data),
86                            &params->wm_prog_kernel, &params->wm_prog_data);
87 
88    ralloc_free(mem_ctx);
89    return result;
90 }
91 
92 struct layer_offset_vs_key {
93    enum blorp_shader_type shader_type;
94    unsigned num_inputs;
95 };
96 
97 /* In the case of doing attachment clears, we are using a surface state that
98  * is handed to us so we can't set (and don't even know) the base array layer.
99  * In order to do a layered clear in this scenario, we need some way of adding
100  * the base array layer to the instance id.  Unfortunately, our hardware has
101  * no real concept of "base instance", so we have to do it manually in a
102  * vertex shader.
103  */
104 static bool
blorp_params_get_layer_offset_vs(struct blorp_context * blorp,struct blorp_params * params)105 blorp_params_get_layer_offset_vs(struct blorp_context *blorp,
106                                  struct blorp_params *params)
107 {
108    struct layer_offset_vs_key blorp_key = {
109       .shader_type = BLORP_SHADER_TYPE_LAYER_OFFSET_VS,
110    };
111 
112    if (params->wm_prog_data)
113       blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;
114 
115    if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
116                             &params->vs_prog_kernel, &params->vs_prog_data))
117       return true;
118 
119    void *mem_ctx = ralloc_context(NULL);
120 
121    nir_builder b;
122    nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_VERTEX, NULL);
123    b.shader->info.name = ralloc_strdup(b.shader, "BLORP-layer-offset-vs");
124 
125    const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
126 
127    /* First we deal with the header which has instance and base instance */
128    nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
129                                                 uvec4_type, "header");
130    a_header->data.location = VERT_ATTRIB_GENERIC0;
131 
132    nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
133                                                glsl_int_type(), "layer_id");
134    v_layer->data.location = VARYING_SLOT_LAYER;
135 
136    /* Compute the layer id */
137    nir_ssa_def *header = nir_load_var(&b, a_header);
138    nir_ssa_def *base_layer = nir_channel(&b, header, 0);
139    nir_ssa_def *instance = nir_channel(&b, header, 1);
140    nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);
141 
142    /* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
143    nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
144                                                 glsl_vec4_type(), "a_vertex");
145    a_vertex->data.location = VERT_ATTRIB_GENERIC1;
146 
147    nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
148                                              glsl_vec4_type(), "v_pos");
149    v_pos->data.location = VARYING_SLOT_POS;
150 
151    nir_copy_var(&b, v_pos, a_vertex);
152 
153    /* Then we copy everything else */
154    for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
155       nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
156                                                uvec4_type, "input");
157       a_in->data.location = VERT_ATTRIB_GENERIC2 + i;
158 
159       nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
160                                                 uvec4_type, "output");
161       v_out->data.location = VARYING_SLOT_VAR0 + i;
162 
163       nir_copy_var(&b, v_out, a_in);
164    }
165 
166    struct brw_vs_prog_data vs_prog_data;
167    memset(&vs_prog_data, 0, sizeof(vs_prog_data));
168 
169    const unsigned *program =
170       blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data);
171 
172    bool result =
173       blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
174                            program, vs_prog_data.base.base.program_size,
175                            &vs_prog_data.base.base, sizeof(vs_prog_data),
176                            &params->vs_prog_kernel, &params->vs_prog_data);
177 
178    ralloc_free(mem_ctx);
179    return result;
180 }
181 
182 /* The x0, y0, x1, and y1 parameters must already be populated with the render
183  * area of the framebuffer to be cleared.
184  */
185 static void
get_fast_clear_rect(const struct isl_device * dev,const struct isl_surf * aux_surf,unsigned * x0,unsigned * y0,unsigned * x1,unsigned * y1)186 get_fast_clear_rect(const struct isl_device *dev,
187                     const struct isl_surf *aux_surf,
188                     unsigned *x0, unsigned *y0,
189                     unsigned *x1, unsigned *y1)
190 {
191    unsigned int x_align, y_align;
192    unsigned int x_scaledown, y_scaledown;
193 
194    /* Only single sampled surfaces need to (and actually can) be resolved. */
195    if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) {
196       /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
197        * Target(s)", beneath the "Fast Color Clear" bullet (p327):
198        *
199        *     Clear pass must have a clear rectangle that must follow
200        *     alignment rules in terms of pixels and lines as shown in the
201        *     table below. Further, the clear-rectangle height and width
202        *     must be multiple of the following dimensions. If the height
203        *     and width of the render target being cleared do not meet these
204        *     requirements, an MCS buffer can be created such that it
205        *     follows the requirement and covers the RT.
206        *
207        * The alignment size in the table that follows is related to the
208        * alignment size that is baked into the CCS surface format but with X
209        * alignment multiplied by 16 and Y alignment multiplied by 32.
210        */
211       x_align = isl_format_get_layout(aux_surf->format)->bw;
212       y_align = isl_format_get_layout(aux_surf->format)->bh;
213 
214       x_align *= 16;
215 
216       /* SKL+ line alignment requirement for Y-tiled are half those of the prior
217        * generations.
218        */
219       if (dev->info->gen >= 9)
220          y_align *= 16;
221       else
222          y_align *= 32;
223 
224       /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
225        * Target(s)", beneath the "Fast Color Clear" bullet (p327):
226        *
227        *     In order to optimize the performance MCS buffer (when bound to
228        *     1X RT) clear similarly to MCS buffer clear for MSRT case,
229        *     clear rect is required to be scaled by the following factors
230        *     in the horizontal and vertical directions:
231        *
232        * The X and Y scale down factors in the table that follows are each
233        * equal to half the alignment value computed above.
234        */
235       x_scaledown = x_align / 2;
236       y_scaledown = y_align / 2;
237 
238       /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
239        * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
240        * Clear of Non-MultiSampled Render Target Restrictions":
241        *
242        *   Clear rectangle must be aligned to two times the number of
243        *   pixels in the table shown below due to 16x16 hashing across the
244        *   slice.
245        */
246       x_align *= 2;
247       y_align *= 2;
248    } else {
249       assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
250 
251       /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
252        * Target(s)", beneath the "MSAA Compression" bullet (p326):
253        *
254        *     Clear pass for this case requires that scaled down primitive
255        *     is sent down with upper left co-ordinate to coincide with
256        *     actual rectangle being cleared. For MSAA, clear rectangle’s
257        *     height and width need to as show in the following table in
258        *     terms of (width,height) of the RT.
259        *
260        *     MSAA  Width of Clear Rect  Height of Clear Rect
261        *      2X     Ceil(1/8*width)      Ceil(1/2*height)
262        *      4X     Ceil(1/8*width)      Ceil(1/2*height)
263        *      8X     Ceil(1/2*width)      Ceil(1/2*height)
264        *     16X         width            Ceil(1/2*height)
265        *
266        * The text "with upper left co-ordinate to coincide with actual
267        * rectangle being cleared" is a little confusing--it seems to imply
268        * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
269        * feed the pipeline using the rectangle (x,y) to
270        * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
271        * the number of samples.  Experiments indicate that this is not
272        * quite correct; actually, what the hardware appears to do is to
273        * align whatever rectangle is sent down the pipeline to the nearest
274        * multiple of 2x2 blocks, and then scale it up by a factor of N
275        * horizontally and 2 vertically.  So the resulting alignment is 4
276        * vertically and either 4 or 16 horizontally, and the scaledown
277        * factor is 2 vertically and either 2 or 8 horizontally.
278        */
279       switch (aux_surf->format) {
280       case ISL_FORMAT_MCS_2X:
281       case ISL_FORMAT_MCS_4X:
282          x_scaledown = 8;
283          break;
284       case ISL_FORMAT_MCS_8X:
285          x_scaledown = 2;
286          break;
287       case ISL_FORMAT_MCS_16X:
288          x_scaledown = 1;
289          break;
290       default:
291          unreachable("Unexpected MCS format for fast clear");
292       }
293       y_scaledown = 2;
294       x_align = x_scaledown * 2;
295       y_align = y_scaledown * 2;
296    }
297 
298    *x0 = ROUND_DOWN_TO(*x0,  x_align) / x_scaledown;
299    *y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
300    *x1 = ALIGN(*x1, x_align) / x_scaledown;
301    *y1 = ALIGN(*y1, y_align) / y_scaledown;
302 }
303 
304 void
blorp_fast_clear(struct blorp_batch * batch,const struct blorp_surf * surf,enum isl_format format,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1)305 blorp_fast_clear(struct blorp_batch *batch,
306                  const struct blorp_surf *surf, enum isl_format format,
307                  uint32_t level, uint32_t start_layer, uint32_t num_layers,
308                  uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
309 {
310    /* Ensure that all layers undergoing the clear have an auxiliary buffer. */
311    assert(start_layer + num_layers <=
312           MAX2(surf->aux_surf->logical_level0_px.depth >> level,
313                surf->aux_surf->logical_level0_px.array_len));
314 
315    struct blorp_params params;
316    blorp_params_init(&params);
317    params.num_layers = num_layers;
318 
319    params.x0 = x0;
320    params.y0 = y0;
321    params.x1 = x1;
322    params.y1 = y1;
323 
324    memset(&params.wm_inputs.clear_color, 0xff, 4*sizeof(float));
325    params.fast_clear_op = BLORP_FAST_CLEAR_OP_CLEAR;
326 
327    get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf,
328                        &params.x0, &params.y0, &params.x1, &params.y1);
329 
330    if (!blorp_params_get_clear_kernel(batch->blorp, &params, true))
331       return;
332 
333    brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
334                                start_layer, format, true);
335    params.num_samples = params.dst.surf.samples;
336 
337    batch->blorp->exec(batch, &params);
338 }
339 
340 static union isl_color_value
swizzle_color_value(union isl_color_value src,struct isl_swizzle swizzle)341 swizzle_color_value(union isl_color_value src, struct isl_swizzle swizzle)
342 {
343    union isl_color_value dst = { .u32 = { 0, } };
344 
345    /* We assign colors in ABGR order so that the first one will be taken in
346     * RGBA precedence order.  According to the PRM docs for shader channel
347     * select, this matches Haswell hardware behavior.
348     */
349    if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
350       dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3];
351    if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
352       dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2];
353    if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
354       dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1];
355    if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
356       dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0];
357 
358    return dst;
359 }
360 
361 void
blorp_clear(struct blorp_batch * batch,const struct blorp_surf * surf,enum isl_format format,struct isl_swizzle swizzle,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,union isl_color_value clear_color,const bool color_write_disable[4])362 blorp_clear(struct blorp_batch *batch,
363             const struct blorp_surf *surf,
364             enum isl_format format, struct isl_swizzle swizzle,
365             uint32_t level, uint32_t start_layer, uint32_t num_layers,
366             uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
367             union isl_color_value clear_color,
368             const bool color_write_disable[4])
369 {
370    struct blorp_params params;
371    blorp_params_init(&params);
372 
373    /* Manually apply the clear destination swizzle.  This way swizzled clears
374     * will work for swizzles which we can't normally use for rendering and it
375     * also ensures that they work on pre-Haswell hardware which can't swizlle
376     * at all.
377     */
378    clear_color = swizzle_color_value(clear_color, swizzle);
379    swizzle = ISL_SWIZZLE_IDENTITY;
380 
381    if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
382       clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
383       format = ISL_FORMAT_R32_UINT;
384    } else if (format == ISL_FORMAT_L8_UNORM_SRGB) {
385       clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
386       format = ISL_FORMAT_R8_UNORM;
387    } else if (format == ISL_FORMAT_A4B4G4R4_UNORM) {
388       /* Broadwell and earlier cannot render to this format so we need to work
389        * around it by swapping the colors around and using B4G4R4A4 instead.
390        */
391       const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE);
392       clear_color = swizzle_color_value(clear_color, ARGB);
393       format = ISL_FORMAT_B4G4R4A4_UNORM;
394    }
395 
396    memcpy(&params.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);
397 
398    bool use_simd16_replicated_data = true;
399 
400    /* From the SNB PRM (Vol4_Part1):
401     *
402     *     "Replicated data (Message Type = 111) is only supported when
403     *      accessing tiled memory.  Using this Message Type to access linear
404     *      (untiled) memory is UNDEFINED."
405     */
406    if (surf->surf->tiling == ISL_TILING_LINEAR)
407       use_simd16_replicated_data = false;
408 
409    /* Replicated clears don't work yet before gen6 */
410    if (batch->blorp->isl_dev->info->gen < 6)
411       use_simd16_replicated_data = false;
412 
413    /* Constant color writes ignore everyting in blend and color calculator
414     * state.  This is not documented.
415     */
416    if (color_write_disable) {
417       for (unsigned i = 0; i < 4; i++) {
418          params.color_write_disable[i] = color_write_disable[i];
419          if (color_write_disable[i])
420             use_simd16_replicated_data = false;
421       }
422    }
423 
424    if (!blorp_params_get_clear_kernel(batch->blorp, &params,
425                                       use_simd16_replicated_data))
426       return;
427 
428    if (!blorp_ensure_sf_program(batch->blorp, &params))
429       return;
430 
431    while (num_layers > 0) {
432       brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
433                                   start_layer, format, true);
434       params.dst.view.swizzle = swizzle;
435 
436       params.x0 = x0;
437       params.y0 = y0;
438       params.x1 = x1;
439       params.y1 = y1;
440 
441       /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
442        * Convert them to a single slice on gen4.
443        */
444       if (batch->blorp->isl_dev->info->gen == 4 &&
445           (params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) {
446          blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params.dst);
447       }
448 
449       if (isl_format_is_compressed(params.dst.surf.format)) {
450          blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
451                                             NULL, NULL, NULL, NULL);
452                                             //&dst_x, &dst_y, &dst_w, &dst_h);
453       }
454 
455       if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
456          /* Either we're on gen4 where there is no multisampling or the
457           * surface is compressed which also implies no multisampling.
458           * Therefore, sa == px and we don't need to do a conversion.
459           */
460          assert(params.dst.surf.samples == 1);
461          params.x0 += params.dst.tile_x_sa;
462          params.y0 += params.dst.tile_y_sa;
463          params.x1 += params.dst.tile_x_sa;
464          params.y1 += params.dst.tile_y_sa;
465       }
466 
467       params.num_samples = params.dst.surf.samples;
468 
469       /* We may be restricted on the number of layers we can bind at any one
470        * time.  In particular, Sandy Bridge has a maximum number of layers of
471        * 512 but a maximum 3D texture size is much larger.
472        */
473       params.num_layers = MIN2(params.dst.view.array_len, num_layers);
474       batch->blorp->exec(batch, &params);
475 
476       start_layer += params.num_layers;
477       num_layers -= params.num_layers;
478    }
479 }
480 
481 void
blorp_clear_depth_stencil(struct blorp_batch * batch,const struct blorp_surf * depth,const struct blorp_surf * stencil,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_depth,float depth_value,uint8_t stencil_mask,uint8_t stencil_value)482 blorp_clear_depth_stencil(struct blorp_batch *batch,
483                           const struct blorp_surf *depth,
484                           const struct blorp_surf *stencil,
485                           uint32_t level, uint32_t start_layer,
486                           uint32_t num_layers,
487                           uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
488                           bool clear_depth, float depth_value,
489                           uint8_t stencil_mask, uint8_t stencil_value)
490 {
491    struct blorp_params params;
492    blorp_params_init(&params);
493 
494    params.x0 = x0;
495    params.y0 = y0;
496    params.x1 = x1;
497    params.y1 = y1;
498 
499    if (ISL_DEV_GEN(batch->blorp->isl_dev) == 6) {
500       /* For some reason, Sandy Bridge gets occlusion queries wrong if we
501        * don't have a shader.  In particular, it records samples even though
502        * we disable statistics in 3DSTATE_WM.  Give it the usual clear shader
503        * to work around the issue.
504        */
505       if (!blorp_params_get_clear_kernel(batch->blorp, &params, false))
506          return;
507    }
508 
509    while (num_layers > 0) {
510       params.num_layers = num_layers;
511 
512       if (stencil_mask) {
513          brw_blorp_surface_info_init(batch->blorp, &params.stencil, stencil,
514                                      level, start_layer,
515                                      ISL_FORMAT_UNSUPPORTED, true);
516          params.stencil_mask = stencil_mask;
517          params.stencil_ref = stencil_value;
518 
519          params.dst.surf.samples = params.stencil.surf.samples;
520          params.dst.surf.logical_level0_px =
521             params.stencil.surf.logical_level0_px;
522          params.dst.view = params.depth.view;
523 
524          params.num_samples = params.stencil.surf.samples;
525 
526          /* We may be restricted on the number of layers we can bind at any
527           * one time.  In particular, Sandy Bridge has a maximum number of
528           * layers of 512 but a maximum 3D texture size is much larger.
529           */
530          if (params.stencil.view.array_len < params.num_layers)
531             params.num_layers = params.stencil.view.array_len;
532       }
533 
534       if (clear_depth) {
535          brw_blorp_surface_info_init(batch->blorp, &params.depth, depth,
536                                      level, start_layer,
537                                      ISL_FORMAT_UNSUPPORTED, true);
538          params.z = depth_value;
539          params.depth_format =
540             isl_format_get_depth_format(depth->surf->format, false);
541 
542          params.dst.surf.samples = params.depth.surf.samples;
543          params.dst.surf.logical_level0_px =
544             params.depth.surf.logical_level0_px;
545          params.dst.view = params.depth.view;
546 
547          params.num_samples = params.depth.surf.samples;
548 
549          /* We may be restricted on the number of layers we can bind at any
550           * one time.  In particular, Sandy Bridge has a maximum number of
551           * layers of 512 but a maximum 3D texture size is much larger.
552           */
553          if (params.depth.view.array_len < params.num_layers)
554             params.num_layers = params.depth.view.array_len;
555       }
556 
557       batch->blorp->exec(batch, &params);
558 
559       start_layer += params.num_layers;
560       num_layers -= params.num_layers;
561    }
562 }
563 
564 bool
blorp_can_hiz_clear_depth(uint8_t gen,enum isl_format format,uint32_t num_samples,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1)565 blorp_can_hiz_clear_depth(uint8_t gen, enum isl_format format,
566                           uint32_t num_samples,
567                           uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
568 {
569    /* This function currently doesn't support any gen prior to gen8 */
570    assert(gen >= 8);
571 
572    if (gen == 8 && format == ISL_FORMAT_R16_UNORM) {
573       /* Apply the D16 alignment restrictions. On BDW, HiZ has an 8x4 sample
574        * block with the following property: as the number of samples increases,
575        * the number of pixels representable by this block decreases by a factor
576        * of the sample dimensions. Sample dimensions scale following the MSAA
577        * interleaved pattern.
578        *
579        * Sample|Sample|Pixel
580        * Count |Dim   |Dim
581        * ===================
582        *    1  | 1x1  | 8x4
583        *    2  | 2x1  | 4x4
584        *    4  | 2x2  | 4x2
585        *    8  | 4x2  | 2x2
586        *   16  | 4x4  | 2x1
587        *
588        * Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
589        */
590       const struct isl_extent2d sa_block_dim =
591          isl_get_interleaved_msaa_px_size_sa(num_samples);
592       const uint8_t align_px_w = 8 / sa_block_dim.w;
593       const uint8_t align_px_h = 4 / sa_block_dim.h;
594 
595       /* Fast depth clears clear an entire sample block at a time. As a result,
596        * the rectangle must be aligned to the dimensions of the encompassing
597        * pixel block for a successful operation.
598        *
599        * Fast clears can still work if the upper-left corner is aligned and the
600        * bottom-rigtht corner touches the edge of a depth buffer whose extent
601        * is unaligned. This is because each miplevel in the depth buffer is
602        * padded by the Pixel Dim (similar to a standard compressed texture).
603        * In this case, the clear rectangle could be padded by to match the full
604        * depth buffer extent but to support multiple clearing techniques, we
605        * chose to be unaware of the depth buffer's extent and thus don't handle
606        * this case.
607        */
608       if (x0 % align_px_w || y0 % align_px_h ||
609           x1 % align_px_w || y1 % align_px_h)
610          return false;
611    }
612    return true;
613 }
614 
615 /* Given a depth stencil attachment, this function performs a fast depth clear
616  * on a depth portion and a regular clear on the stencil portion. When
617  * performing a fast depth clear on the depth portion, the HiZ buffer is simply
618  * tagged as cleared so the depth clear value is not actually needed.
619  */
620 void
blorp_gen8_hiz_clear_attachments(struct blorp_batch * batch,uint32_t num_samples,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_depth,bool clear_stencil,uint8_t stencil_value)621 blorp_gen8_hiz_clear_attachments(struct blorp_batch *batch,
622                                  uint32_t num_samples,
623                                  uint32_t x0, uint32_t y0,
624                                  uint32_t x1, uint32_t y1,
625                                  bool clear_depth, bool clear_stencil,
626                                  uint8_t stencil_value)
627 {
628    assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
629 
630    struct blorp_params params;
631    blorp_params_init(&params);
632    params.num_layers = 1;
633    params.hiz_op = BLORP_HIZ_OP_DEPTH_CLEAR;
634    params.x0 = x0;
635    params.y0 = y0;
636    params.x1 = x1;
637    params.y1 = y1;
638    params.num_samples = num_samples;
639    params.depth.enabled = clear_depth;
640    params.stencil.enabled = clear_stencil;
641    params.stencil_ref = stencil_value;
642    batch->blorp->exec(batch, &params);
643 }
644 
645 /** Clear active color/depth/stencili attachments
646  *
647  * This function performs a clear operation on the currently bound
648  * color/depth/stencil attachments.  It is assumed that any information passed
649  * in here is valid, consistent, and in-bounds relative to the currently
650  * attached depth/stencil.  The binding_table_offset parameter is the 32-bit
651  * offset relative to surface state base address where pre-baked binding table
652  * that we are to use lives.  If clear_color is false, binding_table_offset
653  * must point to a binding table with one entry which is a valid null surface
654  * that matches the currently bound depth and stencil.
655  */
656 void
blorp_clear_attachments(struct blorp_batch * batch,uint32_t binding_table_offset,enum isl_format depth_format,uint32_t num_samples,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_color,union isl_color_value color_value,bool clear_depth,float depth_value,uint8_t stencil_mask,uint8_t stencil_value)657 blorp_clear_attachments(struct blorp_batch *batch,
658                         uint32_t binding_table_offset,
659                         enum isl_format depth_format,
660                         uint32_t num_samples,
661                         uint32_t start_layer, uint32_t num_layers,
662                         uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
663                         bool clear_color, union isl_color_value color_value,
664                         bool clear_depth, float depth_value,
665                         uint8_t stencil_mask, uint8_t stencil_value)
666 {
667    struct blorp_params params;
668    blorp_params_init(&params);
669 
670    assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
671 
672    params.x0 = x0;
673    params.y0 = y0;
674    params.x1 = x1;
675    params.y1 = y1;
676 
677    params.use_pre_baked_binding_table = true;
678    params.pre_baked_binding_table_offset = binding_table_offset;
679 
680    params.num_layers = num_layers;
681    params.num_samples = num_samples;
682 
683    if (clear_color) {
684       params.dst.enabled = true;
685 
686       memcpy(&params.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);
687 
688       /* Unfortunately, without knowing whether or not our destination surface
689        * is tiled or not, we have to assume it may be linear.  This means no
690        * SIMD16_REPDATA for us. :-(
691        */
692       if (!blorp_params_get_clear_kernel(batch->blorp, &params, false))
693          return;
694    }
695 
696    if (clear_depth) {
697       params.depth.enabled = true;
698 
699       params.z = depth_value;
700       params.depth_format = isl_format_get_depth_format(depth_format, false);
701    }
702 
703    if (stencil_mask) {
704       params.stencil.enabled = true;
705 
706       params.stencil_mask = stencil_mask;
707       params.stencil_ref = stencil_value;
708    }
709 
710    if (!blorp_params_get_layer_offset_vs(batch->blorp, &params))
711       return;
712 
713    params.vs_inputs.base_layer = start_layer;
714 
715    batch->blorp->exec(batch, &params);
716 }
717 
718 void
blorp_ccs_resolve(struct blorp_batch * batch,struct blorp_surf * surf,uint32_t level,uint32_t start_layer,uint32_t num_layers,enum isl_format format,enum blorp_fast_clear_op resolve_op)719 blorp_ccs_resolve(struct blorp_batch *batch,
720                   struct blorp_surf *surf, uint32_t level,
721                   uint32_t start_layer, uint32_t num_layers,
722                   enum isl_format format,
723                   enum blorp_fast_clear_op resolve_op)
724 {
725    struct blorp_params params;
726 
727    blorp_params_init(&params);
728    brw_blorp_surface_info_init(batch->blorp, &params.dst, surf,
729                                level, start_layer, format, true);
730 
731    /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
732     *
733     *     A rectangle primitive must be scaled down by the following factors
734     *     with respect to render target being resolved.
735     *
736     * The scaledown factors in the table that follows are related to the block
737     * size of the CCS format.  For IVB and HSW, we divide by two, for BDW we
738     * multiply by 8 and 16. On Sky Lake, we multiply by 8.
739     */
740    const struct isl_format_layout *aux_fmtl =
741       isl_format_get_layout(params.dst.aux_surf.format);
742    assert(aux_fmtl->txc == ISL_TXC_CCS);
743 
744    unsigned x_scaledown, y_scaledown;
745    if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 9) {
746       x_scaledown = aux_fmtl->bw * 8;
747       y_scaledown = aux_fmtl->bh * 8;
748    } else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
749       x_scaledown = aux_fmtl->bw * 8;
750       y_scaledown = aux_fmtl->bh * 16;
751    } else {
752       x_scaledown = aux_fmtl->bw / 2;
753       y_scaledown = aux_fmtl->bh / 2;
754    }
755    params.x0 = params.y0 = 0;
756    params.x1 = minify(params.dst.aux_surf.logical_level0_px.width, level);
757    params.y1 = minify(params.dst.aux_surf.logical_level0_px.height, level);
758    params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
759    params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;
760 
761    if (batch->blorp->isl_dev->info->gen >= 9) {
762       assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL ||
763              resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL);
764    } else {
765       /* Broadwell and earlier do not have a partial resolve */
766       assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
767    }
768    params.fast_clear_op = resolve_op;
769    params.num_layers = num_layers;
770 
771    /* Note: there is no need to initialize push constants because it doesn't
772     * matter what data gets dispatched to the render target.  However, we must
773     * ensure that the fragment shader delivers the data using the "replicated
774     * color" message.
775     */
776 
777    if (!blorp_params_get_clear_kernel(batch->blorp, &params, true))
778       return;
779 
780    batch->blorp->exec(batch, &params);
781 }
782 
783 struct blorp_mcs_partial_resolve_key
784 {
785    enum blorp_shader_type shader_type;
786    uint32_t num_samples;
787 };
788 
789 static bool
blorp_params_get_mcs_partial_resolve_kernel(struct blorp_context * blorp,struct blorp_params * params)790 blorp_params_get_mcs_partial_resolve_kernel(struct blorp_context *blorp,
791                                             struct blorp_params *params)
792 {
793    const struct blorp_mcs_partial_resolve_key blorp_key = {
794       .shader_type = BLORP_SHADER_TYPE_MCS_PARTIAL_RESOLVE,
795       .num_samples = params->num_samples,
796    };
797 
798    if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
799                             &params->wm_prog_kernel, &params->wm_prog_data))
800       return true;
801 
802    void *mem_ctx = ralloc_context(NULL);
803 
804    nir_builder b;
805    nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
806    b.shader->info.name = ralloc_strdup(b.shader, "BLORP-mcs-partial-resolve");
807 
808    nir_variable *v_color =
809       BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
810 
811    nir_variable *frag_color =
812       nir_variable_create(b.shader, nir_var_shader_out,
813                           glsl_vec4_type(), "gl_FragColor");
814    frag_color->data.location = FRAG_RESULT_COLOR;
815 
816    /* Do an MCS fetch and check if it is equal to the magic clear value */
817    nir_ssa_def *mcs =
818       blorp_nir_txf_ms_mcs(&b, nir_f2i32(&b, blorp_nir_frag_coord(&b)),
819                                nir_load_layer_id(&b));
820    nir_ssa_def *is_clear =
821       blorp_nir_mcs_is_clear_color(&b, mcs, blorp_key.num_samples);
822 
823    /* If we aren't the clear value, discard. */
824    nir_intrinsic_instr *discard =
825       nir_intrinsic_instr_create(b.shader, nir_intrinsic_discard_if);
826    discard->src[0] = nir_src_for_ssa(nir_inot(&b, is_clear));
827    nir_builder_instr_insert(&b, &discard->instr);
828 
829    nir_copy_var(&b, frag_color, v_color);
830 
831    struct brw_wm_prog_key wm_key;
832    brw_blorp_init_wm_prog_key(&wm_key);
833    wm_key.tex.compressed_multisample_layout_mask = 1;
834    wm_key.tex.msaa_16 = blorp_key.num_samples == 16;
835    wm_key.multisample_fbo = true;
836 
837    struct brw_wm_prog_data prog_data;
838    const unsigned *program =
839       blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, false,
840                        &prog_data);
841 
842    bool result =
843       blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
844                            program, prog_data.base.program_size,
845                            &prog_data.base, sizeof(prog_data),
846                            &params->wm_prog_kernel, &params->wm_prog_data);
847 
848    ralloc_free(mem_ctx);
849    return result;
850 }
851 
852 void
blorp_mcs_partial_resolve(struct blorp_batch * batch,struct blorp_surf * surf,enum isl_format format,uint32_t start_layer,uint32_t num_layers)853 blorp_mcs_partial_resolve(struct blorp_batch *batch,
854                           struct blorp_surf *surf,
855                           enum isl_format format,
856                           uint32_t start_layer, uint32_t num_layers)
857 {
858    struct blorp_params params;
859    blorp_params_init(&params);
860 
861    assert(batch->blorp->isl_dev->info->gen >= 7);
862 
863    params.x0 = 0;
864    params.y0 = 0;
865    params.x1 = surf->surf->logical_level0_px.width;
866    params.y1 = surf->surf->logical_level0_px.height;
867 
868    brw_blorp_surface_info_init(batch->blorp, &params.src, surf, 0,
869                                start_layer, format, false);
870    brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, 0,
871                                start_layer, format, true);
872 
873    params.num_samples = params.dst.surf.samples;
874    params.num_layers = num_layers;
875 
876    memcpy(&params.wm_inputs.clear_color,
877           surf->clear_color.f32, sizeof(float) * 4);
878 
879    if (!blorp_params_get_mcs_partial_resolve_kernel(batch->blorp, &params))
880       return;
881 
882    batch->blorp->exec(batch, &params);
883 }
884