1 // Copyright 2013 Google Inc. All Rights Reserved.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 //     * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 //     * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following disclaimer
11 // in the documentation and/or other materials provided with the
12 // distribution.
13 //     * Neither the name of Google Inc. nor the names of its
14 // contributors may be used to endorse or promote products derived from
15 // this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 
29 // Scopers help you manage ownership of a pointer, helping you easily manage the
30 // a pointer within a scope, and automatically destroying the pointer at the
31 // end of a scope.  There are two main classes you will use, which correspond
32 // to the operators new/delete and new[]/delete[].
33 //
34 // Example usage (scoped_ptr):
35 //   {
36 //     scoped_ptr<Foo> foo(new Foo("wee"));
37 //   }  // foo goes out of scope, releasing the pointer with it.
38 //
39 //   {
40 //     scoped_ptr<Foo> foo;          // No pointer managed.
41 //     foo.reset(new Foo("wee"));    // Now a pointer is managed.
42 //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
43 //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
44 //     foo->Method();                // Foo::Method() called.
45 //     foo.get()->Method();          // Foo::Method() called.
46 //     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
47 //                                   // manages a pointer.
48 //     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
49 //     foo.reset();                  // Foo("wee4") destroyed, foo no longer
50 //                                   // manages a pointer.
51 //   }  // foo wasn't managing a pointer, so nothing was destroyed.
52 //
53 // Example usage (scoped_array):
54 //   {
55 //     scoped_array<Foo> foo(new Foo[100]);
56 //     foo.get()->Method();  // Foo::Method on the 0th element.
57 //     foo[10].Method();     // Foo::Method on the 10th element.
58 //   }
59 
60 #ifndef COMMON_SCOPED_PTR_H_
61 #define COMMON_SCOPED_PTR_H_
62 
63 // This is an implementation designed to match the anticipated future TR2
64 // implementation of the scoped_ptr class, and its closely-related brethren,
65 // scoped_array, scoped_ptr_malloc.
66 
67 #include <assert.h>
68 #include <stddef.h>
69 #include <stdlib.h>
70 
71 namespace google_breakpad {
72 
73 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
74 // automatically deletes the pointer it holds (if any).
75 // That is, scoped_ptr<T> owns the T object that it points to.
76 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
77 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
78 // dereference it, you get the threadsafety guarantees of T.
79 //
80 // The size of a scoped_ptr is small:
81 // sizeof(scoped_ptr<C>) == sizeof(C*)
82 template <class C>
83 class scoped_ptr {
84  public:
85 
86   // The element type
87   typedef C element_type;
88 
89   // Constructor.  Defaults to initializing with NULL.
90   // There is no way to create an uninitialized scoped_ptr.
91   // The input parameter must be allocated with new.
ptr_(p)92   explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
93 
94   // Destructor.  If there is a C object, delete it.
95   // We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_ptr()96   ~scoped_ptr() {
97     enum { type_must_be_complete = sizeof(C) };
98     delete ptr_;
99   }
100 
101   // Reset.  Deletes the current owned object, if any.
102   // Then takes ownership of a new object, if given.
103   // this->reset(this->get()) works.
104   void reset(C* p = NULL) {
105     if (p != ptr_) {
106       enum { type_must_be_complete = sizeof(C) };
107       delete ptr_;
108       ptr_ = p;
109     }
110   }
111 
112   // Accessors to get the owned object.
113   // operator* and operator-> will assert() if there is no current object.
114   C& operator*() const {
115     assert(ptr_ != NULL);
116     return *ptr_;
117   }
118   C* operator->() const  {
119     assert(ptr_ != NULL);
120     return ptr_;
121   }
get()122   C* get() const { return ptr_; }
123 
124   // Comparison operators.
125   // These return whether two scoped_ptr refer to the same object, not just to
126   // two different but equal objects.
127   bool operator==(C* p) const { return ptr_ == p; }
128   bool operator!=(C* p) const { return ptr_ != p; }
129 
130   // Swap two scoped pointers.
swap(scoped_ptr & p2)131   void swap(scoped_ptr& p2) {
132     C* tmp = ptr_;
133     ptr_ = p2.ptr_;
134     p2.ptr_ = tmp;
135   }
136 
137   // Release a pointer.
138   // The return value is the current pointer held by this object.
139   // If this object holds a NULL pointer, the return value is NULL.
140   // After this operation, this object will hold a NULL pointer,
141   // and will not own the object any more.
release()142   C* release() {
143     C* retVal = ptr_;
144     ptr_ = NULL;
145     return retVal;
146   }
147 
148  private:
149   C* ptr_;
150 
151   // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
152   // make sense, and if C2 == C, it still doesn't make sense because you should
153   // never have the same object owned by two different scoped_ptrs.
154   template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
155   template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
156 
157   // Disallow evil constructors
158   scoped_ptr(const scoped_ptr&);
159   void operator=(const scoped_ptr&);
160 };
161 
162 // Free functions
163 template <class C>
swap(scoped_ptr<C> & p1,scoped_ptr<C> & p2)164 void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
165   p1.swap(p2);
166 }
167 
168 template <class C>
169 bool operator==(C* p1, const scoped_ptr<C>& p2) {
170   return p1 == p2.get();
171 }
172 
173 template <class C>
174 bool operator!=(C* p1, const scoped_ptr<C>& p2) {
175   return p1 != p2.get();
176 }
177 
178 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
179 // with new [] and the destructor deletes objects with delete [].
180 //
181 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
182 // or is NULL.  A scoped_array<C> owns the object that it points to.
183 // scoped_array<T> is thread-compatible, and once you index into it,
184 // the returned objects have only the threadsafety guarantees of T.
185 //
186 // Size: sizeof(scoped_array<C>) == sizeof(C*)
187 template <class C>
188 class scoped_array {
189  public:
190 
191   // The element type
192   typedef C element_type;
193 
194   // Constructor.  Defaults to intializing with NULL.
195   // There is no way to create an uninitialized scoped_array.
196   // The input parameter must be allocated with new [].
array_(p)197   explicit scoped_array(C* p = NULL) : array_(p) { }
198 
199   // Destructor.  If there is a C object, delete it.
200   // We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_array()201   ~scoped_array() {
202     enum { type_must_be_complete = sizeof(C) };
203     delete[] array_;
204   }
205 
206   // Reset.  Deletes the current owned object, if any.
207   // Then takes ownership of a new object, if given.
208   // this->reset(this->get()) works.
209   void reset(C* p = NULL) {
210     if (p != array_) {
211       enum { type_must_be_complete = sizeof(C) };
212       delete[] array_;
213       array_ = p;
214     }
215   }
216 
217   // Get one element of the current object.
218   // Will assert() if there is no current object, or index i is negative.
219   C& operator[](ptrdiff_t i) const {
220     assert(i >= 0);
221     assert(array_ != NULL);
222     return array_[i];
223   }
224 
225   // Get a pointer to the zeroth element of the current object.
226   // If there is no current object, return NULL.
get()227   C* get() const {
228     return array_;
229   }
230 
231   // Comparison operators.
232   // These return whether two scoped_array refer to the same object, not just to
233   // two different but equal objects.
234   bool operator==(C* p) const { return array_ == p; }
235   bool operator!=(C* p) const { return array_ != p; }
236 
237   // Swap two scoped arrays.
swap(scoped_array & p2)238   void swap(scoped_array& p2) {
239     C* tmp = array_;
240     array_ = p2.array_;
241     p2.array_ = tmp;
242   }
243 
244   // Release an array.
245   // The return value is the current pointer held by this object.
246   // If this object holds a NULL pointer, the return value is NULL.
247   // After this operation, this object will hold a NULL pointer,
248   // and will not own the object any more.
release()249   C* release() {
250     C* retVal = array_;
251     array_ = NULL;
252     return retVal;
253   }
254 
255  private:
256   C* array_;
257 
258   // Forbid comparison of different scoped_array types.
259   template <class C2> bool operator==(scoped_array<C2> const& p2) const;
260   template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
261 
262   // Disallow evil constructors
263   scoped_array(const scoped_array&);
264   void operator=(const scoped_array&);
265 };
266 
267 // Free functions
268 template <class C>
swap(scoped_array<C> & p1,scoped_array<C> & p2)269 void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
270   p1.swap(p2);
271 }
272 
273 template <class C>
274 bool operator==(C* p1, const scoped_array<C>& p2) {
275   return p1 == p2.get();
276 }
277 
278 template <class C>
279 bool operator!=(C* p1, const scoped_array<C>& p2) {
280   return p1 != p2.get();
281 }
282 
283 // This class wraps the c library function free() in a class that can be
284 // passed as a template argument to scoped_ptr_malloc below.
285 class ScopedPtrMallocFree {
286  public:
operator()287   inline void operator()(void* x) const {
288     free(x);
289   }
290 };
291 
292 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
293 // second template argument, the functor used to free the object.
294 
295 template<class C, class FreeProc = ScopedPtrMallocFree>
296 class scoped_ptr_malloc {
297  public:
298 
299   // The element type
300   typedef C element_type;
301 
302   // Constructor.  Defaults to initializing with NULL.
303   // There is no way to create an uninitialized scoped_ptr.
304   // The input parameter must be allocated with an allocator that matches the
305   // Free functor.  For the default Free functor, this is malloc, calloc, or
306   // realloc.
ptr_(p)307   explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {}
308 
309   // Destructor.  If there is a C object, call the Free functor.
~scoped_ptr_malloc()310   ~scoped_ptr_malloc() {
311     reset();
312   }
313 
314   // Reset.  Calls the Free functor on the current owned object, if any.
315   // Then takes ownership of a new object, if given.
316   // this->reset(this->get()) works.
317   void reset(C* p = NULL) {
318     if (ptr_ != p) {
319       FreeProc free_proc;
320       free_proc(ptr_);
321       ptr_ = p;
322     }
323   }
324 
325   // Get the current object.
326   // operator* and operator-> will cause an assert() failure if there is
327   // no current object.
328   C& operator*() const {
329     assert(ptr_ != NULL);
330     return *ptr_;
331   }
332 
333   C* operator->() const {
334     assert(ptr_ != NULL);
335     return ptr_;
336   }
337 
get()338   C* get() const {
339     return ptr_;
340   }
341 
342   // Comparison operators.
343   // These return whether a scoped_ptr_malloc and a plain pointer refer
344   // to the same object, not just to two different but equal objects.
345   // For compatibility with the boost-derived implementation, these
346   // take non-const arguments.
347   bool operator==(C* p) const {
348     return ptr_ == p;
349   }
350 
351   bool operator!=(C* p) const {
352     return ptr_ != p;
353   }
354 
355   // Swap two scoped pointers.
swap(scoped_ptr_malloc & b)356   void swap(scoped_ptr_malloc & b) {
357     C* tmp = b.ptr_;
358     b.ptr_ = ptr_;
359     ptr_ = tmp;
360   }
361 
362   // Release a pointer.
363   // The return value is the current pointer held by this object.
364   // If this object holds a NULL pointer, the return value is NULL.
365   // After this operation, this object will hold a NULL pointer,
366   // and will not own the object any more.
release()367   C* release() {
368     C* tmp = ptr_;
369     ptr_ = NULL;
370     return tmp;
371   }
372 
373  private:
374   C* ptr_;
375 
376   // no reason to use these: each scoped_ptr_malloc should have its own object
377   template <class C2, class GP>
378   bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
379   template <class C2, class GP>
380   bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
381 
382   // Disallow evil constructors
383   scoped_ptr_malloc(const scoped_ptr_malloc&);
384   void operator=(const scoped_ptr_malloc&);
385 };
386 
387 template<class C, class FP> inline
swap(scoped_ptr_malloc<C,FP> & a,scoped_ptr_malloc<C,FP> & b)388 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
389   a.swap(b);
390 }
391 
392 template<class C, class FP> inline
393 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
394   return p == b.get();
395 }
396 
397 template<class C, class FP> inline
398 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
399   return p != b.get();
400 }
401 
402 }  // namespace google_breakpad
403 
404 #endif  // COMMON_SCOPED_PTR_H_
405