1 R"********(
2 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
3 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  */
9 #ifndef _UAPI__LINUX_BPF_H__
10 #define _UAPI__LINUX_BPF_H__
11 
12 #include <linux/types.h>
13 #include <linux/bpf_common.h>
14 
15 /* Extended instruction set based on top of classic BPF */
16 
17 /* instruction classes */
18 #define BPF_ALU64	0x07	/* alu mode in double word width */
19 
20 /* ld/ldx fields */
21 #define BPF_DW		0x18	/* double word (64-bit) */
22 #define BPF_XADD	0xc0	/* exclusive add */
23 
24 /* alu/jmp fields */
25 #define BPF_MOV		0xb0	/* mov reg to reg */
26 #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
27 
28 /* change endianness of a register */
29 #define BPF_END		0xd0	/* flags for endianness conversion: */
30 #define BPF_TO_LE	0x00	/* convert to little-endian */
31 #define BPF_TO_BE	0x08	/* convert to big-endian */
32 #define BPF_FROM_LE	BPF_TO_LE
33 #define BPF_FROM_BE	BPF_TO_BE
34 
35 /* jmp encodings */
36 #define BPF_JNE		0x50	/* jump != */
37 #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
38 #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
39 #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
40 #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
41 #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
42 #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
43 #define BPF_CALL	0x80	/* function call */
44 #define BPF_EXIT	0x90	/* function return */
45 
46 /* Register numbers */
47 enum {
48 	BPF_REG_0 = 0,
49 	BPF_REG_1,
50 	BPF_REG_2,
51 	BPF_REG_3,
52 	BPF_REG_4,
53 	BPF_REG_5,
54 	BPF_REG_6,
55 	BPF_REG_7,
56 	BPF_REG_8,
57 	BPF_REG_9,
58 	BPF_REG_10,
59 	__MAX_BPF_REG,
60 };
61 
62 /* BPF has 10 general purpose 64-bit registers and stack frame. */
63 #define MAX_BPF_REG	__MAX_BPF_REG
64 
65 struct bpf_insn {
66 	__u8	code;		/* opcode */
67 	__u8	dst_reg:4;	/* dest register */
68 	__u8	src_reg:4;	/* source register */
69 	__s16	off;		/* signed offset */
70 	__s32	imm;		/* signed immediate constant */
71 };
72 
73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
74 struct bpf_lpm_trie_key {
75 	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
76 	__u8	data[0];	/* Arbitrary size */
77 };
78 
79 struct bpf_cgroup_storage_key {
80 	__u64	cgroup_inode_id;	/* cgroup inode id */
81 	__u32	attach_type;		/* program attach type */
82 };
83 
84 /* BPF syscall commands, see bpf(2) man-page for details. */
85 enum bpf_cmd {
86 	BPF_MAP_CREATE,
87 	BPF_MAP_LOOKUP_ELEM,
88 	BPF_MAP_UPDATE_ELEM,
89 	BPF_MAP_DELETE_ELEM,
90 	BPF_MAP_GET_NEXT_KEY,
91 	BPF_PROG_LOAD,
92 	BPF_OBJ_PIN,
93 	BPF_OBJ_GET,
94 	BPF_PROG_ATTACH,
95 	BPF_PROG_DETACH,
96 	BPF_PROG_TEST_RUN,
97 	BPF_PROG_GET_NEXT_ID,
98 	BPF_MAP_GET_NEXT_ID,
99 	BPF_PROG_GET_FD_BY_ID,
100 	BPF_MAP_GET_FD_BY_ID,
101 	BPF_OBJ_GET_INFO_BY_FD,
102 	BPF_PROG_QUERY,
103 	BPF_RAW_TRACEPOINT_OPEN,
104 	BPF_BTF_LOAD,
105 	BPF_BTF_GET_FD_BY_ID,
106 	BPF_TASK_FD_QUERY,
107 	BPF_MAP_LOOKUP_AND_DELETE_ELEM,
108 };
109 
110 enum bpf_map_type {
111 	BPF_MAP_TYPE_UNSPEC,
112 	BPF_MAP_TYPE_HASH,
113 	BPF_MAP_TYPE_ARRAY,
114 	BPF_MAP_TYPE_PROG_ARRAY,
115 	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
116 	BPF_MAP_TYPE_PERCPU_HASH,
117 	BPF_MAP_TYPE_PERCPU_ARRAY,
118 	BPF_MAP_TYPE_STACK_TRACE,
119 	BPF_MAP_TYPE_CGROUP_ARRAY,
120 	BPF_MAP_TYPE_LRU_HASH,
121 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
122 	BPF_MAP_TYPE_LPM_TRIE,
123 	BPF_MAP_TYPE_ARRAY_OF_MAPS,
124 	BPF_MAP_TYPE_HASH_OF_MAPS,
125 	BPF_MAP_TYPE_DEVMAP,
126 	BPF_MAP_TYPE_SOCKMAP,
127 	BPF_MAP_TYPE_CPUMAP,
128 	BPF_MAP_TYPE_XSKMAP,
129 	BPF_MAP_TYPE_SOCKHASH,
130 	BPF_MAP_TYPE_CGROUP_STORAGE,
131 	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
132 	BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
133 	BPF_MAP_TYPE_QUEUE,
134 	BPF_MAP_TYPE_STACK,
135 };
136 
137 enum bpf_prog_type {
138 	BPF_PROG_TYPE_UNSPEC,
139 	BPF_PROG_TYPE_SOCKET_FILTER,
140 	BPF_PROG_TYPE_KPROBE,
141 	BPF_PROG_TYPE_SCHED_CLS,
142 	BPF_PROG_TYPE_SCHED_ACT,
143 	BPF_PROG_TYPE_TRACEPOINT,
144 	BPF_PROG_TYPE_XDP,
145 	BPF_PROG_TYPE_PERF_EVENT,
146 	BPF_PROG_TYPE_CGROUP_SKB,
147 	BPF_PROG_TYPE_CGROUP_SOCK,
148 	BPF_PROG_TYPE_LWT_IN,
149 	BPF_PROG_TYPE_LWT_OUT,
150 	BPF_PROG_TYPE_LWT_XMIT,
151 	BPF_PROG_TYPE_SOCK_OPS,
152 	BPF_PROG_TYPE_SK_SKB,
153 	BPF_PROG_TYPE_CGROUP_DEVICE,
154 	BPF_PROG_TYPE_SK_MSG,
155 	BPF_PROG_TYPE_RAW_TRACEPOINT,
156 	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
157 	BPF_PROG_TYPE_LWT_SEG6LOCAL,
158 	BPF_PROG_TYPE_LIRC_MODE2,
159 	BPF_PROG_TYPE_SK_REUSEPORT,
160 	BPF_PROG_TYPE_FLOW_DISSECTOR,
161 };
162 
163 enum bpf_attach_type {
164 	BPF_CGROUP_INET_INGRESS,
165 	BPF_CGROUP_INET_EGRESS,
166 	BPF_CGROUP_INET_SOCK_CREATE,
167 	BPF_CGROUP_SOCK_OPS,
168 	BPF_SK_SKB_STREAM_PARSER,
169 	BPF_SK_SKB_STREAM_VERDICT,
170 	BPF_CGROUP_DEVICE,
171 	BPF_SK_MSG_VERDICT,
172 	BPF_CGROUP_INET4_BIND,
173 	BPF_CGROUP_INET6_BIND,
174 	BPF_CGROUP_INET4_CONNECT,
175 	BPF_CGROUP_INET6_CONNECT,
176 	BPF_CGROUP_INET4_POST_BIND,
177 	BPF_CGROUP_INET6_POST_BIND,
178 	BPF_CGROUP_UDP4_SENDMSG,
179 	BPF_CGROUP_UDP6_SENDMSG,
180 	BPF_LIRC_MODE2,
181 	BPF_FLOW_DISSECTOR,
182 	__MAX_BPF_ATTACH_TYPE
183 };
184 
185 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
186 
187 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
188  *
189  * NONE(default): No further bpf programs allowed in the subtree.
190  *
191  * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
192  * the program in this cgroup yields to sub-cgroup program.
193  *
194  * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
195  * that cgroup program gets run in addition to the program in this cgroup.
196  *
197  * Only one program is allowed to be attached to a cgroup with
198  * NONE or BPF_F_ALLOW_OVERRIDE flag.
199  * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
200  * release old program and attach the new one. Attach flags has to match.
201  *
202  * Multiple programs are allowed to be attached to a cgroup with
203  * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
204  * (those that were attached first, run first)
205  * The programs of sub-cgroup are executed first, then programs of
206  * this cgroup and then programs of parent cgroup.
207  * When children program makes decision (like picking TCP CA or sock bind)
208  * parent program has a chance to override it.
209  *
210  * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
211  * A cgroup with NONE doesn't allow any programs in sub-cgroups.
212  * Ex1:
213  * cgrp1 (MULTI progs A, B) ->
214  *    cgrp2 (OVERRIDE prog C) ->
215  *      cgrp3 (MULTI prog D) ->
216  *        cgrp4 (OVERRIDE prog E) ->
217  *          cgrp5 (NONE prog F)
218  * the event in cgrp5 triggers execution of F,D,A,B in that order.
219  * if prog F is detached, the execution is E,D,A,B
220  * if prog F and D are detached, the execution is E,A,B
221  * if prog F, E and D are detached, the execution is C,A,B
222  *
223  * All eligible programs are executed regardless of return code from
224  * earlier programs.
225  */
226 #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
227 #define BPF_F_ALLOW_MULTI	(1U << 1)
228 
229 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
230  * verifier will perform strict alignment checking as if the kernel
231  * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
232  * and NET_IP_ALIGN defined to 2.
233  */
234 #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
235 
236 /* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */
237 #define BPF_PSEUDO_MAP_FD	1
238 
239 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
240  * offset to another bpf function
241  */
242 #define BPF_PSEUDO_CALL		1
243 
244 /* flags for BPF_MAP_UPDATE_ELEM command */
245 #define BPF_ANY		0 /* create new element or update existing */
246 #define BPF_NOEXIST	1 /* create new element if it didn't exist */
247 #define BPF_EXIST	2 /* update existing element */
248 
249 /* flags for BPF_MAP_CREATE command */
250 #define BPF_F_NO_PREALLOC	(1U << 0)
251 /* Instead of having one common LRU list in the
252  * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
253  * which can scale and perform better.
254  * Note, the LRU nodes (including free nodes) cannot be moved
255  * across different LRU lists.
256  */
257 #define BPF_F_NO_COMMON_LRU	(1U << 1)
258 /* Specify numa node during map creation */
259 #define BPF_F_NUMA_NODE		(1U << 2)
260 
261 /* flags for BPF_PROG_QUERY */
262 #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
263 
264 #define BPF_OBJ_NAME_LEN 16U
265 
266 /* Flags for accessing BPF object */
267 #define BPF_F_RDONLY		(1U << 3)
268 #define BPF_F_WRONLY		(1U << 4)
269 
270 /* Flag for stack_map, store build_id+offset instead of pointer */
271 #define BPF_F_STACK_BUILD_ID	(1U << 5)
272 
273 enum bpf_stack_build_id_status {
274 	/* user space need an empty entry to identify end of a trace */
275 	BPF_STACK_BUILD_ID_EMPTY = 0,
276 	/* with valid build_id and offset */
277 	BPF_STACK_BUILD_ID_VALID = 1,
278 	/* couldn't get build_id, fallback to ip */
279 	BPF_STACK_BUILD_ID_IP = 2,
280 };
281 
282 #define BPF_BUILD_ID_SIZE 20
283 struct bpf_stack_build_id {
284 	__s32		status;
285 	unsigned char	build_id[BPF_BUILD_ID_SIZE];
286 	union {
287 		__u64	offset;
288 		__u64	ip;
289 	};
290 };
291 
292 union bpf_attr {
293 	struct { /* anonymous struct used by BPF_MAP_CREATE command */
294 		__u32	map_type;	/* one of enum bpf_map_type */
295 		__u32	key_size;	/* size of key in bytes */
296 		__u32	value_size;	/* size of value in bytes */
297 		__u32	max_entries;	/* max number of entries in a map */
298 		__u32	map_flags;	/* BPF_MAP_CREATE related
299 					 * flags defined above.
300 					 */
301 		__u32	inner_map_fd;	/* fd pointing to the inner map */
302 		__u32	numa_node;	/* numa node (effective only if
303 					 * BPF_F_NUMA_NODE is set).
304 					 */
305 		char	map_name[BPF_OBJ_NAME_LEN];
306 		__u32	map_ifindex;	/* ifindex of netdev to create on */
307 		__u32	btf_fd;		/* fd pointing to a BTF type data */
308 		__u32	btf_key_type_id;	/* BTF type_id of the key */
309 		__u32	btf_value_type_id;	/* BTF type_id of the value */
310 	};
311 
312 	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
313 		__u32		map_fd;
314 		__aligned_u64	key;
315 		union {
316 			__aligned_u64 value;
317 			__aligned_u64 next_key;
318 		};
319 		__u64		flags;
320 	};
321 
322 	struct { /* anonymous struct used by BPF_PROG_LOAD command */
323 		__u32		prog_type;	/* one of enum bpf_prog_type */
324 		__u32		insn_cnt;
325 		__aligned_u64	insns;
326 		__aligned_u64	license;
327 		__u32		log_level;	/* verbosity level of verifier */
328 		__u32		log_size;	/* size of user buffer */
329 		__aligned_u64	log_buf;	/* user supplied buffer */
330 		__u32		kern_version;	/* checked when prog_type=kprobe */
331 		__u32		prog_flags;
332 		char		prog_name[BPF_OBJ_NAME_LEN];
333 		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
334 		/* For some prog types expected attach type must be known at
335 		 * load time to verify attach type specific parts of prog
336 		 * (context accesses, allowed helpers, etc).
337 		 */
338 		__u32		expected_attach_type;
339 	};
340 
341 	struct { /* anonymous struct used by BPF_OBJ_* commands */
342 		__aligned_u64	pathname;
343 		__u32		bpf_fd;
344 		__u32		file_flags;
345 	};
346 
347 	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
348 		__u32		target_fd;	/* container object to attach to */
349 		__u32		attach_bpf_fd;	/* eBPF program to attach */
350 		__u32		attach_type;
351 		__u32		attach_flags;
352 	};
353 
354 	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
355 		__u32		prog_fd;
356 		__u32		retval;
357 		__u32		data_size_in;
358 		__u32		data_size_out;
359 		__aligned_u64	data_in;
360 		__aligned_u64	data_out;
361 		__u32		repeat;
362 		__u32		duration;
363 	} test;
364 
365 	struct { /* anonymous struct used by BPF_*_GET_*_ID */
366 		union {
367 			__u32		start_id;
368 			__u32		prog_id;
369 			__u32		map_id;
370 			__u32		btf_id;
371 		};
372 		__u32		next_id;
373 		__u32		open_flags;
374 	};
375 
376 	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
377 		__u32		bpf_fd;
378 		__u32		info_len;
379 		__aligned_u64	info;
380 	} info;
381 
382 	struct { /* anonymous struct used by BPF_PROG_QUERY command */
383 		__u32		target_fd;	/* container object to query */
384 		__u32		attach_type;
385 		__u32		query_flags;
386 		__u32		attach_flags;
387 		__aligned_u64	prog_ids;
388 		__u32		prog_cnt;
389 	} query;
390 
391 	struct {
392 		__u64 name;
393 		__u32 prog_fd;
394 	} raw_tracepoint;
395 
396 	struct { /* anonymous struct for BPF_BTF_LOAD */
397 		__aligned_u64	btf;
398 		__aligned_u64	btf_log_buf;
399 		__u32		btf_size;
400 		__u32		btf_log_size;
401 		__u32		btf_log_level;
402 	};
403 
404 	struct {
405 		__u32		pid;		/* input: pid */
406 		__u32		fd;		/* input: fd */
407 		__u32		flags;		/* input: flags */
408 		__u32		buf_len;	/* input/output: buf len */
409 		__aligned_u64	buf;		/* input/output:
410 						 *   tp_name for tracepoint
411 						 *   symbol for kprobe
412 						 *   filename for uprobe
413 						 */
414 		__u32		prog_id;	/* output: prod_id */
415 		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
416 		__u64		probe_offset;	/* output: probe_offset */
417 		__u64		probe_addr;	/* output: probe_addr */
418 	} task_fd_query;
419 } __attribute__((aligned(8)));
420 
421 /* The description below is an attempt at providing documentation to eBPF
422  * developers about the multiple available eBPF helper functions. It can be
423  * parsed and used to produce a manual page. The workflow is the following,
424  * and requires the rst2man utility:
425  *
426  *     $ ./scripts/bpf_helpers_doc.py \
427  *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
428  *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
429  *     $ man /tmp/bpf-helpers.7
430  *
431  * Note that in order to produce this external documentation, some RST
432  * formatting is used in the descriptions to get "bold" and "italics" in
433  * manual pages. Also note that the few trailing white spaces are
434  * intentional, removing them would break paragraphs for rst2man.
435  *
436  * Start of BPF helper function descriptions:
437  *
438  * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
439  * 	Description
440  * 		Perform a lookup in *map* for an entry associated to *key*.
441  * 	Return
442  * 		Map value associated to *key*, or **NULL** if no entry was
443  * 		found.
444  *
445  * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
446  * 	Description
447  * 		Add or update the value of the entry associated to *key* in
448  * 		*map* with *value*. *flags* is one of:
449  *
450  * 		**BPF_NOEXIST**
451  * 			The entry for *key* must not exist in the map.
452  * 		**BPF_EXIST**
453  * 			The entry for *key* must already exist in the map.
454  * 		**BPF_ANY**
455  * 			No condition on the existence of the entry for *key*.
456  *
457  * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
458  * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
459  * 		elements always exist), the helper would return an error.
460  * 	Return
461  * 		0 on success, or a negative error in case of failure.
462  *
463  * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
464  * 	Description
465  * 		Delete entry with *key* from *map*.
466  * 	Return
467  * 		0 on success, or a negative error in case of failure.
468  *
469  * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
470  * 	Description
471  * 		Push an element *value* in *map*. *flags* is one of:
472  *
473  * 		**BPF_EXIST**
474  * 		If the queue/stack is full, the oldest element is removed to
475  * 		make room for this.
476  * 	Return
477  * 		0 on success, or a negative error in case of failure.
478  *
479  * int bpf_map_pop_elem(struct bpf_map *map, void *value)
480  * 	Description
481  * 		Pop an element from *map*.
482  * Return
483  * 		0 on success, or a negative error in case of failure.
484  *
485  * int bpf_map_peek_elem(struct bpf_map *map, void *value)
486  * 	Description
487  * 		Get an element from *map* without removing it.
488  * Return
489  * 		0 on success, or a negative error in case of failure.
490  *
491  * int bpf_probe_read(void *dst, u32 size, const void *src)
492  * 	Description
493  * 		For tracing programs, safely attempt to read *size* bytes from
494  * 		address *src* and store the data in *dst*.
495  * 	Return
496  * 		0 on success, or a negative error in case of failure.
497  *
498  * u64 bpf_ktime_get_ns(void)
499  * 	Description
500  * 		Return the time elapsed since system boot, in nanoseconds.
501  * 	Return
502  * 		Current *ktime*.
503  *
504  * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
505  * 	Description
506  * 		This helper is a "printk()-like" facility for debugging. It
507  * 		prints a message defined by format *fmt* (of size *fmt_size*)
508  * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
509  * 		available. It can take up to three additional **u64**
510  * 		arguments (as an eBPF helpers, the total number of arguments is
511  * 		limited to five).
512  *
513  * 		Each time the helper is called, it appends a line to the trace.
514  * 		The format of the trace is customizable, and the exact output
515  * 		one will get depends on the options set in
516  * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
517  * 		*README* file under the same directory). However, it usually
518  * 		defaults to something like:
519  *
520  * 		::
521  *
522  * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
523  *
524  * 		In the above:
525  *
526  * 			* ``telnet`` is the name of the current task.
527  * 			* ``470`` is the PID of the current task.
528  * 			* ``001`` is the CPU number on which the task is
529  * 			  running.
530  * 			* In ``.N..``, each character refers to a set of
531  * 			  options (whether irqs are enabled, scheduling
532  * 			  options, whether hard/softirqs are running, level of
533  * 			  preempt_disabled respectively). **N** means that
534  * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
535  * 			  are set.
536  * 			* ``419421.045894`` is a timestamp.
537  * 			* ``0x00000001`` is a fake value used by BPF for the
538  * 			  instruction pointer register.
539  * 			* ``<formatted msg>`` is the message formatted with
540  * 			  *fmt*.
541  *
542  * 		The conversion specifiers supported by *fmt* are similar, but
543  * 		more limited than for printk(). They are **%d**, **%i**,
544  * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
545  * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
546  * 		of field, padding with zeroes, etc.) is available, and the
547  * 		helper will return **-EINVAL** (but print nothing) if it
548  * 		encounters an unknown specifier.
549  *
550  * 		Also, note that **bpf_trace_printk**\ () is slow, and should
551  * 		only be used for debugging purposes. For this reason, a notice
552  * 		bloc (spanning several lines) is printed to kernel logs and
553  * 		states that the helper should not be used "for production use"
554  * 		the first time this helper is used (or more precisely, when
555  * 		**trace_printk**\ () buffers are allocated). For passing values
556  * 		to user space, perf events should be preferred.
557  * 	Return
558  * 		The number of bytes written to the buffer, or a negative error
559  * 		in case of failure.
560  *
561  * u32 bpf_get_prandom_u32(void)
562  * 	Description
563  * 		Get a pseudo-random number.
564  *
565  * 		From a security point of view, this helper uses its own
566  * 		pseudo-random internal state, and cannot be used to infer the
567  * 		seed of other random functions in the kernel. However, it is
568  * 		essential to note that the generator used by the helper is not
569  * 		cryptographically secure.
570  * 	Return
571  * 		A random 32-bit unsigned value.
572  *
573  * u32 bpf_get_smp_processor_id(void)
574  * 	Description
575  * 		Get the SMP (symmetric multiprocessing) processor id. Note that
576  * 		all programs run with preemption disabled, which means that the
577  * 		SMP processor id is stable during all the execution of the
578  * 		program.
579  * 	Return
580  * 		The SMP id of the processor running the program.
581  *
582  * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
583  * 	Description
584  * 		Store *len* bytes from address *from* into the packet
585  * 		associated to *skb*, at *offset*. *flags* are a combination of
586  * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
587  * 		checksum for the packet after storing the bytes) and
588  * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
589  * 		**->swhash** and *skb*\ **->l4hash** to 0).
590  *
591  * 		A call to this helper is susceptible to change the underlaying
592  * 		packet buffer. Therefore, at load time, all checks on pointers
593  * 		previously done by the verifier are invalidated and must be
594  * 		performed again, if the helper is used in combination with
595  * 		direct packet access.
596  * 	Return
597  * 		0 on success, or a negative error in case of failure.
598  *
599  * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
600  * 	Description
601  * 		Recompute the layer 3 (e.g. IP) checksum for the packet
602  * 		associated to *skb*. Computation is incremental, so the helper
603  * 		must know the former value of the header field that was
604  * 		modified (*from*), the new value of this field (*to*), and the
605  * 		number of bytes (2 or 4) for this field, stored in *size*.
606  * 		Alternatively, it is possible to store the difference between
607  * 		the previous and the new values of the header field in *to*, by
608  * 		setting *from* and *size* to 0. For both methods, *offset*
609  * 		indicates the location of the IP checksum within the packet.
610  *
611  * 		This helper works in combination with **bpf_csum_diff**\ (),
612  * 		which does not update the checksum in-place, but offers more
613  * 		flexibility and can handle sizes larger than 2 or 4 for the
614  * 		checksum to update.
615  *
616  * 		A call to this helper is susceptible to change the underlaying
617  * 		packet buffer. Therefore, at load time, all checks on pointers
618  * 		previously done by the verifier are invalidated and must be
619  * 		performed again, if the helper is used in combination with
620  * 		direct packet access.
621  * 	Return
622  * 		0 on success, or a negative error in case of failure.
623  *
624  * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
625  * 	Description
626  * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
627  * 		packet associated to *skb*. Computation is incremental, so the
628  * 		helper must know the former value of the header field that was
629  * 		modified (*from*), the new value of this field (*to*), and the
630  * 		number of bytes (2 or 4) for this field, stored on the lowest
631  * 		four bits of *flags*. Alternatively, it is possible to store
632  * 		the difference between the previous and the new values of the
633  * 		header field in *to*, by setting *from* and the four lowest
634  * 		bits of *flags* to 0. For both methods, *offset* indicates the
635  * 		location of the IP checksum within the packet. In addition to
636  * 		the size of the field, *flags* can be added (bitwise OR) actual
637  * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
638  * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
639  * 		for updates resulting in a null checksum the value is set to
640  * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
641  * 		the checksum is to be computed against a pseudo-header.
642  *
643  * 		This helper works in combination with **bpf_csum_diff**\ (),
644  * 		which does not update the checksum in-place, but offers more
645  * 		flexibility and can handle sizes larger than 2 or 4 for the
646  * 		checksum to update.
647  *
648  * 		A call to this helper is susceptible to change the underlaying
649  * 		packet buffer. Therefore, at load time, all checks on pointers
650  * 		previously done by the verifier are invalidated and must be
651  * 		performed again, if the helper is used in combination with
652  * 		direct packet access.
653  * 	Return
654  * 		0 on success, or a negative error in case of failure.
655  *
656  * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
657  * 	Description
658  * 		This special helper is used to trigger a "tail call", or in
659  * 		other words, to jump into another eBPF program. The same stack
660  * 		frame is used (but values on stack and in registers for the
661  * 		caller are not accessible to the callee). This mechanism allows
662  * 		for program chaining, either for raising the maximum number of
663  * 		available eBPF instructions, or to execute given programs in
664  * 		conditional blocks. For security reasons, there is an upper
665  * 		limit to the number of successive tail calls that can be
666  * 		performed.
667  *
668  * 		Upon call of this helper, the program attempts to jump into a
669  * 		program referenced at index *index* in *prog_array_map*, a
670  * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
671  * 		*ctx*, a pointer to the context.
672  *
673  * 		If the call succeeds, the kernel immediately runs the first
674  * 		instruction of the new program. This is not a function call,
675  * 		and it never returns to the previous program. If the call
676  * 		fails, then the helper has no effect, and the caller continues
677  * 		to run its subsequent instructions. A call can fail if the
678  * 		destination program for the jump does not exist (i.e. *index*
679  * 		is superior to the number of entries in *prog_array_map*), or
680  * 		if the maximum number of tail calls has been reached for this
681  * 		chain of programs. This limit is defined in the kernel by the
682  * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
683  * 		which is currently set to 32.
684  * 	Return
685  * 		0 on success, or a negative error in case of failure.
686  *
687  * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
688  * 	Description
689  * 		Clone and redirect the packet associated to *skb* to another
690  * 		net device of index *ifindex*. Both ingress and egress
691  * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
692  * 		value in *flags* is used to make the distinction (ingress path
693  * 		is selected if the flag is present, egress path otherwise).
694  * 		This is the only flag supported for now.
695  *
696  * 		In comparison with **bpf_redirect**\ () helper,
697  * 		**bpf_clone_redirect**\ () has the associated cost of
698  * 		duplicating the packet buffer, but this can be executed out of
699  * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
700  * 		efficient, but it is handled through an action code where the
701  * 		redirection happens only after the eBPF program has returned.
702  *
703  * 		A call to this helper is susceptible to change the underlaying
704  * 		packet buffer. Therefore, at load time, all checks on pointers
705  * 		previously done by the verifier are invalidated and must be
706  * 		performed again, if the helper is used in combination with
707  * 		direct packet access.
708  * 	Return
709  * 		0 on success, or a negative error in case of failure.
710  *
711  * u64 bpf_get_current_pid_tgid(void)
712  * 	Return
713  * 		A 64-bit integer containing the current tgid and pid, and
714  * 		created as such:
715  * 		*current_task*\ **->tgid << 32 \|**
716  * 		*current_task*\ **->pid**.
717  *
718  * u64 bpf_get_current_uid_gid(void)
719  * 	Return
720  * 		A 64-bit integer containing the current GID and UID, and
721  * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
722  *
723  * int bpf_get_current_comm(char *buf, u32 size_of_buf)
724  * 	Description
725  * 		Copy the **comm** attribute of the current task into *buf* of
726  * 		*size_of_buf*. The **comm** attribute contains the name of
727  * 		the executable (excluding the path) for the current task. The
728  * 		*size_of_buf* must be strictly positive. On success, the
729  * 		helper makes sure that the *buf* is NUL-terminated. On failure,
730  * 		it is filled with zeroes.
731  * 	Return
732  * 		0 on success, or a negative error in case of failure.
733  *
734  * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
735  * 	Description
736  * 		Retrieve the classid for the current task, i.e. for the net_cls
737  * 		cgroup to which *skb* belongs.
738  *
739  * 		This helper can be used on TC egress path, but not on ingress.
740  *
741  * 		The net_cls cgroup provides an interface to tag network packets
742  * 		based on a user-provided identifier for all traffic coming from
743  * 		the tasks belonging to the related cgroup. See also the related
744  * 		kernel documentation, available from the Linux sources in file
745  * 		*Documentation/cgroup-v1/net_cls.txt*.
746  *
747  * 		The Linux kernel has two versions for cgroups: there are
748  * 		cgroups v1 and cgroups v2. Both are available to users, who can
749  * 		use a mixture of them, but note that the net_cls cgroup is for
750  * 		cgroup v1 only. This makes it incompatible with BPF programs
751  * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
752  * 		only hold data for one version of cgroups at a time).
753  *
754  * 		This helper is only available is the kernel was compiled with
755  * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
756  * 		"**y**" or to "**m**".
757  * 	Return
758  * 		The classid, or 0 for the default unconfigured classid.
759  *
760  * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
761  * 	Description
762  * 		Push a *vlan_tci* (VLAN tag control information) of protocol
763  * 		*vlan_proto* to the packet associated to *skb*, then update
764  * 		the checksum. Note that if *vlan_proto* is different from
765  * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
766  * 		be **ETH_P_8021Q**.
767  *
768  * 		A call to this helper is susceptible to change the underlaying
769  * 		packet buffer. Therefore, at load time, all checks on pointers
770  * 		previously done by the verifier are invalidated and must be
771  * 		performed again, if the helper is used in combination with
772  * 		direct packet access.
773  * 	Return
774  * 		0 on success, or a negative error in case of failure.
775  *
776  * int bpf_skb_vlan_pop(struct sk_buff *skb)
777  * 	Description
778  * 		Pop a VLAN header from the packet associated to *skb*.
779  *
780  * 		A call to this helper is susceptible to change the underlaying
781  * 		packet buffer. Therefore, at load time, all checks on pointers
782  * 		previously done by the verifier are invalidated and must be
783  * 		performed again, if the helper is used in combination with
784  * 		direct packet access.
785  * 	Return
786  * 		0 on success, or a negative error in case of failure.
787  *
788  * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
789  * 	Description
790  * 		Get tunnel metadata. This helper takes a pointer *key* to an
791  * 		empty **struct bpf_tunnel_key** of **size**, that will be
792  * 		filled with tunnel metadata for the packet associated to *skb*.
793  * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
794  * 		indicates that the tunnel is based on IPv6 protocol instead of
795  * 		IPv4.
796  *
797  * 		The **struct bpf_tunnel_key** is an object that generalizes the
798  * 		principal parameters used by various tunneling protocols into a
799  * 		single struct. This way, it can be used to easily make a
800  * 		decision based on the contents of the encapsulation header,
801  * 		"summarized" in this struct. In particular, it holds the IP
802  * 		address of the remote end (IPv4 or IPv6, depending on the case)
803  * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
804  * 		this struct exposes the *key*\ **->tunnel_id**, which is
805  * 		generally mapped to a VNI (Virtual Network Identifier), making
806  * 		it programmable together with the **bpf_skb_set_tunnel_key**\
807  * 		() helper.
808  *
809  * 		Let's imagine that the following code is part of a program
810  * 		attached to the TC ingress interface, on one end of a GRE
811  * 		tunnel, and is supposed to filter out all messages coming from
812  * 		remote ends with IPv4 address other than 10.0.0.1:
813  *
814  * 		::
815  *
816  * 			int ret;
817  * 			struct bpf_tunnel_key key = {};
818  *
819  * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
820  * 			if (ret < 0)
821  * 				return TC_ACT_SHOT;	// drop packet
822  *
823  * 			if (key.remote_ipv4 != 0x0a000001)
824  * 				return TC_ACT_SHOT;	// drop packet
825  *
826  * 			return TC_ACT_OK;		// accept packet
827  *
828  * 		This interface can also be used with all encapsulation devices
829  * 		that can operate in "collect metadata" mode: instead of having
830  * 		one network device per specific configuration, the "collect
831  * 		metadata" mode only requires a single device where the
832  * 		configuration can be extracted from this helper.
833  *
834  * 		This can be used together with various tunnels such as VXLan,
835  * 		Geneve, GRE or IP in IP (IPIP).
836  * 	Return
837  * 		0 on success, or a negative error in case of failure.
838  *
839  * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
840  * 	Description
841  * 		Populate tunnel metadata for packet associated to *skb.* The
842  * 		tunnel metadata is set to the contents of *key*, of *size*. The
843  * 		*flags* can be set to a combination of the following values:
844  *
845  * 		**BPF_F_TUNINFO_IPV6**
846  * 			Indicate that the tunnel is based on IPv6 protocol
847  * 			instead of IPv4.
848  * 		**BPF_F_ZERO_CSUM_TX**
849  * 			For IPv4 packets, add a flag to tunnel metadata
850  * 			indicating that checksum computation should be skipped
851  * 			and checksum set to zeroes.
852  * 		**BPF_F_DONT_FRAGMENT**
853  * 			Add a flag to tunnel metadata indicating that the
854  * 			packet should not be fragmented.
855  * 		**BPF_F_SEQ_NUMBER**
856  * 			Add a flag to tunnel metadata indicating that a
857  * 			sequence number should be added to tunnel header before
858  * 			sending the packet. This flag was added for GRE
859  * 			encapsulation, but might be used with other protocols
860  * 			as well in the future.
861  *
862  * 		Here is a typical usage on the transmit path:
863  *
864  * 		::
865  *
866  * 			struct bpf_tunnel_key key;
867  * 			     populate key ...
868  * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
869  * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
870  *
871  * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
872  * 		helper for additional information.
873  * 	Return
874  * 		0 on success, or a negative error in case of failure.
875  *
876  * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
877  * 	Description
878  * 		Read the value of a perf event counter. This helper relies on a
879  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
880  * 		the perf event counter is selected when *map* is updated with
881  * 		perf event file descriptors. The *map* is an array whose size
882  * 		is the number of available CPUs, and each cell contains a value
883  * 		relative to one CPU. The value to retrieve is indicated by
884  * 		*flags*, that contains the index of the CPU to look up, masked
885  * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
886  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
887  * 		current CPU should be retrieved.
888  *
889  * 		Note that before Linux 4.13, only hardware perf event can be
890  * 		retrieved.
891  *
892  * 		Also, be aware that the newer helper
893  * 		**bpf_perf_event_read_value**\ () is recommended over
894  * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
895  * 		quirks where error and counter value are used as a return code
896  * 		(which is wrong to do since ranges may overlap). This issue is
897  * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
898  * 		time provides more features over the **bpf_perf_event_read**\
899  * 		() interface. Please refer to the description of
900  * 		**bpf_perf_event_read_value**\ () for details.
901  * 	Return
902  * 		The value of the perf event counter read from the map, or a
903  * 		negative error code in case of failure.
904  *
905  * int bpf_redirect(u32 ifindex, u64 flags)
906  * 	Description
907  * 		Redirect the packet to another net device of index *ifindex*.
908  * 		This helper is somewhat similar to **bpf_clone_redirect**\
909  * 		(), except that the packet is not cloned, which provides
910  * 		increased performance.
911  *
912  * 		Except for XDP, both ingress and egress interfaces can be used
913  * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
914  * 		to make the distinction (ingress path is selected if the flag
915  * 		is present, egress path otherwise). Currently, XDP only
916  * 		supports redirection to the egress interface, and accepts no
917  * 		flag at all.
918  *
919  * 		The same effect can be attained with the more generic
920  * 		**bpf_redirect_map**\ (), which requires specific maps to be
921  * 		used but offers better performance.
922  * 	Return
923  * 		For XDP, the helper returns **XDP_REDIRECT** on success or
924  * 		**XDP_ABORTED** on error. For other program types, the values
925  * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
926  * 		error.
927  *
928  * u32 bpf_get_route_realm(struct sk_buff *skb)
929  * 	Description
930  * 		Retrieve the realm or the route, that is to say the
931  * 		**tclassid** field of the destination for the *skb*. The
932  * 		indentifier retrieved is a user-provided tag, similar to the
933  * 		one used with the net_cls cgroup (see description for
934  * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
935  * 		held by a route (a destination entry), not by a task.
936  *
937  * 		Retrieving this identifier works with the clsact TC egress hook
938  * 		(see also **tc-bpf(8)**), or alternatively on conventional
939  * 		classful egress qdiscs, but not on TC ingress path. In case of
940  * 		clsact TC egress hook, this has the advantage that, internally,
941  * 		the destination entry has not been dropped yet in the transmit
942  * 		path. Therefore, the destination entry does not need to be
943  * 		artificially held via **netif_keep_dst**\ () for a classful
944  * 		qdisc until the *skb* is freed.
945  *
946  * 		This helper is available only if the kernel was compiled with
947  * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
948  * 	Return
949  * 		The realm of the route for the packet associated to *skb*, or 0
950  * 		if none was found.
951  *
952  * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
953  * 	Description
954  * 		Write raw *data* blob into a special BPF perf event held by
955  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
956  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
957  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
958  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
959  *
960  * 		The *flags* are used to indicate the index in *map* for which
961  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
962  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
963  * 		to indicate that the index of the current CPU core should be
964  * 		used.
965  *
966  * 		The value to write, of *size*, is passed through eBPF stack and
967  * 		pointed by *data*.
968  *
969  * 		The context of the program *ctx* needs also be passed to the
970  * 		helper.
971  *
972  * 		On user space, a program willing to read the values needs to
973  * 		call **perf_event_open**\ () on the perf event (either for
974  * 		one or for all CPUs) and to store the file descriptor into the
975  * 		*map*. This must be done before the eBPF program can send data
976  * 		into it. An example is available in file
977  * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
978  * 		tree (the eBPF program counterpart is in
979  * 		*samples/bpf/trace_output_kern.c*).
980  *
981  * 		**bpf_perf_event_output**\ () achieves better performance
982  * 		than **bpf_trace_printk**\ () for sharing data with user
983  * 		space, and is much better suitable for streaming data from eBPF
984  * 		programs.
985  *
986  * 		Note that this helper is not restricted to tracing use cases
987  * 		and can be used with programs attached to TC or XDP as well,
988  * 		where it allows for passing data to user space listeners. Data
989  * 		can be:
990  *
991  * 		* Only custom structs,
992  * 		* Only the packet payload, or
993  * 		* A combination of both.
994  * 	Return
995  * 		0 on success, or a negative error in case of failure.
996  *
997  * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
998  * 	Description
999  * 		This helper was provided as an easy way to load data from a
1000  * 		packet. It can be used to load *len* bytes from *offset* from
1001  * 		the packet associated to *skb*, into the buffer pointed by
1002  * 		*to*.
1003  *
1004  * 		Since Linux 4.7, usage of this helper has mostly been replaced
1005  * 		by "direct packet access", enabling packet data to be
1006  * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1007  * 		pointing respectively to the first byte of packet data and to
1008  * 		the byte after the last byte of packet data. However, it
1009  * 		remains useful if one wishes to read large quantities of data
1010  * 		at once from a packet into the eBPF stack.
1011  * 	Return
1012  * 		0 on success, or a negative error in case of failure.
1013  *
1014  * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)
1015  * 	Description
1016  * 		Walk a user or a kernel stack and return its id. To achieve
1017  * 		this, the helper needs *ctx*, which is a pointer to the context
1018  * 		on which the tracing program is executed, and a pointer to a
1019  * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1020  *
1021  * 		The last argument, *flags*, holds the number of stack frames to
1022  * 		skip (from 0 to 255), masked with
1023  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1024  * 		a combination of the following flags:
1025  *
1026  * 		**BPF_F_USER_STACK**
1027  * 			Collect a user space stack instead of a kernel stack.
1028  * 		**BPF_F_FAST_STACK_CMP**
1029  * 			Compare stacks by hash only.
1030  * 		**BPF_F_REUSE_STACKID**
1031  * 			If two different stacks hash into the same *stackid*,
1032  * 			discard the old one.
1033  *
1034  * 		The stack id retrieved is a 32 bit long integer handle which
1035  * 		can be further combined with other data (including other stack
1036  * 		ids) and used as a key into maps. This can be useful for
1037  * 		generating a variety of graphs (such as flame graphs or off-cpu
1038  * 		graphs).
1039  *
1040  * 		For walking a stack, this helper is an improvement over
1041  * 		**bpf_probe_read**\ (), which can be used with unrolled loops
1042  * 		but is not efficient and consumes a lot of eBPF instructions.
1043  * 		Instead, **bpf_get_stackid**\ () can collect up to
1044  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1045  * 		this limit can be controlled with the **sysctl** program, and
1046  * 		that it should be manually increased in order to profile long
1047  * 		user stacks (such as stacks for Java programs). To do so, use:
1048  *
1049  * 		::
1050  *
1051  * 			# sysctl kernel.perf_event_max_stack=<new value>
1052  * 	Return
1053  * 		The positive or null stack id on success, or a negative error
1054  * 		in case of failure.
1055  *
1056  * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1057  * 	Description
1058  * 		Compute a checksum difference, from the raw buffer pointed by
1059  * 		*from*, of length *from_size* (that must be a multiple of 4),
1060  * 		towards the raw buffer pointed by *to*, of size *to_size*
1061  * 		(same remark). An optional *seed* can be added to the value
1062  * 		(this can be cascaded, the seed may come from a previous call
1063  * 		to the helper).
1064  *
1065  * 		This is flexible enough to be used in several ways:
1066  *
1067  * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
1068  * 		  checksum, it can be used when pushing new data.
1069  * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
1070  * 		  checksum, it can be used when removing data from a packet.
1071  * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1072  * 		  can be used to compute a diff. Note that *from_size* and
1073  * 		  *to_size* do not need to be equal.
1074  *
1075  * 		This helper can be used in combination with
1076  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1077  * 		which one can feed in the difference computed with
1078  * 		**bpf_csum_diff**\ ().
1079  * 	Return
1080  * 		The checksum result, or a negative error code in case of
1081  * 		failure.
1082  *
1083  * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1084  * 	Description
1085  * 		Retrieve tunnel options metadata for the packet associated to
1086  * 		*skb*, and store the raw tunnel option data to the buffer *opt*
1087  * 		of *size*.
1088  *
1089  * 		This helper can be used with encapsulation devices that can
1090  * 		operate in "collect metadata" mode (please refer to the related
1091  * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
1092  * 		more details). A particular example where this can be used is
1093  * 		in combination with the Geneve encapsulation protocol, where it
1094  * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1095  * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
1096  * 		the eBPF program. This allows for full customization of these
1097  * 		headers.
1098  * 	Return
1099  * 		The size of the option data retrieved.
1100  *
1101  * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1102  * 	Description
1103  * 		Set tunnel options metadata for the packet associated to *skb*
1104  * 		to the option data contained in the raw buffer *opt* of *size*.
1105  *
1106  * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1107  * 		helper for additional information.
1108  * 	Return
1109  * 		0 on success, or a negative error in case of failure.
1110  *
1111  * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1112  * 	Description
1113  * 		Change the protocol of the *skb* to *proto*. Currently
1114  * 		supported are transition from IPv4 to IPv6, and from IPv6 to
1115  * 		IPv4. The helper takes care of the groundwork for the
1116  * 		transition, including resizing the socket buffer. The eBPF
1117  * 		program is expected to fill the new headers, if any, via
1118  * 		**skb_store_bytes**\ () and to recompute the checksums with
1119  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1120  * 		(). The main case for this helper is to perform NAT64
1121  * 		operations out of an eBPF program.
1122  *
1123  * 		Internally, the GSO type is marked as dodgy so that headers are
1124  * 		checked and segments are recalculated by the GSO/GRO engine.
1125  * 		The size for GSO target is adapted as well.
1126  *
1127  * 		All values for *flags* are reserved for future usage, and must
1128  * 		be left at zero.
1129  *
1130  * 		A call to this helper is susceptible to change the underlaying
1131  * 		packet buffer. Therefore, at load time, all checks on pointers
1132  * 		previously done by the verifier are invalidated and must be
1133  * 		performed again, if the helper is used in combination with
1134  * 		direct packet access.
1135  * 	Return
1136  * 		0 on success, or a negative error in case of failure.
1137  *
1138  * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1139  * 	Description
1140  * 		Change the packet type for the packet associated to *skb*. This
1141  * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
1142  * 		the eBPF program does not have a write access to *skb*\
1143  * 		**->pkt_type** beside this helper. Using a helper here allows
1144  * 		for graceful handling of errors.
1145  *
1146  * 		The major use case is to change incoming *skb*s to
1147  * 		**PACKET_HOST** in a programmatic way instead of having to
1148  * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1149  * 		example.
1150  *
1151  * 		Note that *type* only allows certain values. At this time, they
1152  * 		are:
1153  *
1154  * 		**PACKET_HOST**
1155  * 			Packet is for us.
1156  * 		**PACKET_BROADCAST**
1157  * 			Send packet to all.
1158  * 		**PACKET_MULTICAST**
1159  * 			Send packet to group.
1160  * 		**PACKET_OTHERHOST**
1161  * 			Send packet to someone else.
1162  * 	Return
1163  * 		0 on success, or a negative error in case of failure.
1164  *
1165  * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1166  * 	Description
1167  * 		Check whether *skb* is a descendant of the cgroup2 held by
1168  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1169  * 	Return
1170  * 		The return value depends on the result of the test, and can be:
1171  *
1172  * 		* 0, if the *skb* failed the cgroup2 descendant test.
1173  * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
1174  * 		* A negative error code, if an error occurred.
1175  *
1176  * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1177  * 	Description
1178  * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1179  * 		not set, in particular if the hash was cleared due to mangling,
1180  * 		recompute this hash. Later accesses to the hash can be done
1181  * 		directly with *skb*\ **->hash**.
1182  *
1183  * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
1184  * 		prototype with **bpf_skb_change_proto**\ (), or calling
1185  * 		**bpf_skb_store_bytes**\ () with the
1186  * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1187  * 		the hash and to trigger a new computation for the next call to
1188  * 		**bpf_get_hash_recalc**\ ().
1189  * 	Return
1190  * 		The 32-bit hash.
1191  *
1192  * u64 bpf_get_current_task(void)
1193  * 	Return
1194  * 		A pointer to the current task struct.
1195  *
1196  * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1197  * 	Description
1198  * 		Attempt in a safe way to write *len* bytes from the buffer
1199  * 		*src* to *dst* in memory. It only works for threads that are in
1200  * 		user context, and *dst* must be a valid user space address.
1201  *
1202  * 		This helper should not be used to implement any kind of
1203  * 		security mechanism because of TOC-TOU attacks, but rather to
1204  * 		debug, divert, and manipulate execution of semi-cooperative
1205  * 		processes.
1206  *
1207  * 		Keep in mind that this feature is meant for experiments, and it
1208  * 		has a risk of crashing the system and running programs.
1209  * 		Therefore, when an eBPF program using this helper is attached,
1210  * 		a warning including PID and process name is printed to kernel
1211  * 		logs.
1212  * 	Return
1213  * 		0 on success, or a negative error in case of failure.
1214  *
1215  * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1216  * 	Description
1217  * 		Check whether the probe is being run is the context of a given
1218  * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1219  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1220  * 	Return
1221  * 		The return value depends on the result of the test, and can be:
1222  *
1223  * 		* 0, if the *skb* task belongs to the cgroup2.
1224  * 		* 1, if the *skb* task does not belong to the cgroup2.
1225  * 		* A negative error code, if an error occurred.
1226  *
1227  * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1228  * 	Description
1229  * 		Resize (trim or grow) the packet associated to *skb* to the
1230  * 		new *len*. The *flags* are reserved for future usage, and must
1231  * 		be left at zero.
1232  *
1233  * 		The basic idea is that the helper performs the needed work to
1234  * 		change the size of the packet, then the eBPF program rewrites
1235  * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
1236  * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1237  * 		and others. This helper is a slow path utility intended for
1238  * 		replies with control messages. And because it is targeted for
1239  * 		slow path, the helper itself can afford to be slow: it
1240  * 		implicitly linearizes, unclones and drops offloads from the
1241  * 		*skb*.
1242  *
1243  * 		A call to this helper is susceptible to change the underlaying
1244  * 		packet buffer. Therefore, at load time, all checks on pointers
1245  * 		previously done by the verifier are invalidated and must be
1246  * 		performed again, if the helper is used in combination with
1247  * 		direct packet access.
1248  * 	Return
1249  * 		0 on success, or a negative error in case of failure.
1250  *
1251  * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1252  * 	Description
1253  * 		Pull in non-linear data in case the *skb* is non-linear and not
1254  * 		all of *len* are part of the linear section. Make *len* bytes
1255  * 		from *skb* readable and writable. If a zero value is passed for
1256  * 		*len*, then the whole length of the *skb* is pulled.
1257  *
1258  * 		This helper is only needed for reading and writing with direct
1259  * 		packet access.
1260  *
1261  * 		For direct packet access, testing that offsets to access
1262  * 		are within packet boundaries (test on *skb*\ **->data_end**) is
1263  * 		susceptible to fail if offsets are invalid, or if the requested
1264  * 		data is in non-linear parts of the *skb*. On failure the
1265  * 		program can just bail out, or in the case of a non-linear
1266  * 		buffer, use a helper to make the data available. The
1267  * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
1268  * 		the data. Another one consists in using **bpf_skb_pull_data**
1269  * 		to pull in once the non-linear parts, then retesting and
1270  * 		eventually access the data.
1271  *
1272  * 		At the same time, this also makes sure the *skb* is uncloned,
1273  * 		which is a necessary condition for direct write. As this needs
1274  * 		to be an invariant for the write part only, the verifier
1275  * 		detects writes and adds a prologue that is calling
1276  * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
1277  * 		the very beginning in case it is indeed cloned.
1278  *
1279  * 		A call to this helper is susceptible to change the underlaying
1280  * 		packet buffer. Therefore, at load time, all checks on pointers
1281  * 		previously done by the verifier are invalidated and must be
1282  * 		performed again, if the helper is used in combination with
1283  * 		direct packet access.
1284  * 	Return
1285  * 		0 on success, or a negative error in case of failure.
1286  *
1287  * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1288  * 	Description
1289  * 		Add the checksum *csum* into *skb*\ **->csum** in case the
1290  * 		driver has supplied a checksum for the entire packet into that
1291  * 		field. Return an error otherwise. This helper is intended to be
1292  * 		used in combination with **bpf_csum_diff**\ (), in particular
1293  * 		when the checksum needs to be updated after data has been
1294  * 		written into the packet through direct packet access.
1295  * 	Return
1296  * 		The checksum on success, or a negative error code in case of
1297  * 		failure.
1298  *
1299  * void bpf_set_hash_invalid(struct sk_buff *skb)
1300  * 	Description
1301  * 		Invalidate the current *skb*\ **->hash**. It can be used after
1302  * 		mangling on headers through direct packet access, in order to
1303  * 		indicate that the hash is outdated and to trigger a
1304  * 		recalculation the next time the kernel tries to access this
1305  * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
1306  *
1307  * int bpf_get_numa_node_id(void)
1308  * 	Description
1309  * 		Return the id of the current NUMA node. The primary use case
1310  * 		for this helper is the selection of sockets for the local NUMA
1311  * 		node, when the program is attached to sockets using the
1312  * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1313  * 		but the helper is also available to other eBPF program types,
1314  * 		similarly to **bpf_get_smp_processor_id**\ ().
1315  * 	Return
1316  * 		The id of current NUMA node.
1317  *
1318  * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1319  * 	Description
1320  * 		Grows headroom of packet associated to *skb* and adjusts the
1321  * 		offset of the MAC header accordingly, adding *len* bytes of
1322  * 		space. It automatically extends and reallocates memory as
1323  * 		required.
1324  *
1325  * 		This helper can be used on a layer 3 *skb* to push a MAC header
1326  * 		for redirection into a layer 2 device.
1327  *
1328  * 		All values for *flags* are reserved for future usage, and must
1329  * 		be left at zero.
1330  *
1331  * 		A call to this helper is susceptible to change the underlaying
1332  * 		packet buffer. Therefore, at load time, all checks on pointers
1333  * 		previously done by the verifier are invalidated and must be
1334  * 		performed again, if the helper is used in combination with
1335  * 		direct packet access.
1336  * 	Return
1337  * 		0 on success, or a negative error in case of failure.
1338  *
1339  * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1340  * 	Description
1341  * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1342  * 		it is possible to use a negative value for *delta*. This helper
1343  * 		can be used to prepare the packet for pushing or popping
1344  * 		headers.
1345  *
1346  * 		A call to this helper is susceptible to change the underlaying
1347  * 		packet buffer. Therefore, at load time, all checks on pointers
1348  * 		previously done by the verifier are invalidated and must be
1349  * 		performed again, if the helper is used in combination with
1350  * 		direct packet access.
1351  * 	Return
1352  * 		0 on success, or a negative error in case of failure.
1353  *
1354  * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
1355  * 	Description
1356  * 		Copy a NUL terminated string from an unsafe address
1357  * 		*unsafe_ptr* to *dst*. The *size* should include the
1358  * 		terminating NUL byte. In case the string length is smaller than
1359  * 		*size*, the target is not padded with further NUL bytes. If the
1360  * 		string length is larger than *size*, just *size*-1 bytes are
1361  * 		copied and the last byte is set to NUL.
1362  *
1363  * 		On success, the length of the copied string is returned. This
1364  * 		makes this helper useful in tracing programs for reading
1365  * 		strings, and more importantly to get its length at runtime. See
1366  * 		the following snippet:
1367  *
1368  * 		::
1369  *
1370  * 			SEC("kprobe/sys_open")
1371  * 			void bpf_sys_open(struct pt_regs *ctx)
1372  * 			{
1373  * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
1374  * 			        int res = bpf_probe_read_str(buf, sizeof(buf),
1375  * 				                             ctx->di);
1376  *
1377  * 				// Consume buf, for example push it to
1378  * 				// userspace via bpf_perf_event_output(); we
1379  * 				// can use res (the string length) as event
1380  * 				// size, after checking its boundaries.
1381  * 			}
1382  *
1383  * 		In comparison, using **bpf_probe_read()** helper here instead
1384  * 		to read the string would require to estimate the length at
1385  * 		compile time, and would often result in copying more memory
1386  * 		than necessary.
1387  *
1388  * 		Another useful use case is when parsing individual process
1389  * 		arguments or individual environment variables navigating
1390  * 		*current*\ **->mm->arg_start** and *current*\
1391  * 		**->mm->env_start**: using this helper and the return value,
1392  * 		one can quickly iterate at the right offset of the memory area.
1393  * 	Return
1394  * 		On success, the strictly positive length of the string,
1395  * 		including the trailing NUL character. On error, a negative
1396  * 		value.
1397  *
1398  * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1399  * 	Description
1400  * 		If the **struct sk_buff** pointed by *skb* has a known socket,
1401  * 		retrieve the cookie (generated by the kernel) of this socket.
1402  * 		If no cookie has been set yet, generate a new cookie. Once
1403  * 		generated, the socket cookie remains stable for the life of the
1404  * 		socket. This helper can be useful for monitoring per socket
1405  * 		networking traffic statistics as it provides a unique socket
1406  * 		identifier per namespace.
1407  * 	Return
1408  * 		A 8-byte long non-decreasing number on success, or 0 if the
1409  * 		socket field is missing inside *skb*.
1410  *
1411  * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1412  * 	Description
1413  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1414  * 		*skb*, but gets socket from **struct bpf_sock_addr** contex.
1415  * 	Return
1416  * 		A 8-byte long non-decreasing number.
1417  *
1418  * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1419  * 	Description
1420  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1421  * 		*skb*, but gets socket from **struct bpf_sock_ops** contex.
1422  * 	Return
1423  * 		A 8-byte long non-decreasing number.
1424  *
1425  * u32 bpf_get_socket_uid(struct sk_buff *skb)
1426  * 	Return
1427  * 		The owner UID of the socket associated to *skb*. If the socket
1428  * 		is **NULL**, or if it is not a full socket (i.e. if it is a
1429  * 		time-wait or a request socket instead), **overflowuid** value
1430  * 		is returned (note that **overflowuid** might also be the actual
1431  * 		UID value for the socket).
1432  *
1433  * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1434  * 	Description
1435  * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
1436  * 		to value *hash*.
1437  * 	Return
1438  * 		0
1439  *
1440  * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1441  * 	Description
1442  * 		Emulate a call to **setsockopt()** on the socket associated to
1443  * 		*bpf_socket*, which must be a full socket. The *level* at
1444  * 		which the option resides and the name *optname* of the option
1445  * 		must be specified, see **setsockopt(2)** for more information.
1446  * 		The option value of length *optlen* is pointed by *optval*.
1447  *
1448  * 		This helper actually implements a subset of **setsockopt()**.
1449  * 		It supports the following *level*\ s:
1450  *
1451  * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
1452  * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1453  * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1454  * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
1455  * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
1456  * 		  **TCP_BPF_SNDCWND_CLAMP**.
1457  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1458  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1459  * 	Return
1460  * 		0 on success, or a negative error in case of failure.
1461  *
1462  * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1463  * 	Description
1464  * 		Grow or shrink the room for data in the packet associated to
1465  * 		*skb* by *len_diff*, and according to the selected *mode*.
1466  *
1467  * 		There is a single supported mode at this time:
1468  *
1469  * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1470  * 		  (room space is added or removed below the layer 3 header).
1471  *
1472  * 		All values for *flags* are reserved for future usage, and must
1473  * 		be left at zero.
1474  *
1475  * 		A call to this helper is susceptible to change the underlaying
1476  * 		packet buffer. Therefore, at load time, all checks on pointers
1477  * 		previously done by the verifier are invalidated and must be
1478  * 		performed again, if the helper is used in combination with
1479  * 		direct packet access.
1480  * 	Return
1481  * 		0 on success, or a negative error in case of failure.
1482  *
1483  * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1484  * 	Description
1485  * 		Redirect the packet to the endpoint referenced by *map* at
1486  * 		index *key*. Depending on its type, this *map* can contain
1487  * 		references to net devices (for forwarding packets through other
1488  * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
1489  * 		but this is only implemented for native XDP (with driver
1490  * 		support) as of this writing).
1491  *
1492  * 		All values for *flags* are reserved for future usage, and must
1493  * 		be left at zero.
1494  *
1495  * 		When used to redirect packets to net devices, this helper
1496  * 		provides a high performance increase over **bpf_redirect**\ ().
1497  * 		This is due to various implementation details of the underlying
1498  * 		mechanisms, one of which is the fact that **bpf_redirect_map**\
1499  * 		() tries to send packet as a "bulk" to the device.
1500  * 	Return
1501  * 		**XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1502  *
1503  * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1504  * 	Description
1505  * 		Redirect the packet to the socket referenced by *map* (of type
1506  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1507  * 		egress interfaces can be used for redirection. The
1508  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1509  * 		distinction (ingress path is selected if the flag is present,
1510  * 		egress path otherwise). This is the only flag supported for now.
1511  * 	Return
1512  * 		**SK_PASS** on success, or **SK_DROP** on error.
1513  *
1514  * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1515  * 	Description
1516  * 		Add an entry to, or update a *map* referencing sockets. The
1517  * 		*skops* is used as a new value for the entry associated to
1518  * 		*key*. *flags* is one of:
1519  *
1520  * 		**BPF_NOEXIST**
1521  * 			The entry for *key* must not exist in the map.
1522  * 		**BPF_EXIST**
1523  * 			The entry for *key* must already exist in the map.
1524  * 		**BPF_ANY**
1525  * 			No condition on the existence of the entry for *key*.
1526  *
1527  * 		If the *map* has eBPF programs (parser and verdict), those will
1528  * 		be inherited by the socket being added. If the socket is
1529  * 		already attached to eBPF programs, this results in an error.
1530  * 	Return
1531  * 		0 on success, or a negative error in case of failure.
1532  *
1533  * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1534  * 	Description
1535  * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
1536  * 		*delta* (which can be positive or negative). Note that this
1537  * 		operation modifies the address stored in *xdp_md*\ **->data**,
1538  * 		so the latter must be loaded only after the helper has been
1539  * 		called.
1540  *
1541  * 		The use of *xdp_md*\ **->data_meta** is optional and programs
1542  * 		are not required to use it. The rationale is that when the
1543  * 		packet is processed with XDP (e.g. as DoS filter), it is
1544  * 		possible to push further meta data along with it before passing
1545  * 		to the stack, and to give the guarantee that an ingress eBPF
1546  * 		program attached as a TC classifier on the same device can pick
1547  * 		this up for further post-processing. Since TC works with socket
1548  * 		buffers, it remains possible to set from XDP the **mark** or
1549  * 		**priority** pointers, or other pointers for the socket buffer.
1550  * 		Having this scratch space generic and programmable allows for
1551  * 		more flexibility as the user is free to store whatever meta
1552  * 		data they need.
1553  *
1554  * 		A call to this helper is susceptible to change the underlaying
1555  * 		packet buffer. Therefore, at load time, all checks on pointers
1556  * 		previously done by the verifier are invalidated and must be
1557  * 		performed again, if the helper is used in combination with
1558  * 		direct packet access.
1559  * 	Return
1560  * 		0 on success, or a negative error in case of failure.
1561  *
1562  * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1563  * 	Description
1564  * 		Read the value of a perf event counter, and store it into *buf*
1565  * 		of size *buf_size*. This helper relies on a *map* of type
1566  * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1567  * 		counter is selected when *map* is updated with perf event file
1568  * 		descriptors. The *map* is an array whose size is the number of
1569  * 		available CPUs, and each cell contains a value relative to one
1570  * 		CPU. The value to retrieve is indicated by *flags*, that
1571  * 		contains the index of the CPU to look up, masked with
1572  * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1573  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1574  * 		current CPU should be retrieved.
1575  *
1576  * 		This helper behaves in a way close to
1577  * 		**bpf_perf_event_read**\ () helper, save that instead of
1578  * 		just returning the value observed, it fills the *buf*
1579  * 		structure. This allows for additional data to be retrieved: in
1580  * 		particular, the enabled and running times (in *buf*\
1581  * 		**->enabled** and *buf*\ **->running**, respectively) are
1582  * 		copied. In general, **bpf_perf_event_read_value**\ () is
1583  * 		recommended over **bpf_perf_event_read**\ (), which has some
1584  * 		ABI issues and provides fewer functionalities.
1585  *
1586  * 		These values are interesting, because hardware PMU (Performance
1587  * 		Monitoring Unit) counters are limited resources. When there are
1588  * 		more PMU based perf events opened than available counters,
1589  * 		kernel will multiplex these events so each event gets certain
1590  * 		percentage (but not all) of the PMU time. In case that
1591  * 		multiplexing happens, the number of samples or counter value
1592  * 		will not reflect the case compared to when no multiplexing
1593  * 		occurs. This makes comparison between different runs difficult.
1594  * 		Typically, the counter value should be normalized before
1595  * 		comparing to other experiments. The usual normalization is done
1596  * 		as follows.
1597  *
1598  * 		::
1599  *
1600  * 			normalized_counter = counter * t_enabled / t_running
1601  *
1602  * 		Where t_enabled is the time enabled for event and t_running is
1603  * 		the time running for event since last normalization. The
1604  * 		enabled and running times are accumulated since the perf event
1605  * 		open. To achieve scaling factor between two invocations of an
1606  * 		eBPF program, users can can use CPU id as the key (which is
1607  * 		typical for perf array usage model) to remember the previous
1608  * 		value and do the calculation inside the eBPF program.
1609  * 	Return
1610  * 		0 on success, or a negative error in case of failure.
1611  *
1612  * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1613  * 	Description
1614  * 		For en eBPF program attached to a perf event, retrieve the
1615  * 		value of the event counter associated to *ctx* and store it in
1616  * 		the structure pointed by *buf* and of size *buf_size*. Enabled
1617  * 		and running times are also stored in the structure (see
1618  * 		description of helper **bpf_perf_event_read_value**\ () for
1619  * 		more details).
1620  * 	Return
1621  * 		0 on success, or a negative error in case of failure.
1622  *
1623  * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1624  * 	Description
1625  * 		Emulate a call to **getsockopt()** on the socket associated to
1626  * 		*bpf_socket*, which must be a full socket. The *level* at
1627  * 		which the option resides and the name *optname* of the option
1628  * 		must be specified, see **getsockopt(2)** for more information.
1629  * 		The retrieved value is stored in the structure pointed by
1630  * 		*opval* and of length *optlen*.
1631  *
1632  * 		This helper actually implements a subset of **getsockopt()**.
1633  * 		It supports the following *level*\ s:
1634  *
1635  * 		* **IPPROTO_TCP**, which supports *optname*
1636  * 		  **TCP_CONGESTION**.
1637  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1638  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1639  * 	Return
1640  * 		0 on success, or a negative error in case of failure.
1641  *
1642  * int bpf_override_return(struct pt_reg *regs, u64 rc)
1643  * 	Description
1644  * 		Used for error injection, this helper uses kprobes to override
1645  * 		the return value of the probed function, and to set it to *rc*.
1646  * 		The first argument is the context *regs* on which the kprobe
1647  * 		works.
1648  *
1649  * 		This helper works by setting setting the PC (program counter)
1650  * 		to an override function which is run in place of the original
1651  * 		probed function. This means the probed function is not run at
1652  * 		all. The replacement function just returns with the required
1653  * 		value.
1654  *
1655  * 		This helper has security implications, and thus is subject to
1656  * 		restrictions. It is only available if the kernel was compiled
1657  * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1658  * 		option, and in this case it only works on functions tagged with
1659  * 		**ALLOW_ERROR_INJECTION** in the kernel code.
1660  *
1661  * 		Also, the helper is only available for the architectures having
1662  * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1663  * 		x86 architecture is the only one to support this feature.
1664  * 	Return
1665  * 		0
1666  *
1667  * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1668  * 	Description
1669  * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1670  * 		for the full TCP socket associated to *bpf_sock_ops* to
1671  * 		*argval*.
1672  *
1673  * 		The primary use of this field is to determine if there should
1674  * 		be calls to eBPF programs of type
1675  * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1676  * 		code. A program of the same type can change its value, per
1677  * 		connection and as necessary, when the connection is
1678  * 		established. This field is directly accessible for reading, but
1679  * 		this helper must be used for updates in order to return an
1680  * 		error if an eBPF program tries to set a callback that is not
1681  * 		supported in the current kernel.
1682  *
1683  * 		The supported callback values that *argval* can combine are:
1684  *
1685  * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1686  * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1687  * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1688  *
1689  * 		Here are some examples of where one could call such eBPF
1690  * 		program:
1691  *
1692  * 		* When RTO fires.
1693  * 		* When a packet is retransmitted.
1694  * 		* When the connection terminates.
1695  * 		* When a packet is sent.
1696  * 		* When a packet is received.
1697  * 	Return
1698  * 		Code **-EINVAL** if the socket is not a full TCP socket;
1699  * 		otherwise, a positive number containing the bits that could not
1700  * 		be set is returned (which comes down to 0 if all bits were set
1701  * 		as required).
1702  *
1703  * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1704  * 	Description
1705  * 		This helper is used in programs implementing policies at the
1706  * 		socket level. If the message *msg* is allowed to pass (i.e. if
1707  * 		the verdict eBPF program returns **SK_PASS**), redirect it to
1708  * 		the socket referenced by *map* (of type
1709  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1710  * 		egress interfaces can be used for redirection. The
1711  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1712  * 		distinction (ingress path is selected if the flag is present,
1713  * 		egress path otherwise). This is the only flag supported for now.
1714  * 	Return
1715  * 		**SK_PASS** on success, or **SK_DROP** on error.
1716  *
1717  * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1718  * 	Description
1719  * 		For socket policies, apply the verdict of the eBPF program to
1720  * 		the next *bytes* (number of bytes) of message *msg*.
1721  *
1722  * 		For example, this helper can be used in the following cases:
1723  *
1724  * 		* A single **sendmsg**\ () or **sendfile**\ () system call
1725  * 		  contains multiple logical messages that the eBPF program is
1726  * 		  supposed to read and for which it should apply a verdict.
1727  * 		* An eBPF program only cares to read the first *bytes* of a
1728  * 		  *msg*. If the message has a large payload, then setting up
1729  * 		  and calling the eBPF program repeatedly for all bytes, even
1730  * 		  though the verdict is already known, would create unnecessary
1731  * 		  overhead.
1732  *
1733  * 		When called from within an eBPF program, the helper sets a
1734  * 		counter internal to the BPF infrastructure, that is used to
1735  * 		apply the last verdict to the next *bytes*. If *bytes* is
1736  * 		smaller than the current data being processed from a
1737  * 		**sendmsg**\ () or **sendfile**\ () system call, the first
1738  * 		*bytes* will be sent and the eBPF program will be re-run with
1739  * 		the pointer for start of data pointing to byte number *bytes*
1740  * 		**+ 1**. If *bytes* is larger than the current data being
1741  * 		processed, then the eBPF verdict will be applied to multiple
1742  * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1743  * 		consumed.
1744  *
1745  * 		Note that if a socket closes with the internal counter holding
1746  * 		a non-zero value, this is not a problem because data is not
1747  * 		being buffered for *bytes* and is sent as it is received.
1748  * 	Return
1749  * 		0
1750  *
1751  * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1752  * 	Description
1753  * 		For socket policies, prevent the execution of the verdict eBPF
1754  * 		program for message *msg* until *bytes* (byte number) have been
1755  * 		accumulated.
1756  *
1757  * 		This can be used when one needs a specific number of bytes
1758  * 		before a verdict can be assigned, even if the data spans
1759  * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1760  * 		case would be a user calling **sendmsg**\ () repeatedly with
1761  * 		1-byte long message segments. Obviously, this is bad for
1762  * 		performance, but it is still valid. If the eBPF program needs
1763  * 		*bytes* bytes to validate a header, this helper can be used to
1764  * 		prevent the eBPF program to be called again until *bytes* have
1765  * 		been accumulated.
1766  * 	Return
1767  * 		0
1768  *
1769  * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1770  * 	Description
1771  * 		For socket policies, pull in non-linear data from user space
1772  * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
1773  * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
1774  * 		respectively.
1775  *
1776  * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1777  * 		*msg* it can only parse data that the (**data**, **data_end**)
1778  * 		pointers have already consumed. For **sendmsg**\ () hooks this
1779  * 		is likely the first scatterlist element. But for calls relying
1780  * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1781  * 		be the range (**0**, **0**) because the data is shared with
1782  * 		user space and by default the objective is to avoid allowing
1783  * 		user space to modify data while (or after) eBPF verdict is
1784  * 		being decided. This helper can be used to pull in data and to
1785  * 		set the start and end pointer to given values. Data will be
1786  * 		copied if necessary (i.e. if data was not linear and if start
1787  * 		and end pointers do not point to the same chunk).
1788  *
1789  * 		A call to this helper is susceptible to change the underlaying
1790  * 		packet buffer. Therefore, at load time, all checks on pointers
1791  * 		previously done by the verifier are invalidated and must be
1792  * 		performed again, if the helper is used in combination with
1793  * 		direct packet access.
1794  *
1795  * 		All values for *flags* are reserved for future usage, and must
1796  * 		be left at zero.
1797  * 	Return
1798  * 		0 on success, or a negative error in case of failure.
1799  *
1800  * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1801  * 	Description
1802  * 		Bind the socket associated to *ctx* to the address pointed by
1803  * 		*addr*, of length *addr_len*. This allows for making outgoing
1804  * 		connection from the desired IP address, which can be useful for
1805  * 		example when all processes inside a cgroup should use one
1806  * 		single IP address on a host that has multiple IP configured.
1807  *
1808  * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1809  * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1810  * 		**AF_INET6**). Looking for a free port to bind to can be
1811  * 		expensive, therefore binding to port is not permitted by the
1812  * 		helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1813  * 		must be set to zero.
1814  * 	Return
1815  * 		0 on success, or a negative error in case of failure.
1816  *
1817  * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1818  * 	Description
1819  * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1820  * 		only possible to shrink the packet as of this writing,
1821  * 		therefore *delta* must be a negative integer.
1822  *
1823  * 		A call to this helper is susceptible to change the underlaying
1824  * 		packet buffer. Therefore, at load time, all checks on pointers
1825  * 		previously done by the verifier are invalidated and must be
1826  * 		performed again, if the helper is used in combination with
1827  * 		direct packet access.
1828  * 	Return
1829  * 		0 on success, or a negative error in case of failure.
1830  *
1831  * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1832  * 	Description
1833  * 		Retrieve the XFRM state (IP transform framework, see also
1834  * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1835  *
1836  * 		The retrieved value is stored in the **struct bpf_xfrm_state**
1837  * 		pointed by *xfrm_state* and of length *size*.
1838  *
1839  * 		All values for *flags* are reserved for future usage, and must
1840  * 		be left at zero.
1841  *
1842  * 		This helper is available only if the kernel was compiled with
1843  * 		**CONFIG_XFRM** configuration option.
1844  * 	Return
1845  * 		0 on success, or a negative error in case of failure.
1846  *
1847  * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags)
1848  * 	Description
1849  * 		Return a user or a kernel stack in bpf program provided buffer.
1850  * 		To achieve this, the helper needs *ctx*, which is a pointer
1851  * 		to the context on which the tracing program is executed.
1852  * 		To store the stacktrace, the bpf program provides *buf* with
1853  * 		a nonnegative *size*.
1854  *
1855  * 		The last argument, *flags*, holds the number of stack frames to
1856  * 		skip (from 0 to 255), masked with
1857  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1858  * 		the following flags:
1859  *
1860  * 		**BPF_F_USER_STACK**
1861  * 			Collect a user space stack instead of a kernel stack.
1862  * 		**BPF_F_USER_BUILD_ID**
1863  * 			Collect buildid+offset instead of ips for user stack,
1864  * 			only valid if **BPF_F_USER_STACK** is also specified.
1865  *
1866  * 		**bpf_get_stack**\ () can collect up to
1867  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1868  * 		to sufficient large buffer size. Note that
1869  * 		this limit can be controlled with the **sysctl** program, and
1870  * 		that it should be manually increased in order to profile long
1871  * 		user stacks (such as stacks for Java programs). To do so, use:
1872  *
1873  * 		::
1874  *
1875  * 			# sysctl kernel.perf_event_max_stack=<new value>
1876  * 	Return
1877  * 		A non-negative value equal to or less than *size* on success,
1878  * 		or a negative error in case of failure.
1879  *
1880  * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header)
1881  * 	Description
1882  * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
1883  * 		it provides an easy way to load *len* bytes from *offset*
1884  * 		from the packet associated to *skb*, into the buffer pointed
1885  * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
1886  * 		a fifth argument *start_header* exists in order to select a
1887  * 		base offset to start from. *start_header* can be one of:
1888  *
1889  * 		**BPF_HDR_START_MAC**
1890  * 			Base offset to load data from is *skb*'s mac header.
1891  * 		**BPF_HDR_START_NET**
1892  * 			Base offset to load data from is *skb*'s network header.
1893  *
1894  * 		In general, "direct packet access" is the preferred method to
1895  * 		access packet data, however, this helper is in particular useful
1896  * 		in socket filters where *skb*\ **->data** does not always point
1897  * 		to the start of the mac header and where "direct packet access"
1898  * 		is not available.
1899  * 	Return
1900  * 		0 on success, or a negative error in case of failure.
1901  *
1902  * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
1903  *	Description
1904  *		Do FIB lookup in kernel tables using parameters in *params*.
1905  *		If lookup is successful and result shows packet is to be
1906  *		forwarded, the neighbor tables are searched for the nexthop.
1907  *		If successful (ie., FIB lookup shows forwarding and nexthop
1908  *		is resolved), the nexthop address is returned in ipv4_dst
1909  *		or ipv6_dst based on family, smac is set to mac address of
1910  *		egress device, dmac is set to nexthop mac address, rt_metric
1911  *		is set to metric from route (IPv4/IPv6 only), and ifindex
1912  *		is set to the device index of the nexthop from the FIB lookup.
1913  *
1914  *             *plen* argument is the size of the passed in struct.
1915  *             *flags* argument can be a combination of one or more of the
1916  *             following values:
1917  *
1918  *		**BPF_FIB_LOOKUP_DIRECT**
1919  *			Do a direct table lookup vs full lookup using FIB
1920  *			rules.
1921  *		**BPF_FIB_LOOKUP_OUTPUT**
1922  *			Perform lookup from an egress perspective (default is
1923  *			ingress).
1924  *
1925  *             *ctx* is either **struct xdp_md** for XDP programs or
1926  *             **struct sk_buff** tc cls_act programs.
1927  *     Return
1928  *		* < 0 if any input argument is invalid
1929  *		*   0 on success (packet is forwarded, nexthop neighbor exists)
1930  *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
1931  *		  packet is not forwarded or needs assist from full stack
1932  *
1933  * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags)
1934  *	Description
1935  *		Add an entry to, or update a sockhash *map* referencing sockets.
1936  *		The *skops* is used as a new value for the entry associated to
1937  *		*key*. *flags* is one of:
1938  *
1939  *		**BPF_NOEXIST**
1940  *			The entry for *key* must not exist in the map.
1941  *		**BPF_EXIST**
1942  *			The entry for *key* must already exist in the map.
1943  *		**BPF_ANY**
1944  *			No condition on the existence of the entry for *key*.
1945  *
1946  *		If the *map* has eBPF programs (parser and verdict), those will
1947  *		be inherited by the socket being added. If the socket is
1948  *		already attached to eBPF programs, this results in an error.
1949  *	Return
1950  *		0 on success, or a negative error in case of failure.
1951  *
1952  * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
1953  *	Description
1954  *		This helper is used in programs implementing policies at the
1955  *		socket level. If the message *msg* is allowed to pass (i.e. if
1956  *		the verdict eBPF program returns **SK_PASS**), redirect it to
1957  *		the socket referenced by *map* (of type
1958  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1959  *		egress interfaces can be used for redirection. The
1960  *		**BPF_F_INGRESS** value in *flags* is used to make the
1961  *		distinction (ingress path is selected if the flag is present,
1962  *		egress path otherwise). This is the only flag supported for now.
1963  *	Return
1964  *		**SK_PASS** on success, or **SK_DROP** on error.
1965  *
1966  * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
1967  *	Description
1968  *		This helper is used in programs implementing policies at the
1969  *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
1970  *		if the verdeict eBPF program returns **SK_PASS**), redirect it
1971  *		to the socket referenced by *map* (of type
1972  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1973  *		egress interfaces can be used for redirection. The
1974  *		**BPF_F_INGRESS** value in *flags* is used to make the
1975  *		distinction (ingress path is selected if the flag is present,
1976  *		egress otherwise). This is the only flag supported for now.
1977  *	Return
1978  *		**SK_PASS** on success, or **SK_DROP** on error.
1979  *
1980  * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
1981  *	Description
1982  *		Encapsulate the packet associated to *skb* within a Layer 3
1983  *		protocol header. This header is provided in the buffer at
1984  *		address *hdr*, with *len* its size in bytes. *type* indicates
1985  *		the protocol of the header and can be one of:
1986  *
1987  *		**BPF_LWT_ENCAP_SEG6**
1988  *			IPv6 encapsulation with Segment Routing Header
1989  *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
1990  *			the IPv6 header is computed by the kernel.
1991  *		**BPF_LWT_ENCAP_SEG6_INLINE**
1992  *			Only works if *skb* contains an IPv6 packet. Insert a
1993  *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
1994  *			the IPv6 header.
1995  *
1996  * 		A call to this helper is susceptible to change the underlaying
1997  * 		packet buffer. Therefore, at load time, all checks on pointers
1998  * 		previously done by the verifier are invalidated and must be
1999  * 		performed again, if the helper is used in combination with
2000  * 		direct packet access.
2001  *	Return
2002  * 		0 on success, or a negative error in case of failure.
2003  *
2004  * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2005  *	Description
2006  *		Store *len* bytes from address *from* into the packet
2007  *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
2008  *		inside the outermost IPv6 Segment Routing Header can be
2009  *		modified through this helper.
2010  *
2011  * 		A call to this helper is susceptible to change the underlaying
2012  * 		packet buffer. Therefore, at load time, all checks on pointers
2013  * 		previously done by the verifier are invalidated and must be
2014  * 		performed again, if the helper is used in combination with
2015  * 		direct packet access.
2016  *	Return
2017  * 		0 on success, or a negative error in case of failure.
2018  *
2019  * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2020  *	Description
2021  *		Adjust the size allocated to TLVs in the outermost IPv6
2022  *		Segment Routing Header contained in the packet associated to
2023  *		*skb*, at position *offset* by *delta* bytes. Only offsets
2024  *		after the segments are accepted. *delta* can be as well
2025  *		positive (growing) as negative (shrinking).
2026  *
2027  * 		A call to this helper is susceptible to change the underlaying
2028  * 		packet buffer. Therefore, at load time, all checks on pointers
2029  * 		previously done by the verifier are invalidated and must be
2030  * 		performed again, if the helper is used in combination with
2031  * 		direct packet access.
2032  *	Return
2033  * 		0 on success, or a negative error in case of failure.
2034  *
2035  * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2036  *	Description
2037  *		Apply an IPv6 Segment Routing action of type *action* to the
2038  *		packet associated to *skb*. Each action takes a parameter
2039  *		contained at address *param*, and of length *param_len* bytes.
2040  *		*action* can be one of:
2041  *
2042  *		**SEG6_LOCAL_ACTION_END_X**
2043  *			End.X action: Endpoint with Layer-3 cross-connect.
2044  *			Type of *param*: **struct in6_addr**.
2045  *		**SEG6_LOCAL_ACTION_END_T**
2046  *			End.T action: Endpoint with specific IPv6 table lookup.
2047  *			Type of *param*: **int**.
2048  *		**SEG6_LOCAL_ACTION_END_B6**
2049  *			End.B6 action: Endpoint bound to an SRv6 policy.
2050  *			Type of param: **struct ipv6_sr_hdr**.
2051  *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
2052  *			End.B6.Encap action: Endpoint bound to an SRv6
2053  *			encapsulation policy.
2054  *			Type of param: **struct ipv6_sr_hdr**.
2055  *
2056  * 		A call to this helper is susceptible to change the underlaying
2057  * 		packet buffer. Therefore, at load time, all checks on pointers
2058  * 		previously done by the verifier are invalidated and must be
2059  * 		performed again, if the helper is used in combination with
2060  * 		direct packet access.
2061  *	Return
2062  * 		0 on success, or a negative error in case of failure.
2063  *
2064  * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2065  *	Description
2066  *		This helper is used in programs implementing IR decoding, to
2067  *		report a successfully decoded key press with *scancode*,
2068  *		*toggle* value in the given *protocol*. The scancode will be
2069  *		translated to a keycode using the rc keymap, and reported as
2070  *		an input key down event. After a period a key up event is
2071  *		generated. This period can be extended by calling either
2072  *		**bpf_rc_keydown** () again with the same values, or calling
2073  *		**bpf_rc_repeat** ().
2074  *
2075  *		Some protocols include a toggle bit, in case the button	was
2076  *		released and pressed again between consecutive scancodes.
2077  *
2078  *		The *ctx* should point to the lirc sample as passed into
2079  *		the program.
2080  *
2081  *		The *protocol* is the decoded protocol number (see
2082  *		**enum rc_proto** for some predefined values).
2083  *
2084  *		This helper is only available is the kernel was compiled with
2085  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2086  *		"**y**".
2087  *	Return
2088  *		0
2089  *
2090  * int bpf_rc_repeat(void *ctx)
2091  *	Description
2092  *		This helper is used in programs implementing IR decoding, to
2093  *		report a successfully decoded repeat key message. This delays
2094  *		the generation of a key up event for previously generated
2095  *		key down event.
2096  *
2097  *		Some IR protocols like NEC have a special IR message for
2098  *		repeating last button, for when a button is held down.
2099  *
2100  *		The *ctx* should point to the lirc sample as passed into
2101  *		the program.
2102  *
2103  *		This helper is only available is the kernel was compiled with
2104  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2105  *		"**y**".
2106  *	Return
2107  *		0
2108  *
2109  * uint64_t bpf_skb_cgroup_id(struct sk_buff *skb)
2110  * 	Description
2111  * 		Return the cgroup v2 id of the socket associated with the *skb*.
2112  * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2113  * 		helper for cgroup v1 by providing a tag resp. identifier that
2114  * 		can be matched on or used for map lookups e.g. to implement
2115  * 		policy. The cgroup v2 id of a given path in the hierarchy is
2116  * 		exposed in user space through the f_handle API in order to get
2117  * 		to the same 64-bit id.
2118  *
2119  * 		This helper can be used on TC egress path, but not on ingress,
2120  * 		and is available only if the kernel was compiled with the
2121  * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
2122  * 	Return
2123  * 		The id is returned or 0 in case the id could not be retrieved.
2124  *
2125  * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2126  *	Description
2127  *		Return id of cgroup v2 that is ancestor of cgroup associated
2128  *		with the *skb* at the *ancestor_level*.  The root cgroup is at
2129  *		*ancestor_level* zero and each step down the hierarchy
2130  *		increments the level. If *ancestor_level* == level of cgroup
2131  *		associated with *skb*, then return value will be same as that
2132  *		of **bpf_skb_cgroup_id**\ ().
2133  *
2134  *		The helper is useful to implement policies based on cgroups
2135  *		that are upper in hierarchy than immediate cgroup associated
2136  *		with *skb*.
2137  *
2138  *		The format of returned id and helper limitations are same as in
2139  *		**bpf_skb_cgroup_id**\ ().
2140  *	Return
2141  *		The id is returned or 0 in case the id could not be retrieved.
2142  *
2143  * u64 bpf_get_current_cgroup_id(void)
2144  * 	Return
2145  * 		A 64-bit integer containing the current cgroup id based
2146  * 		on the cgroup within which the current task is running.
2147  *
2148  * void* get_local_storage(void *map, u64 flags)
2149  *	Description
2150  *		Get the pointer to the local storage area.
2151  *		The type and the size of the local storage is defined
2152  *		by the *map* argument.
2153  *		The *flags* meaning is specific for each map type,
2154  *		and has to be 0 for cgroup local storage.
2155  *
2156  *		Depending on the bpf program type, a local storage area
2157  *		can be shared between multiple instances of the bpf program,
2158  *		running simultaneously.
2159  *
2160  *		A user should care about the synchronization by himself.
2161  *		For example, by using the BPF_STX_XADD instruction to alter
2162  *		the shared data.
2163  *	Return
2164  *		Pointer to the local storage area.
2165  *
2166  * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2167  *	Description
2168  *		Select a SO_REUSEPORT sk from a	BPF_MAP_TYPE_REUSEPORT_ARRAY map
2169  *		It checks the selected sk is matching the incoming
2170  *		request in the skb.
2171  *	Return
2172  *		0 on success, or a negative error in case of failure.
2173  *
2174  * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u32 netns, u64 flags)
2175  *	Description
2176  *		Look for TCP socket matching *tuple*, optionally in a child
2177  *		network namespace *netns*. The return value must be checked,
2178  *		and if non-NULL, released via **bpf_sk_release**\ ().
2179  *
2180  *		The *ctx* should point to the context of the program, such as
2181  *		the skb or socket (depending on the hook in use). This is used
2182  *		to determine the base network namespace for the lookup.
2183  *
2184  *		*tuple_size* must be one of:
2185  *
2186  *		**sizeof**\ (*tuple*\ **->ipv4**)
2187  *			Look for an IPv4 socket.
2188  *		**sizeof**\ (*tuple*\ **->ipv6**)
2189  *			Look for an IPv6 socket.
2190  *
2191  *		If the *netns* is zero, then the socket lookup table in the
2192  *		netns associated with the *ctx* will be used. For the TC hooks,
2193  *		this in the netns of the device in the skb. For socket hooks,
2194  *		this in the netns of the socket. If *netns* is non-zero, then
2195  *		it specifies the ID of the netns relative to the netns
2196  *		associated with the *ctx*.
2197  *
2198  *		All values for *flags* are reserved for future usage, and must
2199  *		be left at zero.
2200  *
2201  *		This helper is available only if the kernel was compiled with
2202  *		**CONFIG_NET** configuration option.
2203  *	Return
2204  *		Pointer to *struct bpf_sock*, or NULL in case of failure.
2205  *
2206  * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u32 netns, u64 flags)
2207  *	Description
2208  *		Look for UDP socket matching *tuple*, optionally in a child
2209  *		network namespace *netns*. The return value must be checked,
2210  *		and if non-NULL, released via **bpf_sk_release**\ ().
2211  *
2212  *		The *ctx* should point to the context of the program, such as
2213  *		the skb or socket (depending on the hook in use). This is used
2214  *		to determine the base network namespace for the lookup.
2215  *
2216  *		*tuple_size* must be one of:
2217  *
2218  *		**sizeof**\ (*tuple*\ **->ipv4**)
2219  *			Look for an IPv4 socket.
2220  *		**sizeof**\ (*tuple*\ **->ipv6**)
2221  *			Look for an IPv6 socket.
2222  *
2223  *		If the *netns* is zero, then the socket lookup table in the
2224  *		netns associated with the *ctx* will be used. For the TC hooks,
2225  *		this in the netns of the device in the skb. For socket hooks,
2226  *		this in the netns of the socket. If *netns* is non-zero, then
2227  *		it specifies the ID of the netns relative to the netns
2228  *		associated with the *ctx*.
2229  *
2230  *		All values for *flags* are reserved for future usage, and must
2231  *		be left at zero.
2232  *
2233  *		This helper is available only if the kernel was compiled with
2234  *		**CONFIG_NET** configuration option.
2235  *	Return
2236  *		Pointer to *struct bpf_sock*, or NULL in case of failure.
2237  *
2238  * int bpf_sk_release(struct bpf_sock *sk)
2239  *	Description
2240  *		Release the reference held by *sock*. *sock* must be a non-NULL
2241  *		pointer that was returned from bpf_sk_lookup_xxx\ ().
2242  *	Return
2243  *		0 on success, or a negative error in case of failure.
2244  *
2245  * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags)
2246  *	Description
2247  *		For socket policies, insert *len* bytes into msg at offset
2248  *		*start*.
2249  *
2250  *		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2251  *		*msg* it may want to insert metadata or options into the msg.
2252  *		This can later be read and used by any of the lower layer BPF
2253  *		hooks.
2254  *
2255  *		This helper may fail if under memory pressure (a malloc
2256  *		fails) in these cases BPF programs will get an appropriate
2257  *		error and BPF programs will need to handle them.
2258  *
2259  *	Return
2260  *		0 on success, or a negative error in case of failure.
2261  */
2262 #define __BPF_FUNC_MAPPER(FN)		\
2263 	FN(unspec),			\
2264 	FN(map_lookup_elem),		\
2265 	FN(map_update_elem),		\
2266 	FN(map_delete_elem),		\
2267 	FN(probe_read),			\
2268 	FN(ktime_get_ns),		\
2269 	FN(trace_printk),		\
2270 	FN(get_prandom_u32),		\
2271 	FN(get_smp_processor_id),	\
2272 	FN(skb_store_bytes),		\
2273 	FN(l3_csum_replace),		\
2274 	FN(l4_csum_replace),		\
2275 	FN(tail_call),			\
2276 	FN(clone_redirect),		\
2277 	FN(get_current_pid_tgid),	\
2278 	FN(get_current_uid_gid),	\
2279 	FN(get_current_comm),		\
2280 	FN(get_cgroup_classid),		\
2281 	FN(skb_vlan_push),		\
2282 	FN(skb_vlan_pop),		\
2283 	FN(skb_get_tunnel_key),		\
2284 	FN(skb_set_tunnel_key),		\
2285 	FN(perf_event_read),		\
2286 	FN(redirect),			\
2287 	FN(get_route_realm),		\
2288 	FN(perf_event_output),		\
2289 	FN(skb_load_bytes),		\
2290 	FN(get_stackid),		\
2291 	FN(csum_diff),			\
2292 	FN(skb_get_tunnel_opt),		\
2293 	FN(skb_set_tunnel_opt),		\
2294 	FN(skb_change_proto),		\
2295 	FN(skb_change_type),		\
2296 	FN(skb_under_cgroup),		\
2297 	FN(get_hash_recalc),		\
2298 	FN(get_current_task),		\
2299 	FN(probe_write_user),		\
2300 	FN(current_task_under_cgroup),	\
2301 	FN(skb_change_tail),		\
2302 	FN(skb_pull_data),		\
2303 	FN(csum_update),		\
2304 	FN(set_hash_invalid),		\
2305 	FN(get_numa_node_id),		\
2306 	FN(skb_change_head),		\
2307 	FN(xdp_adjust_head),		\
2308 	FN(probe_read_str),		\
2309 	FN(get_socket_cookie),		\
2310 	FN(get_socket_uid),		\
2311 	FN(set_hash),			\
2312 	FN(setsockopt),			\
2313 	FN(skb_adjust_room),		\
2314 	FN(redirect_map),		\
2315 	FN(sk_redirect_map),		\
2316 	FN(sock_map_update),		\
2317 	FN(xdp_adjust_meta),		\
2318 	FN(perf_event_read_value),	\
2319 	FN(perf_prog_read_value),	\
2320 	FN(getsockopt),			\
2321 	FN(override_return),		\
2322 	FN(sock_ops_cb_flags_set),	\
2323 	FN(msg_redirect_map),		\
2324 	FN(msg_apply_bytes),		\
2325 	FN(msg_cork_bytes),		\
2326 	FN(msg_pull_data),		\
2327 	FN(bind),			\
2328 	FN(xdp_adjust_tail),		\
2329 	FN(skb_get_xfrm_state),		\
2330 	FN(get_stack),			\
2331 	FN(skb_load_bytes_relative),	\
2332 	FN(fib_lookup),			\
2333 	FN(sock_hash_update),		\
2334 	FN(msg_redirect_hash),		\
2335 	FN(sk_redirect_hash),		\
2336 	FN(lwt_push_encap),		\
2337 	FN(lwt_seg6_store_bytes),	\
2338 	FN(lwt_seg6_adjust_srh),	\
2339 	FN(lwt_seg6_action),		\
2340 	FN(rc_repeat),			\
2341 	FN(rc_keydown),			\
2342 	FN(skb_cgroup_id),		\
2343 	FN(get_current_cgroup_id),	\
2344 	FN(get_local_storage),		\
2345 	FN(sk_select_reuseport),	\
2346 	FN(skb_ancestor_cgroup_id),	\
2347 	FN(sk_lookup_tcp),		\
2348 	FN(sk_lookup_udp),		\
2349 	FN(sk_release),			\
2350 	FN(map_push_elem),		\
2351 	FN(map_pop_elem),		\
2352 	FN(map_peek_elem),		\
2353 	FN(msg_push_data),
2354 
2355 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
2356  * function eBPF program intends to call
2357  */
2358 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
2359 enum bpf_func_id {
2360 	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
2361 	__BPF_FUNC_MAX_ID,
2362 };
2363 #undef __BPF_ENUM_FN
2364 
2365 /* All flags used by eBPF helper functions, placed here. */
2366 
2367 /* BPF_FUNC_skb_store_bytes flags. */
2368 #define BPF_F_RECOMPUTE_CSUM		(1ULL << 0)
2369 #define BPF_F_INVALIDATE_HASH		(1ULL << 1)
2370 
2371 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
2372  * First 4 bits are for passing the header field size.
2373  */
2374 #define BPF_F_HDR_FIELD_MASK		0xfULL
2375 
2376 /* BPF_FUNC_l4_csum_replace flags. */
2377 #define BPF_F_PSEUDO_HDR		(1ULL << 4)
2378 #define BPF_F_MARK_MANGLED_0		(1ULL << 5)
2379 #define BPF_F_MARK_ENFORCE		(1ULL << 6)
2380 
2381 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
2382 #define BPF_F_INGRESS			(1ULL << 0)
2383 
2384 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
2385 #define BPF_F_TUNINFO_IPV6		(1ULL << 0)
2386 
2387 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
2388 #define BPF_F_SKIP_FIELD_MASK		0xffULL
2389 #define BPF_F_USER_STACK		(1ULL << 8)
2390 /* flags used by BPF_FUNC_get_stackid only. */
2391 #define BPF_F_FAST_STACK_CMP		(1ULL << 9)
2392 #define BPF_F_REUSE_STACKID		(1ULL << 10)
2393 /* flags used by BPF_FUNC_get_stack only. */
2394 #define BPF_F_USER_BUILD_ID		(1ULL << 11)
2395 
2396 /* BPF_FUNC_skb_set_tunnel_key flags. */
2397 #define BPF_F_ZERO_CSUM_TX		(1ULL << 1)
2398 #define BPF_F_DONT_FRAGMENT		(1ULL << 2)
2399 #define BPF_F_SEQ_NUMBER		(1ULL << 3)
2400 
2401 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
2402  * BPF_FUNC_perf_event_read_value flags.
2403  */
2404 #define BPF_F_INDEX_MASK		0xffffffffULL
2405 #define BPF_F_CURRENT_CPU		BPF_F_INDEX_MASK
2406 /* BPF_FUNC_perf_event_output for sk_buff input context. */
2407 #define BPF_F_CTXLEN_MASK		(0xfffffULL << 32)
2408 
2409 /* Mode for BPF_FUNC_skb_adjust_room helper. */
2410 enum bpf_adj_room_mode {
2411 	BPF_ADJ_ROOM_NET,
2412 };
2413 
2414 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
2415 enum bpf_hdr_start_off {
2416 	BPF_HDR_START_MAC,
2417 	BPF_HDR_START_NET,
2418 };
2419 
2420 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
2421 enum bpf_lwt_encap_mode {
2422 	BPF_LWT_ENCAP_SEG6,
2423 	BPF_LWT_ENCAP_SEG6_INLINE
2424 };
2425 
2426 /* user accessible mirror of in-kernel sk_buff.
2427  * new fields can only be added to the end of this structure
2428  */
2429 struct __sk_buff {
2430 	__u32 len;
2431 	__u32 pkt_type;
2432 	__u32 mark;
2433 	__u32 queue_mapping;
2434 	__u32 protocol;
2435 	__u32 vlan_present;
2436 	__u32 vlan_tci;
2437 	__u32 vlan_proto;
2438 	__u32 priority;
2439 	__u32 ingress_ifindex;
2440 	__u32 ifindex;
2441 	__u32 tc_index;
2442 	__u32 cb[5];
2443 	__u32 hash;
2444 	__u32 tc_classid;
2445 	__u32 data;
2446 	__u32 data_end;
2447 	__u32 napi_id;
2448 
2449 	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
2450 	__u32 family;
2451 	__u32 remote_ip4;	/* Stored in network byte order */
2452 	__u32 local_ip4;	/* Stored in network byte order */
2453 	__u32 remote_ip6[4];	/* Stored in network byte order */
2454 	__u32 local_ip6[4];	/* Stored in network byte order */
2455 	__u32 remote_port;	/* Stored in network byte order */
2456 	__u32 local_port;	/* stored in host byte order */
2457 	/* ... here. */
2458 
2459 	__u32 data_meta;
2460 	struct bpf_flow_keys *flow_keys;
2461 };
2462 
2463 struct bpf_tunnel_key {
2464 	__u32 tunnel_id;
2465 	union {
2466 		__u32 remote_ipv4;
2467 		__u32 remote_ipv6[4];
2468 	};
2469 	__u8 tunnel_tos;
2470 	__u8 tunnel_ttl;
2471 	__u16 tunnel_ext;	/* Padding, future use. */
2472 	__u32 tunnel_label;
2473 };
2474 
2475 /* user accessible mirror of in-kernel xfrm_state.
2476  * new fields can only be added to the end of this structure
2477  */
2478 struct bpf_xfrm_state {
2479 	__u32 reqid;
2480 	__u32 spi;	/* Stored in network byte order */
2481 	__u16 family;
2482 	__u16 ext;	/* Padding, future use. */
2483 	union {
2484 		__u32 remote_ipv4;	/* Stored in network byte order */
2485 		__u32 remote_ipv6[4];	/* Stored in network byte order */
2486 	};
2487 };
2488 
2489 /* Generic BPF return codes which all BPF program types may support.
2490  * The values are binary compatible with their TC_ACT_* counter-part to
2491  * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
2492  * programs.
2493  *
2494  * XDP is handled seprately, see XDP_*.
2495  */
2496 enum bpf_ret_code {
2497 	BPF_OK = 0,
2498 	/* 1 reserved */
2499 	BPF_DROP = 2,
2500 	/* 3-6 reserved */
2501 	BPF_REDIRECT = 7,
2502 	/* >127 are reserved for prog type specific return codes */
2503 };
2504 
2505 struct bpf_sock {
2506 	__u32 bound_dev_if;
2507 	__u32 family;
2508 	__u32 type;
2509 	__u32 protocol;
2510 	__u32 mark;
2511 	__u32 priority;
2512 	__u32 src_ip4;		/* Allows 1,2,4-byte read.
2513 				 * Stored in network byte order.
2514 				 */
2515 	__u32 src_ip6[4];	/* Allows 1,2,4-byte read.
2516 				 * Stored in network byte order.
2517 				 */
2518 	__u32 src_port;		/* Allows 4-byte read.
2519 				 * Stored in host byte order
2520 				 */
2521 };
2522 
2523 struct bpf_sock_tuple {
2524 	union {
2525 		struct {
2526 			__be32 saddr;
2527 			__be32 daddr;
2528 			__be16 sport;
2529 			__be16 dport;
2530 		} ipv4;
2531 		struct {
2532 			__be32 saddr[4];
2533 			__be32 daddr[4];
2534 			__be16 sport;
2535 			__be16 dport;
2536 		} ipv6;
2537 	};
2538 };
2539 
2540 #define XDP_PACKET_HEADROOM 256
2541 
2542 /* User return codes for XDP prog type.
2543  * A valid XDP program must return one of these defined values. All other
2544  * return codes are reserved for future use. Unknown return codes will
2545  * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
2546  */
2547 enum xdp_action {
2548 	XDP_ABORTED = 0,
2549 	XDP_DROP,
2550 	XDP_PASS,
2551 	XDP_TX,
2552 	XDP_REDIRECT,
2553 };
2554 
2555 /* user accessible metadata for XDP packet hook
2556  * new fields must be added to the end of this structure
2557  */
2558 struct xdp_md {
2559 	__u32 data;
2560 	__u32 data_end;
2561 	__u32 data_meta;
2562 	/* Below access go through struct xdp_rxq_info */
2563 	__u32 ingress_ifindex; /* rxq->dev->ifindex */
2564 	__u32 rx_queue_index;  /* rxq->queue_index  */
2565 };
2566 
2567 enum sk_action {
2568 	SK_DROP = 0,
2569 	SK_PASS,
2570 };
2571 
2572 /* user accessible metadata for SK_MSG packet hook, new fields must
2573  * be added to the end of this structure
2574  */
2575 struct sk_msg_md {
2576 	void *data;
2577 	void *data_end;
2578 
2579 	__u32 family;
2580 	__u32 remote_ip4;	/* Stored in network byte order */
2581 	__u32 local_ip4;	/* Stored in network byte order */
2582 	__u32 remote_ip6[4];	/* Stored in network byte order */
2583 	__u32 local_ip6[4];	/* Stored in network byte order */
2584 	__u32 remote_port;	/* Stored in network byte order */
2585 	__u32 local_port;	/* stored in host byte order */
2586 };
2587 
2588 struct sk_reuseport_md {
2589 	/*
2590 	 * Start of directly accessible data. It begins from
2591 	 * the tcp/udp header.
2592 	 */
2593 	void *data;
2594 	void *data_end;		/* End of directly accessible data */
2595 	/*
2596 	 * Total length of packet (starting from the tcp/udp header).
2597 	 * Note that the directly accessible bytes (data_end - data)
2598 	 * could be less than this "len".  Those bytes could be
2599 	 * indirectly read by a helper "bpf_skb_load_bytes()".
2600 	 */
2601 	__u32 len;
2602 	/*
2603 	 * Eth protocol in the mac header (network byte order). e.g.
2604 	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
2605 	 */
2606 	__u32 eth_protocol;
2607 	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
2608 	__u32 bind_inany;	/* Is sock bound to an INANY address? */
2609 	__u32 hash;		/* A hash of the packet 4 tuples */
2610 };
2611 
2612 #define BPF_TAG_SIZE	8
2613 
2614 struct bpf_prog_info {
2615 	__u32 type;
2616 	__u32 id;
2617 	__u8  tag[BPF_TAG_SIZE];
2618 	__u32 jited_prog_len;
2619 	__u32 xlated_prog_len;
2620 	__aligned_u64 jited_prog_insns;
2621 	__aligned_u64 xlated_prog_insns;
2622 	__u64 load_time;	/* ns since boottime */
2623 	__u32 created_by_uid;
2624 	__u32 nr_map_ids;
2625 	__aligned_u64 map_ids;
2626 	char name[BPF_OBJ_NAME_LEN];
2627 	__u32 ifindex;
2628 	__u32 gpl_compatible:1;
2629 	__u64 netns_dev;
2630 	__u64 netns_ino;
2631 	__u32 nr_jited_ksyms;
2632 	__u32 nr_jited_func_lens;
2633 	__aligned_u64 jited_ksyms;
2634 	__aligned_u64 jited_func_lens;
2635 } __attribute__((aligned(8)));
2636 
2637 struct bpf_map_info {
2638 	__u32 type;
2639 	__u32 id;
2640 	__u32 key_size;
2641 	__u32 value_size;
2642 	__u32 max_entries;
2643 	__u32 map_flags;
2644 	char  name[BPF_OBJ_NAME_LEN];
2645 	__u32 ifindex;
2646 	__u32 :32;
2647 	__u64 netns_dev;
2648 	__u64 netns_ino;
2649 	__u32 btf_id;
2650 	__u32 btf_key_type_id;
2651 	__u32 btf_value_type_id;
2652 } __attribute__((aligned(8)));
2653 
2654 struct bpf_btf_info {
2655 	__aligned_u64 btf;
2656 	__u32 btf_size;
2657 	__u32 id;
2658 } __attribute__((aligned(8)));
2659 
2660 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
2661  * by user and intended to be used by socket (e.g. to bind to, depends on
2662  * attach attach type).
2663  */
2664 struct bpf_sock_addr {
2665 	__u32 user_family;	/* Allows 4-byte read, but no write. */
2666 	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
2667 				 * Stored in network byte order.
2668 				 */
2669 	__u32 user_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
2670 				 * Stored in network byte order.
2671 				 */
2672 	__u32 user_port;	/* Allows 4-byte read and write.
2673 				 * Stored in network byte order
2674 				 */
2675 	__u32 family;		/* Allows 4-byte read, but no write */
2676 	__u32 type;		/* Allows 4-byte read, but no write */
2677 	__u32 protocol;		/* Allows 4-byte read, but no write */
2678 	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read an 4-byte write.
2679 				 * Stored in network byte order.
2680 				 */
2681 	__u32 msg_src_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
2682 				 * Stored in network byte order.
2683 				 */
2684 };
2685 
2686 /* User bpf_sock_ops struct to access socket values and specify request ops
2687  * and their replies.
2688  * Some of this fields are in network (bigendian) byte order and may need
2689  * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
2690  * New fields can only be added at the end of this structure
2691  */
2692 struct bpf_sock_ops {
2693 	__u32 op;
2694 	union {
2695 		__u32 args[4];		/* Optionally passed to bpf program */
2696 		__u32 reply;		/* Returned by bpf program	    */
2697 		__u32 replylong[4];	/* Optionally returned by bpf prog  */
2698 	};
2699 	__u32 family;
2700 	__u32 remote_ip4;	/* Stored in network byte order */
2701 	__u32 local_ip4;	/* Stored in network byte order */
2702 	__u32 remote_ip6[4];	/* Stored in network byte order */
2703 	__u32 local_ip6[4];	/* Stored in network byte order */
2704 	__u32 remote_port;	/* Stored in network byte order */
2705 	__u32 local_port;	/* stored in host byte order */
2706 	__u32 is_fullsock;	/* Some TCP fields are only valid if
2707 				 * there is a full socket. If not, the
2708 				 * fields read as zero.
2709 				 */
2710 	__u32 snd_cwnd;
2711 	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
2712 	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
2713 	__u32 state;
2714 	__u32 rtt_min;
2715 	__u32 snd_ssthresh;
2716 	__u32 rcv_nxt;
2717 	__u32 snd_nxt;
2718 	__u32 snd_una;
2719 	__u32 mss_cache;
2720 	__u32 ecn_flags;
2721 	__u32 rate_delivered;
2722 	__u32 rate_interval_us;
2723 	__u32 packets_out;
2724 	__u32 retrans_out;
2725 	__u32 total_retrans;
2726 	__u32 segs_in;
2727 	__u32 data_segs_in;
2728 	__u32 segs_out;
2729 	__u32 data_segs_out;
2730 	__u32 lost_out;
2731 	__u32 sacked_out;
2732 	__u32 sk_txhash;
2733 	__u64 bytes_received;
2734 	__u64 bytes_acked;
2735 };
2736 
2737 /* Definitions for bpf_sock_ops_cb_flags */
2738 #define BPF_SOCK_OPS_RTO_CB_FLAG	(1<<0)
2739 #define BPF_SOCK_OPS_RETRANS_CB_FLAG	(1<<1)
2740 #define BPF_SOCK_OPS_STATE_CB_FLAG	(1<<2)
2741 #define BPF_SOCK_OPS_ALL_CB_FLAGS       0x7		/* Mask of all currently
2742 							 * supported cb flags
2743 							 */
2744 
2745 /* List of known BPF sock_ops operators.
2746  * New entries can only be added at the end
2747  */
2748 enum {
2749 	BPF_SOCK_OPS_VOID,
2750 	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
2751 					 * -1 if default value should be used
2752 					 */
2753 	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
2754 					 * window (in packets) or -1 if default
2755 					 * value should be used
2756 					 */
2757 	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
2758 					 * active connection is initialized
2759 					 */
2760 	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
2761 						 * active connection is
2762 						 * established
2763 						 */
2764 	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
2765 						 * passive connection is
2766 						 * established
2767 						 */
2768 	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
2769 					 * needs ECN
2770 					 */
2771 	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
2772 					 * based on the path and may be
2773 					 * dependent on the congestion control
2774 					 * algorithm. In general it indicates
2775 					 * a congestion threshold. RTTs above
2776 					 * this indicate congestion
2777 					 */
2778 	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
2779 					 * Arg1: value of icsk_retransmits
2780 					 * Arg2: value of icsk_rto
2781 					 * Arg3: whether RTO has expired
2782 					 */
2783 	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
2784 					 * Arg1: sequence number of 1st byte
2785 					 * Arg2: # segments
2786 					 * Arg3: return value of
2787 					 *       tcp_transmit_skb (0 => success)
2788 					 */
2789 	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
2790 					 * Arg1: old_state
2791 					 * Arg2: new_state
2792 					 */
2793 	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
2794 					 * socket transition to LISTEN state.
2795 					 */
2796 };
2797 
2798 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
2799  * changes between the TCP and BPF versions. Ideally this should never happen.
2800  * If it does, we need to add code to convert them before calling
2801  * the BPF sock_ops function.
2802  */
2803 enum {
2804 	BPF_TCP_ESTABLISHED = 1,
2805 	BPF_TCP_SYN_SENT,
2806 	BPF_TCP_SYN_RECV,
2807 	BPF_TCP_FIN_WAIT1,
2808 	BPF_TCP_FIN_WAIT2,
2809 	BPF_TCP_TIME_WAIT,
2810 	BPF_TCP_CLOSE,
2811 	BPF_TCP_CLOSE_WAIT,
2812 	BPF_TCP_LAST_ACK,
2813 	BPF_TCP_LISTEN,
2814 	BPF_TCP_CLOSING,	/* Now a valid state */
2815 	BPF_TCP_NEW_SYN_RECV,
2816 
2817 	BPF_TCP_MAX_STATES	/* Leave at the end! */
2818 };
2819 
2820 #define TCP_BPF_IW		1001	/* Set TCP initial congestion window */
2821 #define TCP_BPF_SNDCWND_CLAMP	1002	/* Set sndcwnd_clamp */
2822 
2823 struct bpf_perf_event_value {
2824 	__u64 counter;
2825 	__u64 enabled;
2826 	__u64 running;
2827 };
2828 
2829 #define BPF_DEVCG_ACC_MKNOD	(1ULL << 0)
2830 #define BPF_DEVCG_ACC_READ	(1ULL << 1)
2831 #define BPF_DEVCG_ACC_WRITE	(1ULL << 2)
2832 
2833 #define BPF_DEVCG_DEV_BLOCK	(1ULL << 0)
2834 #define BPF_DEVCG_DEV_CHAR	(1ULL << 1)
2835 
2836 struct bpf_cgroup_dev_ctx {
2837 	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
2838 	__u32 access_type;
2839 	__u32 major;
2840 	__u32 minor;
2841 };
2842 
2843 struct bpf_raw_tracepoint_args {
2844 	__u64 args[0];
2845 };
2846 
2847 /* DIRECT:  Skip the FIB rules and go to FIB table associated with device
2848  * OUTPUT:  Do lookup from egress perspective; default is ingress
2849  */
2850 #define BPF_FIB_LOOKUP_DIRECT  BIT(0)
2851 #define BPF_FIB_LOOKUP_OUTPUT  BIT(1)
2852 
2853 enum {
2854 	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
2855 	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
2856 	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
2857 	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
2858 	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
2859 	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
2860 	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
2861 	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
2862 	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
2863 };
2864 
2865 struct bpf_fib_lookup {
2866 	/* input:  network family for lookup (AF_INET, AF_INET6)
2867 	 * output: network family of egress nexthop
2868 	 */
2869 	__u8	family;
2870 
2871 	/* set if lookup is to consider L4 data - e.g., FIB rules */
2872 	__u8	l4_protocol;
2873 	__be16	sport;
2874 	__be16	dport;
2875 
2876 	/* total length of packet from network header - used for MTU check */
2877 	__u16	tot_len;
2878 
2879 	/* input: L3 device index for lookup
2880 	 * output: device index from FIB lookup
2881 	 */
2882 	__u32	ifindex;
2883 
2884 	union {
2885 		/* inputs to lookup */
2886 		__u8	tos;		/* AF_INET  */
2887 		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
2888 
2889 		/* output: metric of fib result (IPv4/IPv6 only) */
2890 		__u32	rt_metric;
2891 	};
2892 
2893 	union {
2894 		__be32		ipv4_src;
2895 		__u32		ipv6_src[4];  /* in6_addr; network order */
2896 	};
2897 
2898 	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
2899 	 * network header. output: bpf_fib_lookup sets to gateway address
2900 	 * if FIB lookup returns gateway route
2901 	 */
2902 	union {
2903 		__be32		ipv4_dst;
2904 		__u32		ipv6_dst[4];  /* in6_addr; network order */
2905 	};
2906 
2907 	/* output */
2908 	__be16	h_vlan_proto;
2909 	__be16	h_vlan_TCI;
2910 	__u8	smac[6];     /* ETH_ALEN */
2911 	__u8	dmac[6];     /* ETH_ALEN */
2912 };
2913 
2914 enum bpf_task_fd_type {
2915 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
2916 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
2917 	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
2918 	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
2919 	BPF_FD_TYPE_UPROBE,		/* filename + offset */
2920 	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
2921 };
2922 
2923 struct bpf_flow_keys {
2924 	__u16	nhoff;
2925 	__u16	thoff;
2926 	__u16	addr_proto;			/* ETH_P_* of valid addrs */
2927 	__u8	is_frag;
2928 	__u8	is_first_frag;
2929 	__u8	is_encap;
2930 	__u8	ip_proto;
2931 	__be16	n_proto;
2932 	__be16	sport;
2933 	__be16	dport;
2934 	union {
2935 		struct {
2936 			__be32	ipv4_src;
2937 			__be32	ipv4_dst;
2938 		};
2939 		struct {
2940 			__u32	ipv6_src[4];	/* in6_addr; network order */
2941 			__u32	ipv6_dst[4];	/* in6_addr; network order */
2942 		};
2943 	};
2944 };
2945 
2946 #endif /* _UAPI__LINUX_BPF_H__ */
2947 )********"
2948