1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_MIPS_CONSTANTS_MIPS_H_
6 #define V8_MIPS_CONSTANTS_MIPS_H_
7 #include "src/globals.h"
8 // UNIMPLEMENTED_ macro for MIPS.
9 #ifdef DEBUG
10 #define UNIMPLEMENTED_MIPS()                                                  \
11   v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n",    \
12                        __FILE__, __LINE__, __func__)
13 #else
14 #define UNIMPLEMENTED_MIPS()
15 #endif
16 
17 #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
18 
19 enum ArchVariants {
20   kMips32r1 = v8::internal::MIPSr1,
21   kMips32r2 = v8::internal::MIPSr2,
22   kMips32r6 = v8::internal::MIPSr6,
23   kLoongson
24 };
25 
26 #ifdef _MIPS_ARCH_MIPS32R2
27   static const ArchVariants kArchVariant = kMips32r2;
28 #elif _MIPS_ARCH_MIPS32R6
29   static const ArchVariants kArchVariant = kMips32r6;
30 #elif _MIPS_ARCH_LOONGSON
31 // The loongson flag refers to the LOONGSON architectures based on MIPS-III,
32 // which predates (and is a subset of) the mips32r2 and r1 architectures.
33   static const ArchVariants kArchVariant = kLoongson;
34 #elif _MIPS_ARCH_MIPS32RX
35 // This flags referred to compatibility mode that creates universal code that
36 // can run on any MIPS32 architecture revision. The dynamically generated code
37 // by v8 is specialized for the MIPS host detected in runtime probing.
38   static const ArchVariants kArchVariant = kMips32r1;
39 #else
40   static const ArchVariants kArchVariant = kMips32r1;
41 #endif
42 
43 enum Endianness {
44   kLittle,
45   kBig
46 };
47 
48 #if defined(V8_TARGET_LITTLE_ENDIAN)
49   static const Endianness kArchEndian = kLittle;
50 #elif defined(V8_TARGET_BIG_ENDIAN)
51   static const Endianness kArchEndian = kBig;
52 #else
53 #error Unknown endianness
54 #endif
55 
56 enum FpuMode {
57   kFP32,
58   kFP64,
59   kFPXX
60 };
61 
62 #if defined(FPU_MODE_FP32)
63   static const FpuMode kFpuMode = kFP32;
64 #elif defined(FPU_MODE_FP64)
65   static const FpuMode kFpuMode = kFP64;
66 #elif defined(FPU_MODE_FPXX)
67 #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS32R6)
68 static const FpuMode kFpuMode = kFPXX;
69 #else
70 #error "FPXX is supported only on Mips32R2 and Mips32R6"
71 #endif
72 #else
73 static const FpuMode kFpuMode = kFP32;
74 #endif
75 
76 #if(defined(__mips_hard_float) && __mips_hard_float != 0)
77 // Use floating-point coprocessor instructions. This flag is raised when
78 // -mhard-float is passed to the compiler.
79 const bool IsMipsSoftFloatABI = false;
80 #elif(defined(__mips_soft_float) && __mips_soft_float != 0)
81 // This flag is raised when -msoft-float is passed to the compiler.
82 // Although FPU is a base requirement for v8, soft-float ABI is used
83 // on soft-float systems with FPU kernel emulation.
84 const bool IsMipsSoftFloatABI = true;
85 #else
86 const bool IsMipsSoftFloatABI = true;
87 #endif
88 
89 #if defined(V8_TARGET_LITTLE_ENDIAN)
90 const uint32_t kHoleNanUpper32Offset = 4;
91 const uint32_t kHoleNanLower32Offset = 0;
92 #elif defined(V8_TARGET_BIG_ENDIAN)
93 const uint32_t kHoleNanUpper32Offset = 0;
94 const uint32_t kHoleNanLower32Offset = 4;
95 #else
96 #error Unknown endianness
97 #endif
98 
99 #define IsFp64Mode() (kFpuMode == kFP64)
100 #define IsFp32Mode() (kFpuMode == kFP32)
101 #define IsFpxxMode() (kFpuMode == kFPXX)
102 
103 #ifndef _MIPS_ARCH_MIPS32RX
104 #define IsMipsArchVariant(check) \
105   (kArchVariant == check)
106 #else
107 #define IsMipsArchVariant(check) \
108   (CpuFeatures::IsSupported(static_cast<CpuFeature>(check)))
109 #endif
110 
111 #if defined(V8_TARGET_LITTLE_ENDIAN)
112 const uint32_t kMipsLwrOffset = 0;
113 const uint32_t kMipsLwlOffset = 3;
114 const uint32_t kMipsSwrOffset = 0;
115 const uint32_t kMipsSwlOffset = 3;
116 #elif defined(V8_TARGET_BIG_ENDIAN)
117 const uint32_t kMipsLwrOffset = 3;
118 const uint32_t kMipsLwlOffset = 0;
119 const uint32_t kMipsSwrOffset = 3;
120 const uint32_t kMipsSwlOffset = 0;
121 #else
122 #error Unknown endianness
123 #endif
124 
125 #if defined(V8_TARGET_LITTLE_ENDIAN)
126 const uint32_t kLeastSignificantByteInInt32Offset = 0;
127 #elif defined(V8_TARGET_BIG_ENDIAN)
128 const uint32_t kLeastSignificantByteInInt32Offset = 3;
129 #else
130 #error Unknown endianness
131 #endif
132 
133 #ifndef __STDC_FORMAT_MACROS
134 #define __STDC_FORMAT_MACROS
135 #endif
136 #include <inttypes.h>
137 
138 // Defines constants and accessor classes to assemble, disassemble and
139 // simulate MIPS32 instructions.
140 //
141 // See: MIPS32 Architecture For Programmers
142 //      Volume II: The MIPS32 Instruction Set
143 // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
144 
145 namespace v8 {
146 namespace internal {
147 
148 // TODO(sigurds): Change this value once we use relative jumps.
149 constexpr size_t kMaxPCRelativeCodeRangeInMB = 0;
150 
151 // -----------------------------------------------------------------------------
152 // Registers and FPURegisters.
153 
154 // Number of general purpose registers.
155 const int kNumRegisters = 32;
156 const int kInvalidRegister = -1;
157 
158 // Number of registers with HI, LO, and pc.
159 const int kNumSimuRegisters = 35;
160 
161 // In the simulator, the PC register is simulated as the 34th register.
162 const int kPCRegister = 34;
163 
164 // Number coprocessor registers.
165 const int kNumFPURegisters = 32;
166 const int kInvalidFPURegister = -1;
167 
168 // Number of MSA registers
169 const int kNumMSARegisters = 32;
170 const int kInvalidMSARegister = -1;
171 
172 const int kInvalidMSAControlRegister = -1;
173 const int kMSAIRRegister = 0;
174 const int kMSACSRRegister = 1;
175 const int kMSARegSize = 128;
176 const int kMSALanesByte = kMSARegSize / 8;
177 const int kMSALanesHalf = kMSARegSize / 16;
178 const int kMSALanesWord = kMSARegSize / 32;
179 const int kMSALanesDword = kMSARegSize / 64;
180 
181 // FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
182 const int kFCSRRegister = 31;
183 const int kInvalidFPUControlRegister = -1;
184 const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1u << 31) - 1;
185 const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1u << 31);
186 const uint64_t kFPU64InvalidResult =
187     static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
188 const int64_t kFPU64InvalidResultNegative =
189     static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
190 
191 // FCSR constants.
192 const uint32_t kFCSRInexactFlagBit = 2;
193 const uint32_t kFCSRUnderflowFlagBit = 3;
194 const uint32_t kFCSROverflowFlagBit = 4;
195 const uint32_t kFCSRDivideByZeroFlagBit = 5;
196 const uint32_t kFCSRInvalidOpFlagBit = 6;
197 const uint32_t kFCSRNaN2008FlagBit = 18;
198 
199 const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
200 const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
201 const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
202 const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
203 const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
204 const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
205 
206 const uint32_t kFCSRFlagMask =
207     kFCSRInexactFlagMask |
208     kFCSRUnderflowFlagMask |
209     kFCSROverflowFlagMask |
210     kFCSRDivideByZeroFlagMask |
211     kFCSRInvalidOpFlagMask;
212 
213 const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
214 
215 // 'pref' instruction hints
216 const int32_t kPrefHintLoad = 0;
217 const int32_t kPrefHintStore = 1;
218 const int32_t kPrefHintLoadStreamed = 4;
219 const int32_t kPrefHintStoreStreamed = 5;
220 const int32_t kPrefHintLoadRetained = 6;
221 const int32_t kPrefHintStoreRetained = 7;
222 const int32_t kPrefHintWritebackInvalidate = 25;
223 const int32_t kPrefHintPrepareForStore = 30;
224 
225 // Actual value of root register is offset from the root array's start
226 // to take advantage of negative displacement values.
227 // TODO(sigurds): Choose best value.
228 constexpr int kRootRegisterBias = 256;
229 
230 // Helper functions for converting between register numbers and names.
231 class Registers {
232  public:
233   // Return the name of the register.
234   static const char* Name(int reg);
235 
236   // Lookup the register number for the name provided.
237   static int Number(const char* name);
238 
239   struct RegisterAlias {
240     int reg;
241     const char* name;
242   };
243 
244   static const int32_t kMaxValue = 0x7fffffff;
245   static const int32_t kMinValue = 0x80000000;
246 
247  private:
248   static const char* names_[kNumSimuRegisters];
249   static const RegisterAlias aliases_[];
250 };
251 
252 // Helper functions for converting between register numbers and names.
253 class FPURegisters {
254  public:
255   // Return the name of the register.
256   static const char* Name(int reg);
257 
258   // Lookup the register number for the name provided.
259   static int Number(const char* name);
260 
261   struct RegisterAlias {
262     int creg;
263     const char* name;
264   };
265 
266  private:
267   static const char* names_[kNumFPURegisters];
268   static const RegisterAlias aliases_[];
269 };
270 
271 // Helper functions for converting between register numbers and names.
272 class MSARegisters {
273  public:
274   // Return the name of the register.
275   static const char* Name(int reg);
276 
277   // Lookup the register number for the name provided.
278   static int Number(const char* name);
279 
280   struct RegisterAlias {
281     int creg;
282     const char* name;
283   };
284 
285  private:
286   static const char* names_[kNumMSARegisters];
287   static const RegisterAlias aliases_[];
288 };
289 
290 // -----------------------------------------------------------------------------
291 // Instructions encoding constants.
292 
293 // On MIPS all instructions are 32 bits.
294 typedef int32_t Instr;
295 
296 // Special Software Interrupt codes when used in the presence of the MIPS
297 // simulator.
298 enum SoftwareInterruptCodes {
299   // Transition to C code.
300   call_rt_redirected = 0xfffff
301 };
302 
303 // On MIPS Simulator breakpoints can have different codes:
304 // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
305 //   the simulator will run through them and print the registers.
306 // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
307 //   instructions (see Assembler::stop()).
308 // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
309 //   debugger.
310 const uint32_t kMaxWatchpointCode = 31;
311 const uint32_t kMaxStopCode = 127;
312 STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
313 
314 
315 // ----- Fields offset and length.
316 const int kOpcodeShift   = 26;
317 const int kOpcodeBits    = 6;
318 const int kRsShift       = 21;
319 const int kRsBits        = 5;
320 const int kRtShift       = 16;
321 const int kRtBits        = 5;
322 const int kRdShift       = 11;
323 const int kRdBits        = 5;
324 const int kSaShift       = 6;
325 const int kSaBits        = 5;
326 const int kLsaSaBits = 2;
327 const int kFunctionShift = 0;
328 const int kFunctionBits  = 6;
329 const int kLuiShift      = 16;
330 const int kBp2Shift = 6;
331 const int kBp2Bits = 2;
332 const int kBaseShift = 21;
333 const int kBaseBits = 5;
334 const int kBit6Shift = 6;
335 const int kBit6Bits = 1;
336 
337 const int kImm9Shift = 7;
338 const int kImm9Bits = 9;
339 const int kImm16Shift = 0;
340 const int kImm16Bits  = 16;
341 const int kImm18Shift = 0;
342 const int kImm18Bits = 18;
343 const int kImm19Shift = 0;
344 const int kImm19Bits = 19;
345 const int kImm21Shift = 0;
346 const int kImm21Bits  = 21;
347 const int kImm26Shift = 0;
348 const int kImm26Bits  = 26;
349 const int kImm28Shift = 0;
350 const int kImm28Bits  = 28;
351 const int kImm32Shift = 0;
352 const int kImm32Bits  = 32;
353 const int kMsaImm8Shift = 16;
354 const int kMsaImm8Bits = 8;
355 const int kMsaImm5Shift = 16;
356 const int kMsaImm5Bits = 5;
357 const int kMsaImm10Shift = 11;
358 const int kMsaImm10Bits = 10;
359 const int kMsaImmMI10Shift = 16;
360 const int kMsaImmMI10Bits = 10;
361 
362 // In branches and jumps immediate fields point to words, not bytes,
363 // and are therefore shifted by 2.
364 const int kImmFieldShift = 2;
365 
366 const int kFrBits        = 5;
367 const int kFrShift       = 21;
368 const int kFsShift       = 11;
369 const int kFsBits        = 5;
370 const int kFtShift       = 16;
371 const int kFtBits        = 5;
372 const int kFdShift       = 6;
373 const int kFdBits        = 5;
374 const int kFCccShift     = 8;
375 const int kFCccBits      = 3;
376 const int kFBccShift     = 18;
377 const int kFBccBits      = 3;
378 const int kFBtrueShift   = 16;
379 const int kFBtrueBits    = 1;
380 const int kWtBits = 5;
381 const int kWtShift = 16;
382 const int kWsBits = 5;
383 const int kWsShift = 11;
384 const int kWdBits = 5;
385 const int kWdShift = 6;
386 
387 // ----- Miscellaneous useful masks.
388 // Instruction bit masks.
389 const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
390 const int kImm9Mask = ((1 << kImm9Bits) - 1) << kImm9Shift;
391 const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
392 const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
393 const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
394 const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
395 const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
396 const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
397 const int kImm5Mask = ((1 << 5) - 1);
398 const int kImm8Mask = ((1 << 8) - 1);
399 const int kImm10Mask = ((1 << 10) - 1);
400 const int kMsaI5I10Mask = ((7U << 23) | ((1 << 6) - 1));
401 const int kMsaI8Mask = ((3U << 24) | ((1 << 6) - 1));
402 const int kMsaI5Mask = ((7U << 23) | ((1 << 6) - 1));
403 const int kMsaMI10Mask = (15U << 2);
404 const int kMsaBITMask = ((7U << 23) | ((1 << 6) - 1));
405 const int kMsaELMMask = (15U << 22);
406 const int kMsaLongerELMMask = kMsaELMMask | (63U << 16);
407 const int kMsa3RMask = ((7U << 23) | ((1 << 6) - 1));
408 const int kMsa3RFMask = ((15U << 22) | ((1 << 6) - 1));
409 const int kMsaVECMask = (23U << 21);
410 const int kMsa2RMask = (7U << 18);
411 const int kMsa2RFMask = (15U << 17);
412 const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
413 const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
414 const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
415 const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
416 const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
417 // Misc masks.
418 const int kHiMask = 0xffff << 16;
419 const int kLoMask = 0xffff;
420 const int kSignMask = 0x80000000;
421 const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
422 
423 // ----- MIPS Opcodes and Function Fields.
424 // We use this presentation to stay close to the table representation in
425 // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
426 enum Opcode : uint32_t {
427   SPECIAL = 0U << kOpcodeShift,
428   REGIMM = 1U << kOpcodeShift,
429 
430   J = ((0U << 3) + 2) << kOpcodeShift,
431   JAL = ((0U << 3) + 3) << kOpcodeShift,
432   BEQ = ((0U << 3) + 4) << kOpcodeShift,
433   BNE = ((0U << 3) + 5) << kOpcodeShift,
434   BLEZ = ((0U << 3) + 6) << kOpcodeShift,
435   BGTZ = ((0U << 3) + 7) << kOpcodeShift,
436 
437   ADDI = ((1U << 3) + 0) << kOpcodeShift,
438   ADDIU = ((1U << 3) + 1) << kOpcodeShift,
439   SLTI = ((1U << 3) + 2) << kOpcodeShift,
440   SLTIU = ((1U << 3) + 3) << kOpcodeShift,
441   ANDI = ((1U << 3) + 4) << kOpcodeShift,
442   ORI = ((1U << 3) + 5) << kOpcodeShift,
443   XORI = ((1U << 3) + 6) << kOpcodeShift,
444   LUI = ((1U << 3) + 7) << kOpcodeShift,  // LUI/AUI family.
445 
446   BEQC = ((2U << 3) + 0) << kOpcodeShift,
447   COP1 = ((2U << 3) + 1) << kOpcodeShift,  // Coprocessor 1 class.
448   BEQL = ((2U << 3) + 4) << kOpcodeShift,
449   BNEL = ((2U << 3) + 5) << kOpcodeShift,
450   BLEZL = ((2U << 3) + 6) << kOpcodeShift,
451   BGTZL = ((2U << 3) + 7) << kOpcodeShift,
452 
453   DADDI = ((3U << 3) + 0) << kOpcodeShift,  // This is also BNEC.
454   SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
455   MSA = ((3U << 3) + 6) << kOpcodeShift,
456   SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
457 
458   LB = ((4U << 3) + 0) << kOpcodeShift,
459   LH = ((4U << 3) + 1) << kOpcodeShift,
460   LWL = ((4U << 3) + 2) << kOpcodeShift,
461   LW = ((4U << 3) + 3) << kOpcodeShift,
462   LBU = ((4U << 3) + 4) << kOpcodeShift,
463   LHU = ((4U << 3) + 5) << kOpcodeShift,
464   LWR = ((4U << 3) + 6) << kOpcodeShift,
465   SB = ((5U << 3) + 0) << kOpcodeShift,
466   SH = ((5U << 3) + 1) << kOpcodeShift,
467   SWL = ((5U << 3) + 2) << kOpcodeShift,
468   SW = ((5U << 3) + 3) << kOpcodeShift,
469   SWR = ((5U << 3) + 6) << kOpcodeShift,
470 
471   LL = ((6U << 3) + 0) << kOpcodeShift,
472   LWC1 = ((6U << 3) + 1) << kOpcodeShift,
473   BC = ((6U << 3) + 2) << kOpcodeShift,
474   LDC1 = ((6U << 3) + 5) << kOpcodeShift,
475   POP66 = ((6U << 3) + 6) << kOpcodeShift,  // beqzc, jic
476 
477   PREF = ((6U << 3) + 3) << kOpcodeShift,
478 
479   SC = ((7U << 3) + 0) << kOpcodeShift,
480   SWC1 = ((7U << 3) + 1) << kOpcodeShift,
481   BALC = ((7U << 3) + 2) << kOpcodeShift,
482   PCREL = ((7U << 3) + 3) << kOpcodeShift,
483   SDC1 = ((7U << 3) + 5) << kOpcodeShift,
484   POP76 = ((7U << 3) + 6) << kOpcodeShift,  // bnezc, jialc
485 
486   COP1X = ((1U << 4) + 3) << kOpcodeShift,
487 
488   // New r6 instruction.
489   POP06 = BLEZ,   // bgeuc/bleuc, blezalc, bgezalc
490   POP07 = BGTZ,   // bltuc/bgtuc, bgtzalc, bltzalc
491   POP10 = ADDI,   // beqzalc, bovc, beqc
492   POP26 = BLEZL,  // bgezc, blezc, bgec/blec
493   POP27 = BGTZL,  // bgtzc, bltzc, bltc/bgtc
494   POP30 = DADDI,  // bnezalc, bnvc, bnec
495 };
496 
497 enum SecondaryField : uint32_t {
498   // SPECIAL Encoding of Function Field.
499   SLL = ((0U << 3) + 0),
500   MOVCI = ((0U << 3) + 1),
501   SRL = ((0U << 3) + 2),
502   SRA = ((0U << 3) + 3),
503   SLLV = ((0U << 3) + 4),
504   LSA = ((0U << 3) + 5),
505   SRLV = ((0U << 3) + 6),
506   SRAV = ((0U << 3) + 7),
507 
508   JR = ((1U << 3) + 0),
509   JALR = ((1U << 3) + 1),
510   MOVZ = ((1U << 3) + 2),
511   MOVN = ((1U << 3) + 3),
512   BREAK = ((1U << 3) + 5),
513   SYNC = ((1U << 3) + 7),
514 
515   MFHI = ((2U << 3) + 0),
516   CLZ_R6 = ((2U << 3) + 0),
517   CLO_R6 = ((2U << 3) + 1),
518   MFLO = ((2U << 3) + 2),
519 
520   MULT = ((3U << 3) + 0),
521   MULTU = ((3U << 3) + 1),
522   DIV = ((3U << 3) + 2),
523   DIVU = ((3U << 3) + 3),
524 
525   ADD = ((4U << 3) + 0),
526   ADDU = ((4U << 3) + 1),
527   SUB = ((4U << 3) + 2),
528   SUBU = ((4U << 3) + 3),
529   AND = ((4U << 3) + 4),
530   OR = ((4U << 3) + 5),
531   XOR = ((4U << 3) + 6),
532   NOR = ((4U << 3) + 7),
533 
534   SLT = ((5U << 3) + 2),
535   SLTU = ((5U << 3) + 3),
536 
537   TGE = ((6U << 3) + 0),
538   TGEU = ((6U << 3) + 1),
539   TLT = ((6U << 3) + 2),
540   TLTU = ((6U << 3) + 3),
541   TEQ = ((6U << 3) + 4),
542   SELEQZ_S = ((6U << 3) + 5),
543   TNE = ((6U << 3) + 6),
544   SELNEZ_S = ((6U << 3) + 7),
545 
546   // Multiply integers in r6.
547   MUL_MUH = ((3U << 3) + 0),    // MUL, MUH.
548   MUL_MUH_U = ((3U << 3) + 1),  // MUL_U, MUH_U.
549   RINT = ((3U << 3) + 2),
550 
551   MUL_OP = ((0U << 3) + 2),
552   MUH_OP = ((0U << 3) + 3),
553   DIV_OP = ((0U << 3) + 2),
554   MOD_OP = ((0U << 3) + 3),
555 
556   DIV_MOD = ((3U << 3) + 2),
557   DIV_MOD_U = ((3U << 3) + 3),
558 
559   // SPECIAL2 Encoding of Function Field.
560   MUL = ((0U << 3) + 2),
561   CLZ = ((4U << 3) + 0),
562   CLO = ((4U << 3) + 1),
563 
564   // SPECIAL3 Encoding of Function Field.
565   EXT = ((0U << 3) + 0),
566   INS = ((0U << 3) + 4),
567   BSHFL = ((4U << 3) + 0),
568   SC_R6 = ((4U << 3) + 6),
569   LL_R6 = ((6U << 3) + 6),
570 
571   // SPECIAL3 Encoding of sa Field.
572   BITSWAP = ((0U << 3) + 0),
573   ALIGN = ((0U << 3) + 2),
574   WSBH = ((0U << 3) + 2),
575   SEB = ((2U << 3) + 0),
576   SEH = ((3U << 3) + 0),
577 
578   // REGIMM  encoding of rt Field.
579   BLTZ = ((0U << 3) + 0) << 16,
580   BGEZ = ((0U << 3) + 1) << 16,
581   BLTZAL = ((2U << 3) + 0) << 16,
582   BGEZAL = ((2U << 3) + 1) << 16,
583   BGEZALL = ((2U << 3) + 3) << 16,
584 
585   // COP1 Encoding of rs Field.
586   MFC1 = ((0U << 3) + 0) << 21,
587   CFC1 = ((0U << 3) + 2) << 21,
588   MFHC1 = ((0U << 3) + 3) << 21,
589   MTC1 = ((0U << 3) + 4) << 21,
590   CTC1 = ((0U << 3) + 6) << 21,
591   MTHC1 = ((0U << 3) + 7) << 21,
592   BC1 = ((1U << 3) + 0) << 21,
593   S = ((2U << 3) + 0) << 21,
594   D = ((2U << 3) + 1) << 21,
595   W = ((2U << 3) + 4) << 21,
596   L = ((2U << 3) + 5) << 21,
597   PS = ((2U << 3) + 6) << 21,
598   // COP1 Encoding of Function Field When rs=S.
599 
600   ADD_S = ((0U << 3) + 0),
601   SUB_S = ((0U << 3) + 1),
602   MUL_S = ((0U << 3) + 2),
603   DIV_S = ((0U << 3) + 3),
604   ABS_S = ((0U << 3) + 5),
605   SQRT_S = ((0U << 3) + 4),
606   MOV_S = ((0U << 3) + 6),
607   NEG_S = ((0U << 3) + 7),
608   ROUND_L_S = ((1U << 3) + 0),
609   TRUNC_L_S = ((1U << 3) + 1),
610   CEIL_L_S = ((1U << 3) + 2),
611   FLOOR_L_S = ((1U << 3) + 3),
612   ROUND_W_S = ((1U << 3) + 4),
613   TRUNC_W_S = ((1U << 3) + 5),
614   CEIL_W_S = ((1U << 3) + 6),
615   FLOOR_W_S = ((1U << 3) + 7),
616   RECIP_S = ((2U << 3) + 5),
617   RSQRT_S = ((2U << 3) + 6),
618   MADDF_S = ((3U << 3) + 0),
619   MSUBF_S = ((3U << 3) + 1),
620   CLASS_S = ((3U << 3) + 3),
621   CVT_D_S = ((4U << 3) + 1),
622   CVT_W_S = ((4U << 3) + 4),
623   CVT_L_S = ((4U << 3) + 5),
624   CVT_PS_S = ((4U << 3) + 6),
625 
626   // COP1 Encoding of Function Field When rs=D.
627   ADD_D = ((0U << 3) + 0),
628   SUB_D = ((0U << 3) + 1),
629   MUL_D = ((0U << 3) + 2),
630   DIV_D = ((0U << 3) + 3),
631   SQRT_D = ((0U << 3) + 4),
632   ABS_D = ((0U << 3) + 5),
633   MOV_D = ((0U << 3) + 6),
634   NEG_D = ((0U << 3) + 7),
635   ROUND_L_D = ((1U << 3) + 0),
636   TRUNC_L_D = ((1U << 3) + 1),
637   CEIL_L_D = ((1U << 3) + 2),
638   FLOOR_L_D = ((1U << 3) + 3),
639   ROUND_W_D = ((1U << 3) + 4),
640   TRUNC_W_D = ((1U << 3) + 5),
641   CEIL_W_D = ((1U << 3) + 6),
642   FLOOR_W_D = ((1U << 3) + 7),
643   RECIP_D = ((2U << 3) + 5),
644   RSQRT_D = ((2U << 3) + 6),
645   MADDF_D = ((3U << 3) + 0),
646   MSUBF_D = ((3U << 3) + 1),
647   CLASS_D = ((3U << 3) + 3),
648   MIN = ((3U << 3) + 4),
649   MINA = ((3U << 3) + 5),
650   MAX = ((3U << 3) + 6),
651   MAXA = ((3U << 3) + 7),
652   CVT_S_D = ((4U << 3) + 0),
653   CVT_W_D = ((4U << 3) + 4),
654   CVT_L_D = ((4U << 3) + 5),
655   C_F_D = ((6U << 3) + 0),
656   C_UN_D = ((6U << 3) + 1),
657   C_EQ_D = ((6U << 3) + 2),
658   C_UEQ_D = ((6U << 3) + 3),
659   C_OLT_D = ((6U << 3) + 4),
660   C_ULT_D = ((6U << 3) + 5),
661   C_OLE_D = ((6U << 3) + 6),
662   C_ULE_D = ((6U << 3) + 7),
663 
664   // COP1 Encoding of Function Field When rs=W or L.
665   CVT_S_W = ((4U << 3) + 0),
666   CVT_D_W = ((4U << 3) + 1),
667   CVT_S_L = ((4U << 3) + 0),
668   CVT_D_L = ((4U << 3) + 1),
669   BC1EQZ = ((2U << 2) + 1) << 21,
670   BC1NEZ = ((3U << 2) + 1) << 21,
671   // COP1 CMP positive predicates Bit 5..4 = 00.
672   CMP_AF = ((0U << 3) + 0),
673   CMP_UN = ((0U << 3) + 1),
674   CMP_EQ = ((0U << 3) + 2),
675   CMP_UEQ = ((0U << 3) + 3),
676   CMP_LT = ((0U << 3) + 4),
677   CMP_ULT = ((0U << 3) + 5),
678   CMP_LE = ((0U << 3) + 6),
679   CMP_ULE = ((0U << 3) + 7),
680   CMP_SAF = ((1U << 3) + 0),
681   CMP_SUN = ((1U << 3) + 1),
682   CMP_SEQ = ((1U << 3) + 2),
683   CMP_SUEQ = ((1U << 3) + 3),
684   CMP_SSLT = ((1U << 3) + 4),
685   CMP_SSULT = ((1U << 3) + 5),
686   CMP_SLE = ((1U << 3) + 6),
687   CMP_SULE = ((1U << 3) + 7),
688   // COP1 CMP negative predicates Bit 5..4 = 01.
689   CMP_AT = ((2U << 3) + 0),  // Reserved, not implemented.
690   CMP_OR = ((2U << 3) + 1),
691   CMP_UNE = ((2U << 3) + 2),
692   CMP_NE = ((2U << 3) + 3),
693   CMP_UGE = ((2U << 3) + 4),  // Reserved, not implemented.
694   CMP_OGE = ((2U << 3) + 5),  // Reserved, not implemented.
695   CMP_UGT = ((2U << 3) + 6),  // Reserved, not implemented.
696   CMP_OGT = ((2U << 3) + 7),  // Reserved, not implemented.
697   CMP_SAT = ((3U << 3) + 0),  // Reserved, not implemented.
698   CMP_SOR = ((3U << 3) + 1),
699   CMP_SUNE = ((3U << 3) + 2),
700   CMP_SNE = ((3U << 3) + 3),
701   CMP_SUGE = ((3U << 3) + 4),  // Reserved, not implemented.
702   CMP_SOGE = ((3U << 3) + 5),  // Reserved, not implemented.
703   CMP_SUGT = ((3U << 3) + 6),  // Reserved, not implemented.
704   CMP_SOGT = ((3U << 3) + 7),  // Reserved, not implemented.
705 
706   SEL = ((2U << 3) + 0),
707   MOVZ_C = ((2U << 3) + 2),
708   MOVN_C = ((2U << 3) + 3),
709   SELEQZ_C = ((2U << 3) + 4),  // COP1 on FPR registers.
710   MOVF = ((2U << 3) + 1),      // Function field for MOVT.fmt and MOVF.fmt
711   SELNEZ_C = ((2U << 3) + 7),  // COP1 on FPR registers.
712                                // COP1 Encoding of Function Field When rs=PS.
713 
714   // COP1X Encoding of Function Field.
715   MADD_S = ((4U << 3) + 0),
716   MADD_D = ((4U << 3) + 1),
717   MSUB_S = ((5U << 3) + 0),
718   MSUB_D = ((5U << 3) + 1),
719 
720   // PCREL Encoding of rt Field.
721   ADDIUPC = ((0U << 2) + 0),
722   LWPC = ((0U << 2) + 1),
723   AUIPC = ((3U << 3) + 6),
724   ALUIPC = ((3U << 3) + 7),
725 
726   // POP66 Encoding of rs Field.
727   JIC = ((0U << 5) + 0),
728 
729   // POP76 Encoding of rs Field.
730   JIALC = ((0U << 5) + 0),
731 
732   // COP1 Encoding of rs Field for MSA Branch Instructions
733   BZ_V = (((1U << 3) + 3) << kRsShift),
734   BNZ_V = (((1U << 3) + 7) << kRsShift),
735   BZ_B = (((3U << 3) + 0) << kRsShift),
736   BZ_H = (((3U << 3) + 1) << kRsShift),
737   BZ_W = (((3U << 3) + 2) << kRsShift),
738   BZ_D = (((3U << 3) + 3) << kRsShift),
739   BNZ_B = (((3U << 3) + 4) << kRsShift),
740   BNZ_H = (((3U << 3) + 5) << kRsShift),
741   BNZ_W = (((3U << 3) + 6) << kRsShift),
742   BNZ_D = (((3U << 3) + 7) << kRsShift),
743 
744   // MSA: Operation Field for MI10 Instruction Formats
745   MSA_LD = (8U << 2),
746   MSA_ST = (9U << 2),
747   LD_B = ((8U << 2) + 0),
748   LD_H = ((8U << 2) + 1),
749   LD_W = ((8U << 2) + 2),
750   LD_D = ((8U << 2) + 3),
751   ST_B = ((9U << 2) + 0),
752   ST_H = ((9U << 2) + 1),
753   ST_W = ((9U << 2) + 2),
754   ST_D = ((9U << 2) + 3),
755 
756   // MSA: Operation Field for I5 Instruction Format
757   ADDVI = ((0U << 23) + 6),
758   SUBVI = ((1U << 23) + 6),
759   MAXI_S = ((2U << 23) + 6),
760   MAXI_U = ((3U << 23) + 6),
761   MINI_S = ((4U << 23) + 6),
762   MINI_U = ((5U << 23) + 6),
763   CEQI = ((0U << 23) + 7),
764   CLTI_S = ((2U << 23) + 7),
765   CLTI_U = ((3U << 23) + 7),
766   CLEI_S = ((4U << 23) + 7),
767   CLEI_U = ((5U << 23) + 7),
768   LDI = ((6U << 23) + 7),  // I10 instruction format
769   I5_DF_b = (0U << 21),
770   I5_DF_h = (1U << 21),
771   I5_DF_w = (2U << 21),
772   I5_DF_d = (3U << 21),
773 
774   // MSA: Operation Field for I8 Instruction Format
775   ANDI_B = ((0U << 24) + 0),
776   ORI_B = ((1U << 24) + 0),
777   NORI_B = ((2U << 24) + 0),
778   XORI_B = ((3U << 24) + 0),
779   BMNZI_B = ((0U << 24) + 1),
780   BMZI_B = ((1U << 24) + 1),
781   BSELI_B = ((2U << 24) + 1),
782   SHF_B = ((0U << 24) + 2),
783   SHF_H = ((1U << 24) + 2),
784   SHF_W = ((2U << 24) + 2),
785 
786   MSA_VEC_2R_2RF_MINOR = ((3U << 3) + 6),
787 
788   // MSA: Operation Field for VEC Instruction Formats
789   AND_V = (((0U << 2) + 0) << 21),
790   OR_V = (((0U << 2) + 1) << 21),
791   NOR_V = (((0U << 2) + 2) << 21),
792   XOR_V = (((0U << 2) + 3) << 21),
793   BMNZ_V = (((1U << 2) + 0) << 21),
794   BMZ_V = (((1U << 2) + 1) << 21),
795   BSEL_V = (((1U << 2) + 2) << 21),
796 
797   // MSA: Operation Field for 2R Instruction Formats
798   MSA_2R_FORMAT = (((6U << 2) + 0) << 21),
799   FILL = (0U << 18),
800   PCNT = (1U << 18),
801   NLOC = (2U << 18),
802   NLZC = (3U << 18),
803   MSA_2R_DF_b = (0U << 16),
804   MSA_2R_DF_h = (1U << 16),
805   MSA_2R_DF_w = (2U << 16),
806   MSA_2R_DF_d = (3U << 16),
807 
808   // MSA: Operation Field for 2RF Instruction Formats
809   MSA_2RF_FORMAT = (((6U << 2) + 1) << 21),
810   FCLASS = (0U << 17),
811   FTRUNC_S = (1U << 17),
812   FTRUNC_U = (2U << 17),
813   FSQRT = (3U << 17),
814   FRSQRT = (4U << 17),
815   FRCP = (5U << 17),
816   FRINT = (6U << 17),
817   FLOG2 = (7U << 17),
818   FEXUPL = (8U << 17),
819   FEXUPR = (9U << 17),
820   FFQL = (10U << 17),
821   FFQR = (11U << 17),
822   FTINT_S = (12U << 17),
823   FTINT_U = (13U << 17),
824   FFINT_S = (14U << 17),
825   FFINT_U = (15U << 17),
826   MSA_2RF_DF_w = (0U << 16),
827   MSA_2RF_DF_d = (1U << 16),
828 
829   // MSA: Operation Field for 3R Instruction Format
830   SLL_MSA = ((0U << 23) + 13),
831   SRA_MSA = ((1U << 23) + 13),
832   SRL_MSA = ((2U << 23) + 13),
833   BCLR = ((3U << 23) + 13),
834   BSET = ((4U << 23) + 13),
835   BNEG = ((5U << 23) + 13),
836   BINSL = ((6U << 23) + 13),
837   BINSR = ((7U << 23) + 13),
838   ADDV = ((0U << 23) + 14),
839   SUBV = ((1U << 23) + 14),
840   MAX_S = ((2U << 23) + 14),
841   MAX_U = ((3U << 23) + 14),
842   MIN_S = ((4U << 23) + 14),
843   MIN_U = ((5U << 23) + 14),
844   MAX_A = ((6U << 23) + 14),
845   MIN_A = ((7U << 23) + 14),
846   CEQ = ((0U << 23) + 15),
847   CLT_S = ((2U << 23) + 15),
848   CLT_U = ((3U << 23) + 15),
849   CLE_S = ((4U << 23) + 15),
850   CLE_U = ((5U << 23) + 15),
851   ADD_A = ((0U << 23) + 16),
852   ADDS_A = ((1U << 23) + 16),
853   ADDS_S = ((2U << 23) + 16),
854   ADDS_U = ((3U << 23) + 16),
855   AVE_S = ((4U << 23) + 16),
856   AVE_U = ((5U << 23) + 16),
857   AVER_S = ((6U << 23) + 16),
858   AVER_U = ((7U << 23) + 16),
859   SUBS_S = ((0U << 23) + 17),
860   SUBS_U = ((1U << 23) + 17),
861   SUBSUS_U = ((2U << 23) + 17),
862   SUBSUU_S = ((3U << 23) + 17),
863   ASUB_S = ((4U << 23) + 17),
864   ASUB_U = ((5U << 23) + 17),
865   MULV = ((0U << 23) + 18),
866   MADDV = ((1U << 23) + 18),
867   MSUBV = ((2U << 23) + 18),
868   DIV_S_MSA = ((4U << 23) + 18),
869   DIV_U = ((5U << 23) + 18),
870   MOD_S = ((6U << 23) + 18),
871   MOD_U = ((7U << 23) + 18),
872   DOTP_S = ((0U << 23) + 19),
873   DOTP_U = ((1U << 23) + 19),
874   DPADD_S = ((2U << 23) + 19),
875   DPADD_U = ((3U << 23) + 19),
876   DPSUB_S = ((4U << 23) + 19),
877   DPSUB_U = ((5U << 23) + 19),
878   SLD = ((0U << 23) + 20),
879   SPLAT = ((1U << 23) + 20),
880   PCKEV = ((2U << 23) + 20),
881   PCKOD = ((3U << 23) + 20),
882   ILVL = ((4U << 23) + 20),
883   ILVR = ((5U << 23) + 20),
884   ILVEV = ((6U << 23) + 20),
885   ILVOD = ((7U << 23) + 20),
886   VSHF = ((0U << 23) + 21),
887   SRAR = ((1U << 23) + 21),
888   SRLR = ((2U << 23) + 21),
889   HADD_S = ((4U << 23) + 21),
890   HADD_U = ((5U << 23) + 21),
891   HSUB_S = ((6U << 23) + 21),
892   HSUB_U = ((7U << 23) + 21),
893   MSA_3R_DF_b = (0U << 21),
894   MSA_3R_DF_h = (1U << 21),
895   MSA_3R_DF_w = (2U << 21),
896   MSA_3R_DF_d = (3U << 21),
897 
898   // MSA: Operation Field for 3RF Instruction Format
899   FCAF = ((0U << 22) + 26),
900   FCUN = ((1U << 22) + 26),
901   FCEQ = ((2U << 22) + 26),
902   FCUEQ = ((3U << 22) + 26),
903   FCLT = ((4U << 22) + 26),
904   FCULT = ((5U << 22) + 26),
905   FCLE = ((6U << 22) + 26),
906   FCULE = ((7U << 22) + 26),
907   FSAF = ((8U << 22) + 26),
908   FSUN = ((9U << 22) + 26),
909   FSEQ = ((10U << 22) + 26),
910   FSUEQ = ((11U << 22) + 26),
911   FSLT = ((12U << 22) + 26),
912   FSULT = ((13U << 22) + 26),
913   FSLE = ((14U << 22) + 26),
914   FSULE = ((15U << 22) + 26),
915   FADD = ((0U << 22) + 27),
916   FSUB = ((1U << 22) + 27),
917   FMUL = ((2U << 22) + 27),
918   FDIV = ((3U << 22) + 27),
919   FMADD = ((4U << 22) + 27),
920   FMSUB = ((5U << 22) + 27),
921   FEXP2 = ((7U << 22) + 27),
922   FEXDO = ((8U << 22) + 27),
923   FTQ = ((10U << 22) + 27),
924   FMIN = ((12U << 22) + 27),
925   FMIN_A = ((13U << 22) + 27),
926   FMAX = ((14U << 22) + 27),
927   FMAX_A = ((15U << 22) + 27),
928   FCOR = ((1U << 22) + 28),
929   FCUNE = ((2U << 22) + 28),
930   FCNE = ((3U << 22) + 28),
931   MUL_Q = ((4U << 22) + 28),
932   MADD_Q = ((5U << 22) + 28),
933   MSUB_Q = ((6U << 22) + 28),
934   FSOR = ((9U << 22) + 28),
935   FSUNE = ((10U << 22) + 28),
936   FSNE = ((11U << 22) + 28),
937   MULR_Q = ((12U << 22) + 28),
938   MADDR_Q = ((13U << 22) + 28),
939   MSUBR_Q = ((14U << 22) + 28),
940 
941   // MSA: Operation Field for ELM Instruction Format
942   MSA_ELM_MINOR = ((3U << 3) + 1),
943   SLDI = (0U << 22),
944   CTCMSA = ((0U << 22) | (62U << 16)),
945   SPLATI = (1U << 22),
946   CFCMSA = ((1U << 22) | (62U << 16)),
947   COPY_S = (2U << 22),
948   MOVE_V = ((2U << 22) | (62U << 16)),
949   COPY_U = (3U << 22),
950   INSERT = (4U << 22),
951   INSVE = (5U << 22),
952   ELM_DF_B = ((0U << 4) << 16),
953   ELM_DF_H = ((4U << 3) << 16),
954   ELM_DF_W = ((12U << 2) << 16),
955   ELM_DF_D = ((28U << 1) << 16),
956 
957   // MSA: Operation Field for BIT Instruction Format
958   SLLI = ((0U << 23) + 9),
959   SRAI = ((1U << 23) + 9),
960   SRLI = ((2U << 23) + 9),
961   BCLRI = ((3U << 23) + 9),
962   BSETI = ((4U << 23) + 9),
963   BNEGI = ((5U << 23) + 9),
964   BINSLI = ((6U << 23) + 9),
965   BINSRI = ((7U << 23) + 9),
966   SAT_S = ((0U << 23) + 10),
967   SAT_U = ((1U << 23) + 10),
968   SRARI = ((2U << 23) + 10),
969   SRLRI = ((3U << 23) + 10),
970   BIT_DF_b = ((14U << 3) << 16),
971   BIT_DF_h = ((6U << 4) << 16),
972   BIT_DF_w = ((2U << 5) << 16),
973   BIT_DF_d = ((0U << 6) << 16),
974 
975   nullptrSF = 0U
976 };
977 
978 enum MSAMinorOpcode : uint32_t {
979   kMsaMinorUndefined = 0,
980   kMsaMinorI8,
981   kMsaMinorI5,
982   kMsaMinorI10,
983   kMsaMinorBIT,
984   kMsaMinor3R,
985   kMsaMinor3RF,
986   kMsaMinorELM,
987   kMsaMinorVEC,
988   kMsaMinor2R,
989   kMsaMinor2RF,
990   kMsaMinorMI10
991 };
992 
993 // ----- Emulated conditions.
994 // On MIPS we use this enum to abstract from conditional branch instructions.
995 // The 'U' prefix is used to specify unsigned comparisons.
996 // Opposite conditions must be paired as odd/even numbers
997 // because 'NegateCondition' function flips LSB to negate condition.
998 enum Condition {
999   // Any value < 0 is considered no_condition.
1000   kNoCondition = -1,
1001   overflow = 0,
1002   no_overflow = 1,
1003   Uless = 2,
1004   Ugreater_equal = 3,
1005   Uless_equal = 4,
1006   Ugreater = 5,
1007   equal = 6,
1008   not_equal = 7,  // Unordered or Not Equal.
1009   negative = 8,
1010   positive = 9,
1011   parity_even = 10,
1012   parity_odd = 11,
1013   less = 12,
1014   greater_equal = 13,
1015   less_equal = 14,
1016   greater = 15,
1017   ueq = 16,  // Unordered or Equal.
1018   ogl = 17,  // Ordered and Not Equal.
1019   cc_always = 18,
1020 
1021   // Aliases.
1022   carry = Uless,
1023   not_carry = Ugreater_equal,
1024   zero = equal,
1025   eq = equal,
1026   not_zero = not_equal,
1027   ne = not_equal,
1028   nz = not_equal,
1029   sign = negative,
1030   not_sign = positive,
1031   mi = negative,
1032   pl = positive,
1033   hi = Ugreater,
1034   ls = Uless_equal,
1035   ge = greater_equal,
1036   lt = less,
1037   gt = greater,
1038   le = less_equal,
1039   hs = Ugreater_equal,
1040   lo = Uless,
1041   al = cc_always,
1042   ult = Uless,
1043   uge = Ugreater_equal,
1044   ule = Uless_equal,
1045   ugt = Ugreater,
1046   cc_default = kNoCondition
1047 };
1048 
1049 
1050 // Returns the equivalent of !cc.
1051 // Negation of the default kNoCondition (-1) results in a non-default
1052 // no_condition value (-2). As long as tests for no_condition check
1053 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)1054 inline Condition NegateCondition(Condition cc) {
1055   DCHECK(cc != cc_always);
1056   return static_cast<Condition>(cc ^ 1);
1057 }
1058 
1059 
NegateFpuCondition(Condition cc)1060 inline Condition NegateFpuCondition(Condition cc) {
1061   DCHECK(cc != cc_always);
1062   switch (cc) {
1063     case ult:
1064       return ge;
1065     case ugt:
1066       return le;
1067     case uge:
1068       return lt;
1069     case ule:
1070       return gt;
1071     case lt:
1072       return uge;
1073     case gt:
1074       return ule;
1075     case ge:
1076       return ult;
1077     case le:
1078       return ugt;
1079     case eq:
1080       return ne;
1081     case ne:
1082       return eq;
1083     case ueq:
1084       return ogl;
1085     case ogl:
1086       return ueq;
1087     default:
1088       return cc;
1089   }
1090 }
1091 
1092 enum MSABranchCondition {
1093   all_not_zero = 0,   // Branch If All Elements Are Not Zero
1094   one_elem_not_zero,  // Branch If At Least One Element of Any Format Is Not
1095                       // Zero
1096   one_elem_zero,      // Branch If At Least One Element Is Zero
1097   all_zero            // Branch If All Elements of Any Format Are Zero
1098 };
1099 
NegateMSABranchCondition(MSABranchCondition cond)1100 inline MSABranchCondition NegateMSABranchCondition(MSABranchCondition cond) {
1101   switch (cond) {
1102     case all_not_zero:
1103       return one_elem_zero;
1104     case one_elem_not_zero:
1105       return all_zero;
1106     case one_elem_zero:
1107       return all_not_zero;
1108     case all_zero:
1109       return one_elem_not_zero;
1110     default:
1111       return cond;
1112   }
1113 }
1114 
1115 enum MSABranchDF {
1116   MSA_BRANCH_B = 0,
1117   MSA_BRANCH_H,
1118   MSA_BRANCH_W,
1119   MSA_BRANCH_D,
1120   MSA_BRANCH_V
1121 };
1122 
1123 
1124 // ----- Coprocessor conditions.
1125 enum FPUCondition {
1126   kNoFPUCondition = -1,
1127 
1128   F = 0x00,    // False.
1129   UN = 0x01,   // Unordered.
1130   EQ = 0x02,   // Equal.
1131   UEQ = 0x03,  // Unordered or Equal.
1132   OLT = 0x04,  // Ordered or Less Than, on Mips release < 6.
1133   LT = 0x04,   // Ordered or Less Than, on Mips release >= 6.
1134   ULT = 0x05,  // Unordered or Less Than.
1135   OLE = 0x06,  // Ordered or Less Than or Equal, on Mips release < 6.
1136   LE = 0x06,   // Ordered or Less Than or Equal, on Mips release >= 6.
1137   ULE = 0x07,  // Unordered or Less Than or Equal.
1138 
1139   // Following constants are available on Mips release >= 6 only.
1140   ORD = 0x11,  // Ordered, on Mips release >= 6.
1141   UNE = 0x12,  // Not equal, on Mips release >= 6.
1142   NE = 0x13,   // Ordered Greater Than or Less Than. on Mips >= 6 only.
1143 };
1144 
1145 
1146 // FPU rounding modes.
1147 enum FPURoundingMode {
1148   RN = 0 << 0,  // Round to Nearest.
1149   RZ = 1 << 0,  // Round towards zero.
1150   RP = 2 << 0,  // Round towards Plus Infinity.
1151   RM = 3 << 0,  // Round towards Minus Infinity.
1152 
1153   // Aliases.
1154   kRoundToNearest = RN,
1155   kRoundToZero = RZ,
1156   kRoundToPlusInf = RP,
1157   kRoundToMinusInf = RM,
1158 
1159   mode_round = RN,
1160   mode_ceil = RP,
1161   mode_floor = RM,
1162   mode_trunc = RZ
1163 };
1164 
1165 const uint32_t kFPURoundingModeMask = 3 << 0;
1166 
1167 enum CheckForInexactConversion {
1168   kCheckForInexactConversion,
1169   kDontCheckForInexactConversion
1170 };
1171 
1172 enum class MaxMinKind : int { kMin = 0, kMax = 1 };
1173 
1174 // -----------------------------------------------------------------------------
1175 // Hints.
1176 
1177 // Branch hints are not used on the MIPS.  They are defined so that they can
1178 // appear in shared function signatures, but will be ignored in MIPS
1179 // implementations.
1180 enum Hint {
1181   no_hint = 0
1182 };
1183 
1184 
NegateHint(Hint hint)1185 inline Hint NegateHint(Hint hint) {
1186   return no_hint;
1187 }
1188 
1189 
1190 // -----------------------------------------------------------------------------
1191 // Specific instructions, constants, and masks.
1192 // These constants are declared in assembler-mips.cc, as they use named
1193 // registers and other constants.
1194 
1195 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
1196 // operations as post-increment of sp.
1197 extern const Instr kPopInstruction;
1198 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
1199 extern const Instr kPushInstruction;
1200 // sw(r, MemOperand(sp, 0))
1201 extern const Instr kPushRegPattern;
1202 // lw(r, MemOperand(sp, 0))
1203 extern const Instr kPopRegPattern;
1204 extern const Instr kLwRegFpOffsetPattern;
1205 extern const Instr kSwRegFpOffsetPattern;
1206 extern const Instr kLwRegFpNegOffsetPattern;
1207 extern const Instr kSwRegFpNegOffsetPattern;
1208 // A mask for the Rt register for push, pop, lw, sw instructions.
1209 extern const Instr kRtMask;
1210 extern const Instr kLwSwInstrTypeMask;
1211 extern const Instr kLwSwInstrArgumentMask;
1212 extern const Instr kLwSwOffsetMask;
1213 
1214 // Break 0xfffff, reserved for redirected real time call.
1215 const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
1216 // A nop instruction. (Encoding of sll 0 0 0).
1217 const Instr nopInstr = 0;
1218 
OpcodeToBitNumber(Opcode opcode)1219 static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
1220   return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
1221 }
1222 
1223 constexpr uint8_t kInstrSize = 4;
1224 constexpr uint8_t kInstrSizeLog2 = 2;
1225 
1226 class InstructionBase {
1227  public:
1228   enum {
1229     // On MIPS PC cannot actually be directly accessed. We behave as if PC was
1230     // always the value of the current instruction being executed.
1231     kPCReadOffset = 0
1232   };
1233 
1234   // Instruction type.
1235   enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 };
1236 
1237   // Get the raw instruction bits.
InstructionBits()1238   inline Instr InstructionBits() const {
1239     return *reinterpret_cast<const Instr*>(this);
1240   }
1241 
1242   // Set the raw instruction bits to value.
SetInstructionBits(Instr value)1243   inline void SetInstructionBits(Instr value) {
1244     *reinterpret_cast<Instr*>(this) = value;
1245   }
1246 
1247   // Read one particular bit out of the instruction bits.
Bit(int nr)1248   inline int Bit(int nr) const {
1249     return (InstructionBits() >> nr) & 1;
1250   }
1251 
1252   // Read a bit field out of the instruction bits.
Bits(int hi,int lo)1253   inline int Bits(int hi, int lo) const {
1254     return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
1255   }
1256 
1257 
1258   static constexpr uint64_t kOpcodeImmediateTypeMask =
1259       OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
1260       OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
1261       OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
1262       OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
1263       OpcodeToBitNumber(SLTI) | OpcodeToBitNumber(SLTIU) |
1264       OpcodeToBitNumber(ANDI) | OpcodeToBitNumber(ORI) |
1265       OpcodeToBitNumber(XORI) | OpcodeToBitNumber(LUI) |
1266       OpcodeToBitNumber(BEQL) | OpcodeToBitNumber(BNEL) |
1267       OpcodeToBitNumber(BLEZL) | OpcodeToBitNumber(BGTZL) |
1268       OpcodeToBitNumber(POP66) | OpcodeToBitNumber(POP76) |
1269       OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) | OpcodeToBitNumber(LWL) |
1270       OpcodeToBitNumber(LW) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
1271       OpcodeToBitNumber(LWR) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
1272       OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SWR) |
1273       OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
1274       OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
1275       OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(BC) |
1276       OpcodeToBitNumber(BALC);
1277 
1278 #define FunctionFieldToBitNumber(function) (1ULL << function)
1279 
1280   static const uint64_t kFunctionFieldRegisterTypeMask =
1281       FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
1282       FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
1283       FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(SRA) |
1284       FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(SRLV) |
1285       FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(LSA) |
1286       FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
1287       FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(MULTU) |
1288       FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DIVU) |
1289       FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(ADDU) |
1290       FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(SUBU) |
1291       FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
1292       FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
1293       FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
1294       FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
1295       FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
1296       FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
1297       FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
1298       FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
1299       FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC);
1300 
1301   // Accessors for the different named fields used in the MIPS encoding.
OpcodeValue()1302   inline Opcode OpcodeValue() const {
1303     return static_cast<Opcode>(
1304         Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
1305   }
1306 
FunctionFieldRaw()1307   inline int FunctionFieldRaw() const {
1308     return InstructionBits() & kFunctionFieldMask;
1309   }
1310 
1311   // Return the fields at their original place in the instruction encoding.
OpcodeFieldRaw()1312   inline Opcode OpcodeFieldRaw() const {
1313     return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
1314   }
1315 
1316   // Safe to call within InstructionType().
RsFieldRawNoAssert()1317   inline int RsFieldRawNoAssert() const {
1318     return InstructionBits() & kRsFieldMask;
1319   }
1320 
SaFieldRaw()1321   inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; }
1322 
1323   // Get the encoding type of the instruction.
1324   inline Type InstructionType() const;
1325 
MSAMinorOpcodeField()1326   inline MSAMinorOpcode MSAMinorOpcodeField() const {
1327     int op = this->FunctionFieldRaw();
1328     switch (op) {
1329       case 0:
1330       case 1:
1331       case 2:
1332         return kMsaMinorI8;
1333       case 6:
1334         return kMsaMinorI5;
1335       case 7:
1336         return (((this->InstructionBits() & kMsaI5I10Mask) == LDI)
1337                     ? kMsaMinorI10
1338                     : kMsaMinorI5);
1339       case 9:
1340       case 10:
1341         return kMsaMinorBIT;
1342       case 13:
1343       case 14:
1344       case 15:
1345       case 16:
1346       case 17:
1347       case 18:
1348       case 19:
1349       case 20:
1350       case 21:
1351         return kMsaMinor3R;
1352       case 25:
1353         return kMsaMinorELM;
1354       case 26:
1355       case 27:
1356       case 28:
1357         return kMsaMinor3RF;
1358       case 30:
1359         switch (this->RsFieldRawNoAssert()) {
1360           case MSA_2R_FORMAT:
1361             return kMsaMinor2R;
1362           case MSA_2RF_FORMAT:
1363             return kMsaMinor2RF;
1364           default:
1365             return kMsaMinorVEC;
1366         }
1367         break;
1368       case 32:
1369       case 33:
1370       case 34:
1371       case 35:
1372       case 36:
1373       case 37:
1374       case 38:
1375       case 39:
1376         return kMsaMinorMI10;
1377       default:
1378         return kMsaMinorUndefined;
1379     }
1380   }
1381 
1382  protected:
InstructionBase()1383   InstructionBase() {}
1384 };
1385 
1386 template <class T>
1387 class InstructionGetters : public T {
1388  public:
RsValue()1389   inline int RsValue() const {
1390     DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1391            this->InstructionType() == InstructionBase::kImmediateType);
1392     return InstructionBase::Bits(kRsShift + kRsBits - 1, kRsShift);
1393   }
1394 
RtValue()1395   inline int RtValue() const {
1396     DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1397            this->InstructionType() == InstructionBase::kImmediateType);
1398     return this->Bits(kRtShift + kRtBits - 1, kRtShift);
1399   }
1400 
RdValue()1401   inline int RdValue() const {
1402     DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1403     return this->Bits(kRdShift + kRdBits - 1, kRdShift);
1404   }
1405 
BaseValue()1406   inline int BaseValue() const {
1407     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1408     return this->Bits(kBaseShift + kBaseBits - 1, kBaseShift);
1409   }
1410 
SaValue()1411   inline int SaValue() const {
1412     DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1413     return this->Bits(kSaShift + kSaBits - 1, kSaShift);
1414   }
1415 
LsaSaValue()1416   inline int LsaSaValue() const {
1417     DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1418     return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift);
1419   }
1420 
FunctionValue()1421   inline int FunctionValue() const {
1422     DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1423            this->InstructionType() == InstructionBase::kImmediateType);
1424     return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
1425   }
1426 
FdValue()1427   inline int FdValue() const {
1428     return this->Bits(kFdShift + kFdBits - 1, kFdShift);
1429   }
1430 
FsValue()1431   inline int FsValue() const {
1432     return this->Bits(kFsShift + kFsBits - 1, kFsShift);
1433   }
1434 
FtValue()1435   inline int FtValue() const {
1436     return this->Bits(kFtShift + kFtBits - 1, kFtShift);
1437   }
1438 
FrValue()1439   inline int FrValue() const {
1440     return this->Bits(kFrShift + kFrBits - 1, kFrShift);
1441   }
1442 
WdValue()1443   inline int WdValue() const {
1444     return this->Bits(kWdShift + kWdBits - 1, kWdShift);
1445   }
1446 
WsValue()1447   inline int WsValue() const {
1448     return this->Bits(kWsShift + kWsBits - 1, kWsShift);
1449   }
1450 
WtValue()1451   inline int WtValue() const {
1452     return this->Bits(kWtShift + kWtBits - 1, kWtShift);
1453   }
1454 
Bp2Value()1455   inline int Bp2Value() const {
1456     DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1457     return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
1458   }
1459 
1460   // Float Compare condition code instruction bits.
FCccValue()1461   inline int FCccValue() const {
1462     return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift);
1463   }
1464 
1465   // Float Branch condition code instruction bits.
FBccValue()1466   inline int FBccValue() const {
1467     return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift);
1468   }
1469 
1470   // Float Branch true/false instruction bit.
FBtrueValue()1471   inline int FBtrueValue() const {
1472     return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
1473   }
1474 
1475   // Return the fields at their original place in the instruction encoding.
OpcodeFieldRaw()1476   inline Opcode OpcodeFieldRaw() const {
1477     return static_cast<Opcode>(this->InstructionBits() & kOpcodeMask);
1478   }
1479 
RsFieldRaw()1480   inline int RsFieldRaw() const {
1481     DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1482            this->InstructionType() == InstructionBase::kImmediateType);
1483     return this->InstructionBits() & kRsFieldMask;
1484   }
1485 
RtFieldRaw()1486   inline int RtFieldRaw() const {
1487     DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1488            this->InstructionType() == InstructionBase::kImmediateType);
1489     return this->InstructionBits() & kRtFieldMask;
1490   }
1491 
RdFieldRaw()1492   inline int RdFieldRaw() const {
1493     DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1494     return this->InstructionBits() & kRdFieldMask;
1495   }
1496 
SaFieldRaw()1497   inline int SaFieldRaw() const {
1498     return this->InstructionBits() & kSaFieldMask;
1499   }
1500 
FunctionFieldRaw()1501   inline int FunctionFieldRaw() const {
1502     return this->InstructionBits() & kFunctionFieldMask;
1503   }
1504 
1505   // Get the secondary field according to the opcode.
SecondaryValue()1506   inline int SecondaryValue() const {
1507     Opcode op = this->OpcodeFieldRaw();
1508     switch (op) {
1509       case SPECIAL:
1510       case SPECIAL2:
1511         return FunctionValue();
1512       case COP1:
1513         return RsValue();
1514       case REGIMM:
1515         return RtValue();
1516       default:
1517         return nullptrSF;
1518     }
1519   }
1520 
ImmValue(int bits)1521   inline int32_t ImmValue(int bits) const {
1522     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1523     return this->Bits(bits - 1, 0);
1524   }
1525 
Imm9Value()1526   inline int32_t Imm9Value() const {
1527     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1528     return this->Bits(kImm9Shift + kImm9Bits - 1, kImm9Shift);
1529   }
1530 
Imm16Value()1531   inline int32_t Imm16Value() const {
1532     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1533     return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
1534   }
1535 
Imm18Value()1536   inline int32_t Imm18Value() const {
1537     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1538     return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
1539   }
1540 
Imm19Value()1541   inline int32_t Imm19Value() const {
1542     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1543     return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
1544   }
1545 
Imm21Value()1546   inline int32_t Imm21Value() const {
1547     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1548     return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
1549   }
1550 
Imm26Value()1551   inline int32_t Imm26Value() const {
1552     DCHECK((this->InstructionType() == InstructionBase::kJumpType) ||
1553            (this->InstructionType() == InstructionBase::kImmediateType));
1554     return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
1555   }
1556 
MsaImm8Value()1557   inline int32_t MsaImm8Value() const {
1558     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1559     return this->Bits(kMsaImm8Shift + kMsaImm8Bits - 1, kMsaImm8Shift);
1560   }
1561 
MsaImm5Value()1562   inline int32_t MsaImm5Value() const {
1563     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1564     return this->Bits(kMsaImm5Shift + kMsaImm5Bits - 1, kMsaImm5Shift);
1565   }
1566 
MsaImm10Value()1567   inline int32_t MsaImm10Value() const {
1568     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1569     return this->Bits(kMsaImm10Shift + kMsaImm10Bits - 1, kMsaImm10Shift);
1570   }
1571 
MsaImmMI10Value()1572   inline int32_t MsaImmMI10Value() const {
1573     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1574     return this->Bits(kMsaImmMI10Shift + kMsaImmMI10Bits - 1, kMsaImmMI10Shift);
1575   }
1576 
MsaBitDf()1577   inline int32_t MsaBitDf() const {
1578     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1579     int32_t df_m = this->Bits(22, 16);
1580     if (((df_m >> 6) & 1U) == 0) {
1581       return 3;
1582     } else if (((df_m >> 5) & 3U) == 2) {
1583       return 2;
1584     } else if (((df_m >> 4) & 7U) == 6) {
1585       return 1;
1586     } else if (((df_m >> 3) & 15U) == 14) {
1587       return 0;
1588     } else {
1589       return -1;
1590     }
1591   }
1592 
MsaBitMValue()1593   inline int32_t MsaBitMValue() const {
1594     DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1595     return this->Bits(16 + this->MsaBitDf() + 3, 16);
1596   }
1597 
MsaElmDf()1598   inline int32_t MsaElmDf() const {
1599     DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1600            this->InstructionType() == InstructionBase::kImmediateType);
1601     int32_t df_n = this->Bits(21, 16);
1602     if (((df_n >> 4) & 3U) == 0) {
1603       return 0;
1604     } else if (((df_n >> 3) & 7U) == 4) {
1605       return 1;
1606     } else if (((df_n >> 2) & 15U) == 12) {
1607       return 2;
1608     } else if (((df_n >> 1) & 31U) == 28) {
1609       return 3;
1610     } else {
1611       return -1;
1612     }
1613   }
1614 
MsaElmNValue()1615   inline int32_t MsaElmNValue() const {
1616     DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1617            this->InstructionType() == InstructionBase::kImmediateType);
1618     return this->Bits(16 + 4 - this->MsaElmDf(), 16);
1619   }
1620 
1621   static bool IsForbiddenAfterBranchInstr(Instr instr);
1622 
1623   // Say if the instruction should not be used in a branch delay slot or
1624   // immediately after a compact branch.
IsForbiddenAfterBranch()1625   inline bool IsForbiddenAfterBranch() const {
1626     return IsForbiddenAfterBranchInstr(this->InstructionBits());
1627   }
1628 
IsForbiddenInBranchDelay()1629   inline bool IsForbiddenInBranchDelay() const {
1630     return IsForbiddenAfterBranch();
1631   }
1632 
1633   // Say if the instruction 'links'. e.g. jal, bal.
1634   bool IsLinkingInstruction() const;
1635   // Say if the instruction is a break or a trap.
1636   bool IsTrap() const;
1637 
IsMSABranchInstr()1638   inline bool IsMSABranchInstr() const {
1639     if (this->OpcodeFieldRaw() == COP1) {
1640       switch (this->RsFieldRaw()) {
1641         case BZ_V:
1642         case BZ_B:
1643         case BZ_H:
1644         case BZ_W:
1645         case BZ_D:
1646         case BNZ_V:
1647         case BNZ_B:
1648         case BNZ_H:
1649         case BNZ_W:
1650         case BNZ_D:
1651           return true;
1652         default:
1653           return false;
1654       }
1655     }
1656     return false;
1657   }
1658 
IsMSAInstr()1659   inline bool IsMSAInstr() const {
1660     if (this->IsMSABranchInstr() || (this->OpcodeFieldRaw() == MSA))
1661       return true;
1662     return false;
1663   }
1664 };
1665 
1666 class Instruction : public InstructionGetters<InstructionBase> {
1667  public:
1668   // Instructions are read of out a code stream. The only way to get a
1669   // reference to an instruction is to convert a pointer. There is no way
1670   // to allocate or create instances of class Instruction.
1671   // Use the At(pc) function to create references to Instruction.
At(byte * pc)1672   static Instruction* At(byte* pc) {
1673     return reinterpret_cast<Instruction*>(pc);
1674   }
1675 
1676  private:
1677   // We need to prevent the creation of instances of class Instruction.
1678   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
1679 };
1680 
1681 
1682 // -----------------------------------------------------------------------------
1683 // MIPS assembly various constants.
1684 
1685 // C/C++ argument slots size.
1686 const int kCArgSlotCount = 4;
1687 const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize;
1688 const int kInvalidStackOffset = -1;
1689 // JS argument slots size.
1690 const int kJSArgsSlotsSize = 0 * kInstrSize;
1691 // Assembly builtins argument slots size.
1692 const int kBArgsSlotsSize = 0 * kInstrSize;
1693 
1694 const int kBranchReturnOffset = 2 * kInstrSize;
1695 
InstructionType()1696 InstructionBase::Type InstructionBase::InstructionType() const {
1697   switch (OpcodeFieldRaw()) {
1698     case SPECIAL:
1699       if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
1700           kFunctionFieldRegisterTypeMask) {
1701         return kRegisterType;
1702       }
1703       return kUnsupported;
1704     case SPECIAL2:
1705       switch (FunctionFieldRaw()) {
1706         case MUL:
1707         case CLZ:
1708           return kRegisterType;
1709         default:
1710           return kUnsupported;
1711       }
1712       break;
1713     case SPECIAL3:
1714       switch (FunctionFieldRaw()) {
1715         case INS:
1716         case EXT:
1717           return kRegisterType;
1718         case BSHFL: {
1719           int sa = SaFieldRaw() >> kSaShift;
1720           switch (sa) {
1721             case BITSWAP:
1722             case WSBH:
1723             case SEB:
1724             case SEH:
1725               return kRegisterType;
1726           }
1727           sa >>= kBp2Bits;
1728           switch (sa) {
1729             case ALIGN:
1730               return kRegisterType;
1731             default:
1732               return kUnsupported;
1733           }
1734         }
1735         case LL_R6:
1736         case SC_R6: {
1737           DCHECK(IsMipsArchVariant(kMips32r6));
1738           return kImmediateType;
1739         }
1740         default:
1741           return kUnsupported;
1742       }
1743       break;
1744     case COP1:  // Coprocessor instructions.
1745       switch (RsFieldRawNoAssert()) {
1746         case BC1:  // Branch on coprocessor condition.
1747         case BC1EQZ:
1748         case BC1NEZ:
1749           return kImmediateType;
1750         // MSA Branch instructions
1751         case BZ_V:
1752         case BNZ_V:
1753         case BZ_B:
1754         case BZ_H:
1755         case BZ_W:
1756         case BZ_D:
1757         case BNZ_B:
1758         case BNZ_H:
1759         case BNZ_W:
1760         case BNZ_D:
1761           return kImmediateType;
1762         default:
1763           return kRegisterType;
1764       }
1765       break;
1766     case COP1X:
1767       return kRegisterType;
1768 
1769     // 26 bits immediate type instructions. e.g.: j imm26.
1770     case J:
1771     case JAL:
1772       return kJumpType;
1773 
1774     case MSA:
1775       switch (MSAMinorOpcodeField()) {
1776         case kMsaMinor3R:
1777         case kMsaMinor3RF:
1778         case kMsaMinorVEC:
1779         case kMsaMinor2R:
1780         case kMsaMinor2RF:
1781           return kRegisterType;
1782         case kMsaMinorELM:
1783           switch (InstructionBits() & kMsaLongerELMMask) {
1784             case CFCMSA:
1785             case CTCMSA:
1786             case MOVE_V:
1787               return kRegisterType;
1788             default:
1789               return kImmediateType;
1790           }
1791         default:
1792           return kImmediateType;
1793       }
1794 
1795     default:
1796         return kImmediateType;
1797   }
1798 }
1799 
1800 #undef OpcodeToBitNumber
1801 #undef FunctionFieldToBitNumber
1802 
1803 // -----------------------------------------------------------------------------
1804 // Instructions.
1805 
1806 template <class P>
IsLinkingInstruction()1807 bool InstructionGetters<P>::IsLinkingInstruction() const {
1808   uint32_t op = this->OpcodeFieldRaw();
1809   switch (op) {
1810     case JAL:
1811       return true;
1812     case POP76:
1813       if (this->RsFieldRawNoAssert() == JIALC)
1814         return true;  // JIALC
1815       else
1816         return false;  // BNEZC
1817     case REGIMM:
1818       switch (this->RtFieldRaw()) {
1819         case BGEZAL:
1820         case BLTZAL:
1821           return true;
1822         default:
1823           return false;
1824       }
1825     case SPECIAL:
1826       switch (this->FunctionFieldRaw()) {
1827         case JALR:
1828           return true;
1829         default:
1830           return false;
1831       }
1832     default:
1833       return false;
1834   }
1835 }
1836 
1837 template <class P>
IsTrap()1838 bool InstructionGetters<P>::IsTrap() const {
1839   if (this->OpcodeFieldRaw() != SPECIAL) {
1840     return false;
1841   } else {
1842     switch (this->FunctionFieldRaw()) {
1843       case BREAK:
1844       case TGE:
1845       case TGEU:
1846       case TLT:
1847       case TLTU:
1848       case TEQ:
1849       case TNE:
1850         return true;
1851       default:
1852         return false;
1853     }
1854   }
1855 }
1856 
1857 // static
1858 template <class T>
IsForbiddenAfterBranchInstr(Instr instr)1859 bool InstructionGetters<T>::IsForbiddenAfterBranchInstr(Instr instr) {
1860   Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
1861   switch (opcode) {
1862     case J:
1863     case JAL:
1864     case BEQ:
1865     case BNE:
1866     case BLEZ:  // POP06 bgeuc/bleuc, blezalc, bgezalc
1867     case BGTZ:  // POP07 bltuc/bgtuc, bgtzalc, bltzalc
1868     case BEQL:
1869     case BNEL:
1870     case BLEZL:  // POP26 bgezc, blezc, bgec/blec
1871     case BGTZL:  // POP27 bgtzc, bltzc, bltc/bgtc
1872     case BC:
1873     case BALC:
1874     case POP10:  // beqzalc, bovc, beqc
1875     case POP30:  // bnezalc, bnvc, bnec
1876     case POP66:  // beqzc, jic
1877     case POP76:  // bnezc, jialc
1878       return true;
1879     case REGIMM:
1880       switch (instr & kRtFieldMask) {
1881         case BLTZ:
1882         case BGEZ:
1883         case BLTZAL:
1884         case BGEZAL:
1885           return true;
1886         default:
1887           return false;
1888       }
1889       break;
1890     case SPECIAL:
1891       switch (instr & kFunctionFieldMask) {
1892         case JR:
1893         case JALR:
1894           return true;
1895         default:
1896           return false;
1897       }
1898       break;
1899     case COP1:
1900       switch (instr & kRsFieldMask) {
1901         case BC1:
1902         case BC1EQZ:
1903         case BC1NEZ:
1904         case BZ_V:
1905         case BZ_B:
1906         case BZ_H:
1907         case BZ_W:
1908         case BZ_D:
1909         case BNZ_V:
1910         case BNZ_B:
1911         case BNZ_H:
1912         case BNZ_W:
1913         case BNZ_D:
1914           return true;
1915           break;
1916         default:
1917           return false;
1918       }
1919       break;
1920     default:
1921       return false;
1922   }
1923 }
1924 }  // namespace internal
1925 }  // namespace v8
1926 
1927 #endif  // V8_MIPS_CONSTANTS_MIPS_H_
1928