1 // Copyright 2017 syzkaller project authors. All rights reserved.
2 // Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file.
3 
4 // This file is shared between executor and csource package.
5 
6 // Implementation of syz_kvm_setup_cpu pseudo-syscall.
7 // See Intel Software Developer’s Manual Volume 3: System Programming Guide
8 // for details on what happens here.
9 
10 #include "kvm.S.h"
11 #include "kvm.h"
12 
13 #ifndef KVM_SMI
14 #define KVM_SMI _IO(KVMIO, 0xb7)
15 #endif
16 
17 #define CR0_PE 1
18 #define CR0_MP (1 << 1)
19 #define CR0_EM (1 << 2)
20 #define CR0_TS (1 << 3)
21 #define CR0_ET (1 << 4)
22 #define CR0_NE (1 << 5)
23 #define CR0_WP (1 << 16)
24 #define CR0_AM (1 << 18)
25 #define CR0_NW (1 << 29)
26 #define CR0_CD (1 << 30)
27 #define CR0_PG (1 << 31)
28 
29 #define CR4_VME 1
30 #define CR4_PVI (1 << 1)
31 #define CR4_TSD (1 << 2)
32 #define CR4_DE (1 << 3)
33 #define CR4_PSE (1 << 4)
34 #define CR4_PAE (1 << 5)
35 #define CR4_MCE (1 << 6)
36 #define CR4_PGE (1 << 7)
37 #define CR4_PCE (1 << 8)
38 #define CR4_OSFXSR (1 << 8)
39 #define CR4_OSXMMEXCPT (1 << 10)
40 #define CR4_UMIP (1 << 11)
41 #define CR4_VMXE (1 << 13)
42 #define CR4_SMXE (1 << 14)
43 #define CR4_FSGSBASE (1 << 16)
44 #define CR4_PCIDE (1 << 17)
45 #define CR4_OSXSAVE (1 << 18)
46 #define CR4_SMEP (1 << 20)
47 #define CR4_SMAP (1 << 21)
48 #define CR4_PKE (1 << 22)
49 
50 #define EFER_SCE 1
51 #define EFER_LME (1 << 8)
52 #define EFER_LMA (1 << 10)
53 #define EFER_NXE (1 << 11)
54 #define EFER_SVME (1 << 12)
55 #define EFER_LMSLE (1 << 13)
56 #define EFER_FFXSR (1 << 14)
57 #define EFER_TCE (1 << 15)
58 
59 // 32-bit page directory entry bits
60 #define PDE32_PRESENT 1
61 #define PDE32_RW (1 << 1)
62 #define PDE32_USER (1 << 2)
63 #define PDE32_PS (1 << 7)
64 
65 // 64-bit page * entry bits
66 #define PDE64_PRESENT 1
67 #define PDE64_RW (1 << 1)
68 #define PDE64_USER (1 << 2)
69 #define PDE64_ACCESSED (1 << 5)
70 #define PDE64_DIRTY (1 << 6)
71 #define PDE64_PS (1 << 7)
72 #define PDE64_G (1 << 8)
73 
74 struct tss16 {
75 	uint16 prev;
76 	uint16 sp0;
77 	uint16 ss0;
78 	uint16 sp1;
79 	uint16 ss1;
80 	uint16 sp2;
81 	uint16 ss2;
82 	uint16 ip;
83 	uint16 flags;
84 	uint16 ax;
85 	uint16 cx;
86 	uint16 dx;
87 	uint16 bx;
88 	uint16 sp;
89 	uint16 bp;
90 	uint16 si;
91 	uint16 di;
92 	uint16 es;
93 	uint16 cs;
94 	uint16 ss;
95 	uint16 ds;
96 	uint16 ldt;
97 } __attribute__((packed));
98 
99 struct tss32 {
100 	uint16 prev, prevh;
101 	uint32 sp0;
102 	uint16 ss0, ss0h;
103 	uint32 sp1;
104 	uint16 ss1, ss1h;
105 	uint32 sp2;
106 	uint16 ss2, ss2h;
107 	uint32 cr3;
108 	uint32 ip;
109 	uint32 flags;
110 	uint32 ax;
111 	uint32 cx;
112 	uint32 dx;
113 	uint32 bx;
114 	uint32 sp;
115 	uint32 bp;
116 	uint32 si;
117 	uint32 di;
118 	uint16 es, esh;
119 	uint16 cs, csh;
120 	uint16 ss, ssh;
121 	uint16 ds, dsh;
122 	uint16 fs, fsh;
123 	uint16 gs, gsh;
124 	uint16 ldt, ldth;
125 	uint16 trace;
126 	uint16 io_bitmap;
127 } __attribute__((packed));
128 
129 struct tss64 {
130 	uint32 reserved0;
131 	uint64 rsp[3];
132 	uint64 reserved1;
133 	uint64 ist[7];
134 	uint64 reserved2;
135 	uint32 reserved3;
136 	uint32 io_bitmap;
137 } __attribute__((packed));
138 
fill_segment_descriptor(uint64 * dt,uint64 * lt,struct kvm_segment * seg)139 static void fill_segment_descriptor(uint64* dt, uint64* lt, struct kvm_segment* seg)
140 {
141 	uint16 index = seg->selector >> 3;
142 	uint64 limit = seg->g ? seg->limit >> 12 : seg->limit;
143 	uint64 sd = (limit & 0xffff) | (seg->base & 0xffffff) << 16 | (uint64)seg->type << 40 | (uint64)seg->s << 44 | (uint64)seg->dpl << 45 | (uint64)seg->present << 47 | (limit & 0xf0000ULL) << 48 | (uint64)seg->avl << 52 | (uint64)seg->l << 53 | (uint64)seg->db << 54 | (uint64)seg->g << 55 | (seg->base & 0xff000000ULL) << 56;
144 	NONFAILING(dt[index] = sd);
145 	NONFAILING(lt[index] = sd);
146 }
147 
fill_segment_descriptor_dword(uint64 * dt,uint64 * lt,struct kvm_segment * seg)148 static void fill_segment_descriptor_dword(uint64* dt, uint64* lt, struct kvm_segment* seg)
149 {
150 	fill_segment_descriptor(dt, lt, seg);
151 	uint16 index = seg->selector >> 3;
152 	NONFAILING(dt[index + 1] = 0);
153 	NONFAILING(lt[index + 1] = 0);
154 }
155 
setup_syscall_msrs(int cpufd,uint16 sel_cs,uint16 sel_cs_cpl3)156 static void setup_syscall_msrs(int cpufd, uint16 sel_cs, uint16 sel_cs_cpl3)
157 {
158 	char buf[sizeof(struct kvm_msrs) + 5 * sizeof(struct kvm_msr_entry)];
159 	memset(buf, 0, sizeof(buf));
160 	struct kvm_msrs* msrs = (struct kvm_msrs*)buf;
161 	struct kvm_msr_entry* entries = msrs->entries;
162 	msrs->nmsrs = 5;
163 	entries[0].index = MSR_IA32_SYSENTER_CS;
164 	entries[0].data = sel_cs;
165 	entries[1].index = MSR_IA32_SYSENTER_ESP;
166 	entries[1].data = ADDR_STACK0;
167 	entries[2].index = MSR_IA32_SYSENTER_EIP;
168 	entries[2].data = ADDR_VAR_SYSEXIT;
169 	entries[3].index = MSR_IA32_STAR;
170 	entries[3].data = ((uint64)sel_cs << 32) | ((uint64)sel_cs_cpl3 << 48);
171 	entries[4].index = MSR_IA32_LSTAR;
172 	entries[4].data = ADDR_VAR_SYSRET;
173 	ioctl(cpufd, KVM_SET_MSRS, msrs);
174 }
175 
setup_32bit_idt(struct kvm_sregs * sregs,char * host_mem,uintptr_t guest_mem)176 static void setup_32bit_idt(struct kvm_sregs* sregs, char* host_mem, uintptr_t guest_mem)
177 {
178 	sregs->idt.base = guest_mem + ADDR_VAR_IDT;
179 	sregs->idt.limit = 0x1ff;
180 	uint64* idt = (uint64*)(host_mem + sregs->idt.base);
181 	int i;
182 	for (i = 0; i < 32; i++) {
183 		struct kvm_segment gate;
184 		gate.selector = i << 3;
185 		switch (i % 6) {
186 		case 0:
187 			// 16-bit interrupt gate
188 			gate.type = 6;
189 			gate.base = SEL_CS16;
190 			break;
191 		case 1:
192 			// 16-bit trap gate
193 			gate.type = 7;
194 			gate.base = SEL_CS16;
195 			break;
196 		case 2:
197 			// 16-bit task gate
198 			gate.type = 3;
199 			gate.base = SEL_TGATE16;
200 			break;
201 		case 3:
202 			// 32-bit interrupt gate
203 			gate.type = 14;
204 			gate.base = SEL_CS32;
205 			break;
206 		case 4:
207 			// 32-bit trap gate
208 			gate.type = 15;
209 			gate.base = SEL_CS32;
210 			break;
211 		case 6:
212 			// 32-bit task gate
213 			gate.type = 11;
214 			gate.base = SEL_TGATE32;
215 			break;
216 		}
217 		gate.limit = guest_mem + ADDR_VAR_USER_CODE2; // entry offset
218 		gate.present = 1;
219 		gate.dpl = 0;
220 		gate.s = 0;
221 		gate.g = 0;
222 		gate.db = 0;
223 		gate.l = 0;
224 		gate.avl = 0;
225 		fill_segment_descriptor(idt, idt, &gate);
226 	}
227 }
228 
setup_64bit_idt(struct kvm_sregs * sregs,char * host_mem,uintptr_t guest_mem)229 static void setup_64bit_idt(struct kvm_sregs* sregs, char* host_mem, uintptr_t guest_mem)
230 {
231 	sregs->idt.base = guest_mem + ADDR_VAR_IDT;
232 	sregs->idt.limit = 0x1ff;
233 	uint64* idt = (uint64*)(host_mem + sregs->idt.base);
234 	int i;
235 	for (i = 0; i < 32; i++) {
236 		struct kvm_segment gate;
237 		gate.selector = (i * 2) << 3;
238 		gate.type = (i & 1) ? 14 : 15; // interrupt or trap gate
239 		gate.base = SEL_CS64;
240 		gate.limit = guest_mem + ADDR_VAR_USER_CODE2; // entry offset
241 		gate.present = 1;
242 		gate.dpl = 0;
243 		gate.s = 0;
244 		gate.g = 0;
245 		gate.db = 0;
246 		gate.l = 0;
247 		gate.avl = 0;
248 		fill_segment_descriptor_dword(idt, idt, &gate);
249 	}
250 }
251 
252 struct kvm_text {
253 	uintptr_t typ;
254 	const void* text;
255 	uintptr_t size;
256 };
257 
258 struct kvm_opt {
259 	uint64 typ;
260 	uint64 val;
261 };
262 
263 #define KVM_SETUP_PAGING (1 << 0)
264 #define KVM_SETUP_PAE (1 << 1)
265 #define KVM_SETUP_PROTECTED (1 << 2)
266 #define KVM_SETUP_CPL3 (1 << 3)
267 #define KVM_SETUP_VIRT86 (1 << 4)
268 #define KVM_SETUP_SMM (1 << 5)
269 #define KVM_SETUP_VM (1 << 6)
270 
271 // syz_kvm_setup_cpu(fd fd_kvmvm, cpufd fd_kvmcpu, usermem vma[24], text ptr[in, array[kvm_text, 1]], ntext len[text], flags flags[kvm_setup_flags], opts ptr[in, array[kvm_setup_opt, 0:2]], nopt len[opts])
syz_kvm_setup_cpu(uintptr_t a0,uintptr_t a1,uintptr_t a2,uintptr_t a3,uintptr_t a4,uintptr_t a5,uintptr_t a6,uintptr_t a7)272 static uintptr_t syz_kvm_setup_cpu(uintptr_t a0, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5, uintptr_t a6, uintptr_t a7)
273 {
274 	const int vmfd = a0;
275 	const int cpufd = a1;
276 	char* const host_mem = (char*)a2;
277 	const struct kvm_text* const text_array_ptr = (struct kvm_text*)a3;
278 	const uintptr_t text_count = a4;
279 	const uintptr_t flags = a5;
280 	const struct kvm_opt* const opt_array_ptr = (struct kvm_opt*)a6;
281 	uintptr_t opt_count = a7;
282 
283 	const uintptr_t page_size = 4 << 10;
284 	const uintptr_t ioapic_page = 10;
285 	const uintptr_t guest_mem_size = 24 * page_size;
286 	const uintptr_t guest_mem = 0;
287 
288 	(void)text_count; // fuzzer can spoof count and we need just 1 text, so ignore text_count
289 	int text_type = 0;
290 	const void* text = 0;
291 	uintptr_t text_size = 0;
292 	NONFAILING(text_type = text_array_ptr[0].typ);
293 	NONFAILING(text = text_array_ptr[0].text);
294 	NONFAILING(text_size = text_array_ptr[0].size);
295 
296 	uintptr_t i;
297 	for (i = 0; i < guest_mem_size / page_size; i++) {
298 		struct kvm_userspace_memory_region memreg;
299 		memreg.slot = i;
300 		memreg.flags = 0; // can be KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY
301 		memreg.guest_phys_addr = guest_mem + i * page_size;
302 		if (i == ioapic_page)
303 			memreg.guest_phys_addr = 0xfec00000;
304 		memreg.memory_size = page_size;
305 		memreg.userspace_addr = (uintptr_t)host_mem + i * page_size;
306 		ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);
307 	}
308 	// SMRAM
309 	struct kvm_userspace_memory_region memreg;
310 	memreg.slot = 1 + (1 << 16);
311 	memreg.flags = 0;
312 	memreg.guest_phys_addr = 0x30000;
313 	memreg.memory_size = 64 << 10;
314 	memreg.userspace_addr = (uintptr_t)host_mem;
315 	ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);
316 
317 	struct kvm_sregs sregs;
318 	if (ioctl(cpufd, KVM_GET_SREGS, &sregs))
319 		return -1;
320 
321 	struct kvm_regs regs;
322 	memset(&regs, 0, sizeof(regs));
323 	regs.rip = guest_mem + ADDR_TEXT;
324 	regs.rsp = ADDR_STACK0;
325 
326 	sregs.gdt.base = guest_mem + ADDR_GDT;
327 	sregs.gdt.limit = 256 * sizeof(uint64) - 1;
328 	uint64* gdt = (uint64*)(host_mem + sregs.gdt.base);
329 
330 	struct kvm_segment seg_ldt;
331 	seg_ldt.selector = SEL_LDT;
332 	seg_ldt.type = 2;
333 	seg_ldt.base = guest_mem + ADDR_LDT;
334 	seg_ldt.limit = 256 * sizeof(uint64) - 1;
335 	seg_ldt.present = 1;
336 	seg_ldt.dpl = 0;
337 	seg_ldt.s = 0;
338 	seg_ldt.g = 0;
339 	seg_ldt.db = 1;
340 	seg_ldt.l = 0;
341 	sregs.ldt = seg_ldt;
342 	uint64* ldt = (uint64*)(host_mem + sregs.ldt.base);
343 
344 	struct kvm_segment seg_cs16;
345 	seg_cs16.selector = SEL_CS16;
346 	seg_cs16.type = 11;
347 	seg_cs16.base = 0;
348 	seg_cs16.limit = 0xfffff;
349 	seg_cs16.present = 1;
350 	seg_cs16.dpl = 0;
351 	seg_cs16.s = 1;
352 	seg_cs16.g = 0;
353 	seg_cs16.db = 0;
354 	seg_cs16.l = 0;
355 
356 	struct kvm_segment seg_ds16 = seg_cs16;
357 	seg_ds16.selector = SEL_DS16;
358 	seg_ds16.type = 3;
359 
360 	struct kvm_segment seg_cs16_cpl3 = seg_cs16;
361 	seg_cs16_cpl3.selector = SEL_CS16_CPL3;
362 	seg_cs16_cpl3.dpl = 3;
363 
364 	struct kvm_segment seg_ds16_cpl3 = seg_ds16;
365 	seg_ds16_cpl3.selector = SEL_DS16_CPL3;
366 	seg_ds16_cpl3.dpl = 3;
367 
368 	struct kvm_segment seg_cs32 = seg_cs16;
369 	seg_cs32.selector = SEL_CS32;
370 	seg_cs32.db = 1;
371 
372 	struct kvm_segment seg_ds32 = seg_ds16;
373 	seg_ds32.selector = SEL_DS32;
374 	seg_ds32.db = 1;
375 
376 	struct kvm_segment seg_cs32_cpl3 = seg_cs32;
377 	seg_cs32_cpl3.selector = SEL_CS32_CPL3;
378 	seg_cs32_cpl3.dpl = 3;
379 
380 	struct kvm_segment seg_ds32_cpl3 = seg_ds32;
381 	seg_ds32_cpl3.selector = SEL_DS32_CPL3;
382 	seg_ds32_cpl3.dpl = 3;
383 
384 	struct kvm_segment seg_cs64 = seg_cs16;
385 	seg_cs64.selector = SEL_CS64;
386 	seg_cs64.l = 1;
387 
388 	struct kvm_segment seg_ds64 = seg_ds32;
389 	seg_ds64.selector = SEL_DS64;
390 
391 	struct kvm_segment seg_cs64_cpl3 = seg_cs64;
392 	seg_cs64_cpl3.selector = SEL_CS64_CPL3;
393 	seg_cs64_cpl3.dpl = 3;
394 
395 	struct kvm_segment seg_ds64_cpl3 = seg_ds64;
396 	seg_ds64_cpl3.selector = SEL_DS64_CPL3;
397 	seg_ds64_cpl3.dpl = 3;
398 
399 	struct kvm_segment seg_tss32;
400 	seg_tss32.selector = SEL_TSS32;
401 	seg_tss32.type = 9;
402 	seg_tss32.base = ADDR_VAR_TSS32;
403 	seg_tss32.limit = 0x1ff;
404 	seg_tss32.present = 1;
405 	seg_tss32.dpl = 0;
406 	seg_tss32.s = 0;
407 	seg_tss32.g = 0;
408 	seg_tss32.db = 0;
409 	seg_tss32.l = 0;
410 
411 	struct kvm_segment seg_tss32_2 = seg_tss32;
412 	seg_tss32_2.selector = SEL_TSS32_2;
413 	seg_tss32_2.base = ADDR_VAR_TSS32_2;
414 
415 	struct kvm_segment seg_tss32_cpl3 = seg_tss32;
416 	seg_tss32_cpl3.selector = SEL_TSS32_CPL3;
417 	seg_tss32_cpl3.base = ADDR_VAR_TSS32_CPL3;
418 
419 	struct kvm_segment seg_tss32_vm86 = seg_tss32;
420 	seg_tss32_vm86.selector = SEL_TSS32_VM86;
421 	seg_tss32_vm86.base = ADDR_VAR_TSS32_VM86;
422 
423 	struct kvm_segment seg_tss16 = seg_tss32;
424 	seg_tss16.selector = SEL_TSS16;
425 	seg_tss16.base = ADDR_VAR_TSS16;
426 	seg_tss16.limit = 0xff;
427 	seg_tss16.type = 1;
428 
429 	struct kvm_segment seg_tss16_2 = seg_tss16;
430 	seg_tss16_2.selector = SEL_TSS16_2;
431 	seg_tss16_2.base = ADDR_VAR_TSS16_2;
432 	seg_tss16_2.dpl = 0;
433 
434 	struct kvm_segment seg_tss16_cpl3 = seg_tss16;
435 	seg_tss16_cpl3.selector = SEL_TSS16_CPL3;
436 	seg_tss16_cpl3.base = ADDR_VAR_TSS16_CPL3;
437 	seg_tss16_cpl3.dpl = 3;
438 
439 	struct kvm_segment seg_tss64 = seg_tss32;
440 	seg_tss64.selector = SEL_TSS64;
441 	seg_tss64.base = ADDR_VAR_TSS64;
442 	seg_tss64.limit = 0x1ff;
443 
444 	struct kvm_segment seg_tss64_cpl3 = seg_tss64;
445 	seg_tss64_cpl3.selector = SEL_TSS64_CPL3;
446 	seg_tss64_cpl3.base = ADDR_VAR_TSS64_CPL3;
447 	seg_tss64_cpl3.dpl = 3;
448 
449 	struct kvm_segment seg_cgate16;
450 	seg_cgate16.selector = SEL_CGATE16;
451 	seg_cgate16.type = 4;
452 	seg_cgate16.base = SEL_CS16 | (2 << 16); // selector + param count
453 	seg_cgate16.limit = ADDR_VAR_USER_CODE2; // entry offset
454 	seg_cgate16.present = 1;
455 	seg_cgate16.dpl = 0;
456 	seg_cgate16.s = 0;
457 	seg_cgate16.g = 0;
458 	seg_cgate16.db = 0;
459 	seg_cgate16.l = 0;
460 	seg_cgate16.avl = 0;
461 
462 	struct kvm_segment seg_tgate16 = seg_cgate16;
463 	seg_tgate16.selector = SEL_TGATE16;
464 	seg_tgate16.type = 3;
465 	seg_cgate16.base = SEL_TSS16_2;
466 	seg_tgate16.limit = 0;
467 
468 	struct kvm_segment seg_cgate32 = seg_cgate16;
469 	seg_cgate32.selector = SEL_CGATE32;
470 	seg_cgate32.type = 12;
471 	seg_cgate32.base = SEL_CS32 | (2 << 16); // selector + param count
472 
473 	struct kvm_segment seg_tgate32 = seg_cgate32;
474 	seg_tgate32.selector = SEL_TGATE32;
475 	seg_tgate32.type = 11;
476 	seg_tgate32.base = SEL_TSS32_2;
477 	seg_tgate32.limit = 0;
478 
479 	struct kvm_segment seg_cgate64 = seg_cgate16;
480 	seg_cgate64.selector = SEL_CGATE64;
481 	seg_cgate64.type = 12;
482 	seg_cgate64.base = SEL_CS64;
483 
484 	int kvmfd = open("/dev/kvm", O_RDWR);
485 	char buf[sizeof(struct kvm_cpuid2) + 128 * sizeof(struct kvm_cpuid_entry2)];
486 	memset(buf, 0, sizeof(buf));
487 	struct kvm_cpuid2* cpuid = (struct kvm_cpuid2*)buf;
488 	cpuid->nent = 128;
489 	ioctl(kvmfd, KVM_GET_SUPPORTED_CPUID, cpuid);
490 	ioctl(cpufd, KVM_SET_CPUID2, cpuid);
491 	close(kvmfd);
492 
493 	const char* text_prefix = 0;
494 	int text_prefix_size = 0;
495 	char* host_text = host_mem + ADDR_TEXT;
496 
497 	if (text_type == 8) {
498 		if (flags & KVM_SETUP_SMM) {
499 			if (flags & KVM_SETUP_PROTECTED) {
500 				sregs.cs = seg_cs16;
501 				sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
502 				sregs.cr0 |= CR0_PE;
503 			} else {
504 				sregs.cs.selector = 0;
505 				sregs.cs.base = 0;
506 			}
507 
508 			NONFAILING(*(host_mem + ADDR_TEXT) = 0xf4); // hlt for rsm
509 			host_text = host_mem + 0x8000;
510 
511 			ioctl(cpufd, KVM_SMI, 0);
512 		} else if (flags & KVM_SETUP_VIRT86) {
513 			sregs.cs = seg_cs32;
514 			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
515 			sregs.cr0 |= CR0_PE;
516 			sregs.efer |= EFER_SCE;
517 
518 			setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3);
519 			setup_32bit_idt(&sregs, host_mem, guest_mem);
520 
521 			if (flags & KVM_SETUP_PAGING) {
522 				uint64 pd_addr = guest_mem + ADDR_PD;
523 				uint64* pd = (uint64*)(host_mem + ADDR_PD);
524 				// A single 4MB page to cover the memory region
525 				NONFAILING(pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS);
526 				sregs.cr3 = pd_addr;
527 				sregs.cr4 |= CR4_PSE;
528 
529 				text_prefix = kvm_asm32_paged_vm86;
530 				text_prefix_size = sizeof(kvm_asm32_paged_vm86) - 1;
531 			} else {
532 				text_prefix = kvm_asm32_vm86;
533 				text_prefix_size = sizeof(kvm_asm32_vm86) - 1;
534 			}
535 		} else {
536 			sregs.cs.selector = 0;
537 			sregs.cs.base = 0;
538 		}
539 	} else if (text_type == 16) {
540 		if (flags & KVM_SETUP_CPL3) {
541 			sregs.cs = seg_cs16;
542 			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
543 
544 			text_prefix = kvm_asm16_cpl3;
545 			text_prefix_size = sizeof(kvm_asm16_cpl3) - 1;
546 		} else {
547 			sregs.cr0 |= CR0_PE;
548 			sregs.cs = seg_cs16;
549 			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
550 		}
551 	} else if (text_type == 32) {
552 		sregs.cr0 |= CR0_PE;
553 		sregs.efer |= EFER_SCE;
554 
555 		setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3);
556 		setup_32bit_idt(&sregs, host_mem, guest_mem);
557 
558 		if (flags & KVM_SETUP_SMM) {
559 			sregs.cs = seg_cs32;
560 			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
561 
562 			NONFAILING(*(host_mem + ADDR_TEXT) = 0xf4); // hlt for rsm
563 			host_text = host_mem + 0x8000;
564 
565 			ioctl(cpufd, KVM_SMI, 0);
566 		} else if (flags & KVM_SETUP_PAGING) {
567 			sregs.cs = seg_cs32;
568 			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
569 
570 			uint64 pd_addr = guest_mem + ADDR_PD;
571 			uint64* pd = (uint64*)(host_mem + ADDR_PD);
572 			// A single 4MB page to cover the memory region
573 			NONFAILING(pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS);
574 			sregs.cr3 = pd_addr;
575 			sregs.cr4 |= CR4_PSE;
576 
577 			text_prefix = kvm_asm32_paged;
578 			text_prefix_size = sizeof(kvm_asm32_paged) - 1;
579 		} else if (flags & KVM_SETUP_CPL3) {
580 			sregs.cs = seg_cs32_cpl3;
581 			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32_cpl3;
582 		} else {
583 			sregs.cs = seg_cs32;
584 			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
585 		}
586 	} else {
587 		sregs.efer |= EFER_LME | EFER_SCE;
588 		sregs.cr0 |= CR0_PE;
589 
590 		setup_syscall_msrs(cpufd, SEL_CS64, SEL_CS64_CPL3);
591 		setup_64bit_idt(&sregs, host_mem, guest_mem);
592 
593 		sregs.cs = seg_cs32;
594 		sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
595 
596 		uint64 pml4_addr = guest_mem + ADDR_PML4;
597 		uint64* pml4 = (uint64*)(host_mem + ADDR_PML4);
598 		uint64 pdpt_addr = guest_mem + ADDR_PDP;
599 		uint64* pdpt = (uint64*)(host_mem + ADDR_PDP);
600 		uint64 pd_addr = guest_mem + ADDR_PD;
601 		uint64* pd = (uint64*)(host_mem + ADDR_PD);
602 		NONFAILING(pml4[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pdpt_addr);
603 		NONFAILING(pdpt[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pd_addr);
604 		NONFAILING(pd[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | PDE64_PS);
605 		sregs.cr3 = pml4_addr;
606 		sregs.cr4 |= CR4_PAE;
607 
608 		if (flags & KVM_SETUP_VM) {
609 			sregs.cr0 |= CR0_NE;
610 
611 			NONFAILING(*((uint64*)(host_mem + ADDR_VAR_VMXON_PTR)) = ADDR_VAR_VMXON);
612 			NONFAILING(*((uint64*)(host_mem + ADDR_VAR_VMCS_PTR)) = ADDR_VAR_VMCS);
613 			NONFAILING(memcpy(host_mem + ADDR_VAR_VMEXIT_CODE, kvm_asm64_vm_exit, sizeof(kvm_asm64_vm_exit) - 1));
614 			NONFAILING(*((uint64*)(host_mem + ADDR_VAR_VMEXIT_PTR)) = ADDR_VAR_VMEXIT_CODE);
615 
616 			text_prefix = kvm_asm64_init_vm;
617 			text_prefix_size = sizeof(kvm_asm64_init_vm) - 1;
618 		} else if (flags & KVM_SETUP_CPL3) {
619 			text_prefix = kvm_asm64_cpl3;
620 			text_prefix_size = sizeof(kvm_asm64_cpl3) - 1;
621 		} else {
622 			text_prefix = kvm_asm64_enable_long;
623 			text_prefix_size = sizeof(kvm_asm64_enable_long) - 1;
624 		}
625 	}
626 
627 	struct tss16 tss16;
628 	memset(&tss16, 0, sizeof(tss16));
629 	tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16;
630 	tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0;
631 	tss16.ip = ADDR_VAR_USER_CODE2;
632 	tss16.flags = (1 << 1);
633 	tss16.cs = SEL_CS16;
634 	tss16.es = tss16.ds = tss16.ss = SEL_DS16;
635 	tss16.ldt = SEL_LDT;
636 	struct tss16* tss16_addr = (struct tss16*)(host_mem + seg_tss16_2.base);
637 	NONFAILING(memcpy(tss16_addr, &tss16, sizeof(tss16)));
638 
639 	memset(&tss16, 0, sizeof(tss16));
640 	tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16;
641 	tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0;
642 	tss16.ip = ADDR_VAR_USER_CODE2;
643 	tss16.flags = (1 << 1);
644 	tss16.cs = SEL_CS16_CPL3;
645 	tss16.es = tss16.ds = tss16.ss = SEL_DS16_CPL3;
646 	tss16.ldt = SEL_LDT;
647 	struct tss16* tss16_cpl3_addr = (struct tss16*)(host_mem + seg_tss16_cpl3.base);
648 	NONFAILING(memcpy(tss16_cpl3_addr, &tss16, sizeof(tss16)));
649 
650 	struct tss32 tss32;
651 	memset(&tss32, 0, sizeof(tss32));
652 	tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32;
653 	tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0;
654 	tss32.ip = ADDR_VAR_USER_CODE;
655 	tss32.flags = (1 << 1) | (1 << 17);
656 	tss32.ldt = SEL_LDT;
657 	tss32.cr3 = sregs.cr3;
658 	tss32.io_bitmap = offsetof(struct tss32, io_bitmap);
659 	struct tss32* tss32_addr = (struct tss32*)(host_mem + seg_tss32_vm86.base);
660 	NONFAILING(memcpy(tss32_addr, &tss32, sizeof(tss32)));
661 
662 	memset(&tss32, 0, sizeof(tss32));
663 	tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32;
664 	tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0;
665 	tss32.ip = ADDR_VAR_USER_CODE;
666 	tss32.flags = (1 << 1);
667 	tss32.cr3 = sregs.cr3;
668 	tss32.es = tss32.ds = tss32.ss = tss32.gs = tss32.fs = SEL_DS32;
669 	tss32.cs = SEL_CS32;
670 	tss32.ldt = SEL_LDT;
671 	tss32.cr3 = sregs.cr3;
672 	tss32.io_bitmap = offsetof(struct tss32, io_bitmap);
673 	struct tss32* tss32_cpl3_addr = (struct tss32*)(host_mem + seg_tss32_2.base);
674 	NONFAILING(memcpy(tss32_cpl3_addr, &tss32, sizeof(tss32)));
675 
676 	struct tss64 tss64;
677 	memset(&tss64, 0, sizeof(tss64));
678 	tss64.rsp[0] = ADDR_STACK0;
679 	tss64.rsp[1] = ADDR_STACK0;
680 	tss64.rsp[2] = ADDR_STACK0;
681 	tss64.io_bitmap = offsetof(struct tss64, io_bitmap);
682 	struct tss64* tss64_addr = (struct tss64*)(host_mem + seg_tss64.base);
683 	NONFAILING(memcpy(tss64_addr, &tss64, sizeof(tss64)));
684 
685 	memset(&tss64, 0, sizeof(tss64));
686 	tss64.rsp[0] = ADDR_STACK0;
687 	tss64.rsp[1] = ADDR_STACK0;
688 	tss64.rsp[2] = ADDR_STACK0;
689 	tss64.io_bitmap = offsetof(struct tss64, io_bitmap);
690 	struct tss64* tss64_cpl3_addr = (struct tss64*)(host_mem + seg_tss64_cpl3.base);
691 	NONFAILING(memcpy(tss64_cpl3_addr, &tss64, sizeof(tss64)));
692 
693 	if (text_size > 1000)
694 		text_size = 1000;
695 	if (text_prefix) {
696 		NONFAILING(memcpy(host_text, text_prefix, text_prefix_size));
697 		void* patch = 0;
698 		// Replace 0xbadc0de in LJMP with offset of a next instruction.
699 		NONFAILING(patch = memmem(host_text, text_prefix_size, "\xde\xc0\xad\x0b", 4));
700 		if (patch)
701 			NONFAILING(*((uint32*)patch) = guest_mem + ADDR_TEXT + ((char*)patch - host_text) + 6);
702 		uint16 magic = PREFIX_SIZE;
703 		patch = 0;
704 		NONFAILING(patch = memmem(host_text, text_prefix_size, &magic, sizeof(magic)));
705 		if (patch)
706 			NONFAILING(*((uint16*)patch) = guest_mem + ADDR_TEXT + text_prefix_size);
707 	}
708 	NONFAILING(memcpy((void*)(host_text + text_prefix_size), text, text_size));
709 	NONFAILING(*(host_text + text_prefix_size + text_size) = 0xf4); // hlt
710 
711 	NONFAILING(memcpy(host_mem + ADDR_VAR_USER_CODE, text, text_size));
712 	NONFAILING(*(host_mem + ADDR_VAR_USER_CODE + text_size) = 0xf4); // hlt
713 
714 	NONFAILING(*(host_mem + ADDR_VAR_HLT) = 0xf4); // hlt
715 	NONFAILING(memcpy(host_mem + ADDR_VAR_SYSRET, "\x0f\x07\xf4", 3));
716 	NONFAILING(memcpy(host_mem + ADDR_VAR_SYSEXIT, "\x0f\x35\xf4", 3));
717 
718 	NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_FLD) = 0);
719 	NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_VAL) = 0);
720 
721 	if (opt_count > 2)
722 		opt_count = 2;
723 	for (i = 0; i < opt_count; i++) {
724 		uint64 typ = 0;
725 		uint64 val = 0;
726 		NONFAILING(typ = opt_array_ptr[i].typ);
727 		NONFAILING(val = opt_array_ptr[i].val);
728 		switch (typ % 9) {
729 		case 0:
730 			sregs.cr0 ^= val & (CR0_MP | CR0_EM | CR0_ET | CR0_NE | CR0_WP | CR0_AM | CR0_NW | CR0_CD);
731 			break;
732 		case 1:
733 			sregs.cr4 ^= val & (CR4_VME | CR4_PVI | CR4_TSD | CR4_DE | CR4_MCE | CR4_PGE | CR4_PCE |
734 					    CR4_OSFXSR | CR4_OSXMMEXCPT | CR4_UMIP | CR4_VMXE | CR4_SMXE | CR4_FSGSBASE | CR4_PCIDE |
735 					    CR4_OSXSAVE | CR4_SMEP | CR4_SMAP | CR4_PKE);
736 			break;
737 		case 2:
738 			sregs.efer ^= val & (EFER_SCE | EFER_NXE | EFER_SVME | EFER_LMSLE | EFER_FFXSR | EFER_TCE);
739 			break;
740 		case 3:
741 			val &= ((1 << 8) | (1 << 9) | (1 << 10) | (1 << 12) | (1 << 13) | (1 << 14) |
742 				(1 << 15) | (1 << 18) | (1 << 19) | (1 << 20) | (1 << 21));
743 			regs.rflags ^= val;
744 			NONFAILING(tss16_addr->flags ^= val);
745 			NONFAILING(tss16_cpl3_addr->flags ^= val);
746 			NONFAILING(tss32_addr->flags ^= val);
747 			NONFAILING(tss32_cpl3_addr->flags ^= val);
748 			break;
749 		case 4:
750 			seg_cs16.type = val & 0xf;
751 			seg_cs32.type = val & 0xf;
752 			seg_cs64.type = val & 0xf;
753 			break;
754 		case 5:
755 			seg_cs16_cpl3.type = val & 0xf;
756 			seg_cs32_cpl3.type = val & 0xf;
757 			seg_cs64_cpl3.type = val & 0xf;
758 			break;
759 		case 6:
760 			seg_ds16.type = val & 0xf;
761 			seg_ds32.type = val & 0xf;
762 			seg_ds64.type = val & 0xf;
763 			break;
764 		case 7:
765 			seg_ds16_cpl3.type = val & 0xf;
766 			seg_ds32_cpl3.type = val & 0xf;
767 			seg_ds64_cpl3.type = val & 0xf;
768 			break;
769 		case 8:
770 			NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_FLD) = (val & 0xffff));
771 			NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_VAL) = (val >> 16));
772 			break;
773 		default:
774 			fail("bad kvm setup opt");
775 		}
776 	}
777 	regs.rflags |= 2; // bit 1 is always set
778 
779 	fill_segment_descriptor(gdt, ldt, &seg_ldt);
780 	fill_segment_descriptor(gdt, ldt, &seg_cs16);
781 	fill_segment_descriptor(gdt, ldt, &seg_ds16);
782 	fill_segment_descriptor(gdt, ldt, &seg_cs16_cpl3);
783 	fill_segment_descriptor(gdt, ldt, &seg_ds16_cpl3);
784 	fill_segment_descriptor(gdt, ldt, &seg_cs32);
785 	fill_segment_descriptor(gdt, ldt, &seg_ds32);
786 	fill_segment_descriptor(gdt, ldt, &seg_cs32_cpl3);
787 	fill_segment_descriptor(gdt, ldt, &seg_ds32_cpl3);
788 	fill_segment_descriptor(gdt, ldt, &seg_cs64);
789 	fill_segment_descriptor(gdt, ldt, &seg_ds64);
790 	fill_segment_descriptor(gdt, ldt, &seg_cs64_cpl3);
791 	fill_segment_descriptor(gdt, ldt, &seg_ds64_cpl3);
792 	fill_segment_descriptor(gdt, ldt, &seg_tss32);
793 	fill_segment_descriptor(gdt, ldt, &seg_tss32_2);
794 	fill_segment_descriptor(gdt, ldt, &seg_tss32_cpl3);
795 	fill_segment_descriptor(gdt, ldt, &seg_tss32_vm86);
796 	fill_segment_descriptor(gdt, ldt, &seg_tss16);
797 	fill_segment_descriptor(gdt, ldt, &seg_tss16_2);
798 	fill_segment_descriptor(gdt, ldt, &seg_tss16_cpl3);
799 	fill_segment_descriptor_dword(gdt, ldt, &seg_tss64);
800 	fill_segment_descriptor_dword(gdt, ldt, &seg_tss64_cpl3);
801 	fill_segment_descriptor(gdt, ldt, &seg_cgate16);
802 	fill_segment_descriptor(gdt, ldt, &seg_tgate16);
803 	fill_segment_descriptor(gdt, ldt, &seg_cgate32);
804 	fill_segment_descriptor(gdt, ldt, &seg_tgate32);
805 	fill_segment_descriptor_dword(gdt, ldt, &seg_cgate64);
806 
807 	if (ioctl(cpufd, KVM_SET_SREGS, &sregs))
808 		return -1;
809 	if (ioctl(cpufd, KVM_SET_REGS, &regs))
810 		return -1;
811 	return 0;
812 }
813