1#! /usr/bin/env perl 2# Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. 3# 4# Licensed under the OpenSSL license (the "License"). You may not use 5# this file except in compliance with the License. You can obtain a copy 6# in the file LICENSE in the source distribution or at 7# https://www.openssl.org/source/license.html 8 9# 10# ==================================================================== 11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 12# project. The module is, however, dual licensed under OpenSSL and 13# CRYPTOGAMS licenses depending on where you obtain it. For further 14# details see http://www.openssl.org/~appro/cryptogams/. 15# ==================================================================== 16# 17# Version 4.3. 18# 19# You might fail to appreciate this module performance from the first 20# try. If compared to "vanilla" linux-ia32-icc target, i.e. considered 21# to be *the* best Intel C compiler without -KPIC, performance appears 22# to be virtually identical... But try to re-configure with shared 23# library support... Aha! Intel compiler "suddenly" lags behind by 30% 24# [on P4, more on others]:-) And if compared to position-independent 25# code generated by GNU C, this code performs *more* than *twice* as 26# fast! Yes, all this buzz about PIC means that unlike other hand- 27# coded implementations, this one was explicitly designed to be safe 28# to use even in shared library context... This also means that this 29# code isn't necessarily absolutely fastest "ever," because in order 30# to achieve position independence an extra register has to be 31# off-loaded to stack, which affects the benchmark result. 32# 33# Special note about instruction choice. Do you recall RC4_INT code 34# performing poorly on P4? It might be the time to figure out why. 35# RC4_INT code implies effective address calculations in base+offset*4 36# form. Trouble is that it seems that offset scaling turned to be 37# critical path... At least eliminating scaling resulted in 2.8x RC4 38# performance improvement [as you might recall]. As AES code is hungry 39# for scaling too, I [try to] avoid the latter by favoring off-by-2 40# shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF. 41# 42# As was shown by Dean Gaudet, the above note turned out to be 43# void. Performance improvement with off-by-2 shifts was observed on 44# intermediate implementation, which was spilling yet another register 45# to stack... Final offset*4 code below runs just a tad faster on P4, 46# but exhibits up to 10% improvement on other cores. 47# 48# Second version is "monolithic" replacement for aes_core.c, which in 49# addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key. 50# This made it possible to implement little-endian variant of the 51# algorithm without modifying the base C code. Motivating factor for 52# the undertaken effort was that it appeared that in tight IA-32 53# register window little-endian flavor could achieve slightly higher 54# Instruction Level Parallelism, and it indeed resulted in up to 15% 55# better performance on most recent µ-archs... 56# 57# Third version adds AES_cbc_encrypt implementation, which resulted in 58# up to 40% performance improvement of CBC benchmark results. 40% was 59# observed on P4 core, where "overall" improvement coefficient, i.e. if 60# compared to PIC generated by GCC and in CBC mode, was observed to be 61# as large as 4x:-) CBC performance is virtually identical to ECB now 62# and on some platforms even better, e.g. 17.6 "small" cycles/byte on 63# Opteron, because certain function prologues and epilogues are 64# effectively taken out of the loop... 65# 66# Version 3.2 implements compressed tables and prefetch of these tables 67# in CBC[!] mode. Former means that 3/4 of table references are now 68# misaligned, which unfortunately has negative impact on elder IA-32 69# implementations, Pentium suffered 30% penalty, PIII - 10%. 70# 71# Version 3.3 avoids L1 cache aliasing between stack frame and 72# S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The 73# latter is achieved by copying the key schedule to controlled place in 74# stack. This unfortunately has rather strong impact on small block CBC 75# performance, ~2x deterioration on 16-byte block if compared to 3.3. 76# 77# Version 3.5 checks if there is L1 cache aliasing between user-supplied 78# key schedule and S-boxes and abstains from copying the former if 79# there is no. This allows end-user to consciously retain small block 80# performance by aligning key schedule in specific manner. 81# 82# Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB. 83# 84# Current ECB performance numbers for 128-bit key in CPU cycles per 85# processed byte [measure commonly used by AES benchmarkers] are: 86# 87# small footprint fully unrolled 88# P4 24 22 89# AMD K8 20 19 90# PIII 25 23 91# Pentium 81 78 92# 93# Version 3.7 reimplements outer rounds as "compact." Meaning that 94# first and last rounds reference compact 256 bytes S-box. This means 95# that first round consumes a lot more CPU cycles and that encrypt 96# and decrypt performance becomes asymmetric. Encrypt performance 97# drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is 98# aggressively pre-fetched. 99# 100# Version 4.0 effectively rolls back to 3.6 and instead implements 101# additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact, 102# which use exclusively 256 byte S-box. These functions are to be 103# called in modes not concealing plain text, such as ECB, or when 104# we're asked to process smaller amount of data [or unconditionally 105# on hyper-threading CPU]. Currently it's called unconditionally from 106# AES_[en|de]crypt, which affects all modes, but CBC. CBC routine 107# still needs to be modified to switch between slower and faster 108# mode when appropriate... But in either case benchmark landscape 109# changes dramatically and below numbers are CPU cycles per processed 110# byte for 128-bit key. 111# 112# ECB encrypt ECB decrypt CBC large chunk 113# P4 52[54] 83[95] 23 114# AMD K8 46[41] 66[70] 18 115# PIII 41[50] 60[77] 24 116# Core 2 31[36] 45[64] 18.5 117# Atom 76[100] 96[138] 60 118# Pentium 115 150 77 119# 120# Version 4.1 switches to compact S-box even in key schedule setup. 121# 122# Version 4.2 prefetches compact S-box in every SSE round or in other 123# words every cache-line is *guaranteed* to be accessed within ~50 124# cycles window. Why just SSE? Because it's needed on hyper-threading 125# CPU! Which is also why it's prefetched with 64 byte stride. Best 126# part is that it has no negative effect on performance:-) 127# 128# Version 4.3 implements switch between compact and non-compact block 129# functions in AES_cbc_encrypt depending on how much data was asked 130# to be processed in one stroke. 131# 132###################################################################### 133# Timing attacks are classified in two classes: synchronous when 134# attacker consciously initiates cryptographic operation and collects 135# timing data of various character afterwards, and asynchronous when 136# malicious code is executed on same CPU simultaneously with AES, 137# instruments itself and performs statistical analysis of this data. 138# 139# As far as synchronous attacks go the root to the AES timing 140# vulnerability is twofold. Firstly, of 256 S-box elements at most 160 141# are referred to in single 128-bit block operation. Well, in C 142# implementation with 4 distinct tables it's actually as little as 40 143# references per 256 elements table, but anyway... Secondly, even 144# though S-box elements are clustered into smaller amount of cache- 145# lines, smaller than 160 and even 40, it turned out that for certain 146# plain-text pattern[s] or simply put chosen plain-text and given key 147# few cache-lines remain unaccessed during block operation. Now, if 148# attacker can figure out this access pattern, he can deduct the key 149# [or at least part of it]. The natural way to mitigate this kind of 150# attacks is to minimize the amount of cache-lines in S-box and/or 151# prefetch them to ensure that every one is accessed for more uniform 152# timing. But note that *if* plain-text was concealed in such way that 153# input to block function is distributed *uniformly*, then attack 154# wouldn't apply. Now note that some encryption modes, most notably 155# CBC, do mask the plain-text in this exact way [secure cipher output 156# is distributed uniformly]. Yes, one still might find input that 157# would reveal the information about given key, but if amount of 158# candidate inputs to be tried is larger than amount of possible key 159# combinations then attack becomes infeasible. This is why revised 160# AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk 161# of data is to be processed in one stroke. The current size limit of 162# 512 bytes is chosen to provide same [diminishingly low] probability 163# for cache-line to remain untouched in large chunk operation with 164# large S-box as for single block operation with compact S-box and 165# surely needs more careful consideration... 166# 167# As for asynchronous attacks. There are two flavours: attacker code 168# being interleaved with AES on hyper-threading CPU at *instruction* 169# level, and two processes time sharing single core. As for latter. 170# Two vectors. 1. Given that attacker process has higher priority, 171# yield execution to process performing AES just before timer fires 172# off the scheduler, immediately regain control of CPU and analyze the 173# cache state. For this attack to be efficient attacker would have to 174# effectively slow down the operation by several *orders* of magnitude, 175# by ratio of time slice to duration of handful of AES rounds, which 176# unlikely to remain unnoticed. Not to mention that this also means 177# that he would spend correspondingly more time to collect enough 178# statistical data to mount the attack. It's probably appropriate to 179# say that if adversary reckons that this attack is beneficial and 180# risks to be noticed, you probably have larger problems having him 181# mere opportunity. In other words suggested code design expects you 182# to preclude/mitigate this attack by overall system security design. 183# 2. Attacker manages to make his code interrupt driven. In order for 184# this kind of attack to be feasible, interrupt rate has to be high 185# enough, again comparable to duration of handful of AES rounds. But 186# is there interrupt source of such rate? Hardly, not even 1Gbps NIC 187# generates interrupts at such raging rate... 188# 189# And now back to the former, hyper-threading CPU or more specifically 190# Intel P4. Recall that asynchronous attack implies that malicious 191# code instruments itself. And naturally instrumentation granularity 192# has be noticeably lower than duration of codepath accessing S-box. 193# Given that all cache-lines are accessed during that time that is. 194# Current implementation accesses *all* cache-lines within ~50 cycles 195# window, which is actually *less* than RDTSC latency on Intel P4! 196 197$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 198push(@INC,"${dir}","${dir}../../../perlasm"); 199require "x86asm.pl"; 200 201$output = pop; 202open OUT,">$output"; 203*STDOUT=*OUT; 204 205&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386"); 206&static_label("AES_Te"); 207&static_label("AES_Td"); 208 209$s0="eax"; 210$s1="ebx"; 211$s2="ecx"; 212$s3="edx"; 213$key="edi"; 214$acc="esi"; 215$tbl="ebp"; 216 217# stack frame layout in _[x86|sse]_AES_* routines, frame is allocated 218# by caller 219$__ra=&DWP(0,"esp"); # return address 220$__s0=&DWP(4,"esp"); # s0 backing store 221$__s1=&DWP(8,"esp"); # s1 backing store 222$__s2=&DWP(12,"esp"); # s2 backing store 223$__s3=&DWP(16,"esp"); # s3 backing store 224$__key=&DWP(20,"esp"); # pointer to key schedule 225$__end=&DWP(24,"esp"); # pointer to end of key schedule 226$__tbl=&DWP(28,"esp"); # %ebp backing store 227 228# stack frame layout in AES_[en|crypt] routines, which differs from 229# above by 4 and overlaps by %ebp backing store 230$_tbl=&DWP(24,"esp"); 231$_esp=&DWP(28,"esp"); 232 233sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } } 234 235$speed_limit=512; # chunks smaller than $speed_limit are 236 # processed with compact routine in CBC mode 237$small_footprint=1; # $small_footprint=1 code is ~5% slower [on 238 # recent µ-archs], but ~5 times smaller! 239 # I favor compact code to minimize cache 240 # contention and in hope to "collect" 5% back 241 # in real-life applications... 242 243$vertical_spin=0; # shift "vertically" defaults to 0, because of 244 # its proof-of-concept status... 245# Note that there is no decvert(), as well as last encryption round is 246# performed with "horizontal" shifts. This is because this "vertical" 247# implementation [one which groups shifts on a given $s[i] to form a 248# "column," unlike "horizontal" one, which groups shifts on different 249# $s[i] to form a "row"] is work in progress. It was observed to run 250# few percents faster on Intel cores, but not AMD. On AMD K8 core it's 251# whole 12% slower:-( So we face a trade-off... Shall it be resolved 252# some day? Till then the code is considered experimental and by 253# default remains dormant... 254 255sub encvert() 256{ my ($te,@s) = @_; 257 my ($v0,$v1) = ($acc,$key); 258 259 &mov ($v0,$s[3]); # copy s3 260 &mov (&DWP(4,"esp"),$s[2]); # save s2 261 &mov ($v1,$s[0]); # copy s0 262 &mov (&DWP(8,"esp"),$s[1]); # save s1 263 264 &movz ($s[2],&HB($s[0])); 265 &and ($s[0],0xFF); 266 &mov ($s[0],&DWP(0,$te,$s[0],8)); # s0>>0 267 &shr ($v1,16); 268 &mov ($s[3],&DWP(3,$te,$s[2],8)); # s0>>8 269 &movz ($s[1],&HB($v1)); 270 &and ($v1,0xFF); 271 &mov ($s[2],&DWP(2,$te,$v1,8)); # s0>>16 272 &mov ($v1,$v0); 273 &mov ($s[1],&DWP(1,$te,$s[1],8)); # s0>>24 274 275 &and ($v0,0xFF); 276 &xor ($s[3],&DWP(0,$te,$v0,8)); # s3>>0 277 &movz ($v0,&HB($v1)); 278 &shr ($v1,16); 279 &xor ($s[2],&DWP(3,$te,$v0,8)); # s3>>8 280 &movz ($v0,&HB($v1)); 281 &and ($v1,0xFF); 282 &xor ($s[1],&DWP(2,$te,$v1,8)); # s3>>16 283 &mov ($v1,&DWP(4,"esp")); # restore s2 284 &xor ($s[0],&DWP(1,$te,$v0,8)); # s3>>24 285 286 &mov ($v0,$v1); 287 &and ($v1,0xFF); 288 &xor ($s[2],&DWP(0,$te,$v1,8)); # s2>>0 289 &movz ($v1,&HB($v0)); 290 &shr ($v0,16); 291 &xor ($s[1],&DWP(3,$te,$v1,8)); # s2>>8 292 &movz ($v1,&HB($v0)); 293 &and ($v0,0xFF); 294 &xor ($s[0],&DWP(2,$te,$v0,8)); # s2>>16 295 &mov ($v0,&DWP(8,"esp")); # restore s1 296 &xor ($s[3],&DWP(1,$te,$v1,8)); # s2>>24 297 298 &mov ($v1,$v0); 299 &and ($v0,0xFF); 300 &xor ($s[1],&DWP(0,$te,$v0,8)); # s1>>0 301 &movz ($v0,&HB($v1)); 302 &shr ($v1,16); 303 &xor ($s[0],&DWP(3,$te,$v0,8)); # s1>>8 304 &movz ($v0,&HB($v1)); 305 &and ($v1,0xFF); 306 &xor ($s[3],&DWP(2,$te,$v1,8)); # s1>>16 307 &mov ($key,$__key); # reincarnate v1 as key 308 &xor ($s[2],&DWP(1,$te,$v0,8)); # s1>>24 309} 310 311# Another experimental routine, which features "horizontal spin," but 312# eliminates one reference to stack. Strangely enough runs slower... 313sub enchoriz() 314{ my ($v0,$v1) = ($key,$acc); 315 316 &movz ($v0,&LB($s0)); # 3, 2, 1, 0* 317 &rotr ($s2,8); # 8,11,10, 9 318 &mov ($v1,&DWP(0,$te,$v0,8)); # 0 319 &movz ($v0,&HB($s1)); # 7, 6, 5*, 4 320 &rotr ($s3,16); # 13,12,15,14 321 &xor ($v1,&DWP(3,$te,$v0,8)); # 5 322 &movz ($v0,&HB($s2)); # 8,11,10*, 9 323 &rotr ($s0,16); # 1, 0, 3, 2 324 &xor ($v1,&DWP(2,$te,$v0,8)); # 10 325 &movz ($v0,&HB($s3)); # 13,12,15*,14 326 &xor ($v1,&DWP(1,$te,$v0,8)); # 15, t[0] collected 327 &mov ($__s0,$v1); # t[0] saved 328 329 &movz ($v0,&LB($s1)); # 7, 6, 5, 4* 330 &shr ($s1,16); # -, -, 7, 6 331 &mov ($v1,&DWP(0,$te,$v0,8)); # 4 332 &movz ($v0,&LB($s3)); # 13,12,15,14* 333 &xor ($v1,&DWP(2,$te,$v0,8)); # 14 334 &movz ($v0,&HB($s0)); # 1, 0, 3*, 2 335 &and ($s3,0xffff0000); # 13,12, -, - 336 &xor ($v1,&DWP(1,$te,$v0,8)); # 3 337 &movz ($v0,&LB($s2)); # 8,11,10, 9* 338 &or ($s3,$s1); # 13,12, 7, 6 339 &xor ($v1,&DWP(3,$te,$v0,8)); # 9, t[1] collected 340 &mov ($s1,$v1); # s[1]=t[1] 341 342 &movz ($v0,&LB($s0)); # 1, 0, 3, 2* 343 &shr ($s2,16); # -, -, 8,11 344 &mov ($v1,&DWP(2,$te,$v0,8)); # 2 345 &movz ($v0,&HB($s3)); # 13,12, 7*, 6 346 &xor ($v1,&DWP(1,$te,$v0,8)); # 7 347 &movz ($v0,&HB($s2)); # -, -, 8*,11 348 &xor ($v1,&DWP(0,$te,$v0,8)); # 8 349 &mov ($v0,$s3); 350 &shr ($v0,24); # 13 351 &xor ($v1,&DWP(3,$te,$v0,8)); # 13, t[2] collected 352 353 &movz ($v0,&LB($s2)); # -, -, 8,11* 354 &shr ($s0,24); # 1* 355 &mov ($s2,&DWP(1,$te,$v0,8)); # 11 356 &xor ($s2,&DWP(3,$te,$s0,8)); # 1 357 &mov ($s0,$__s0); # s[0]=t[0] 358 &movz ($v0,&LB($s3)); # 13,12, 7, 6* 359 &shr ($s3,16); # , ,13,12 360 &xor ($s2,&DWP(2,$te,$v0,8)); # 6 361 &mov ($key,$__key); # reincarnate v0 as key 362 &and ($s3,0xff); # , ,13,12* 363 &mov ($s3,&DWP(0,$te,$s3,8)); # 12 364 &xor ($s3,$s2); # s[2]=t[3] collected 365 &mov ($s2,$v1); # s[2]=t[2] 366} 367 368# More experimental code... SSE one... Even though this one eliminates 369# *all* references to stack, it's not faster... 370sub sse_encbody() 371{ 372 &movz ($acc,&LB("eax")); # 0 373 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 0 374 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2 375 &movz ("edx",&HB("eax")); # 1 376 &mov ("edx",&DWP(3,$tbl,"edx",8)); # 1 377 &shr ("eax",16); # 5, 4 378 379 &movz ($acc,&LB("ebx")); # 10 380 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 10 381 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8 382 &movz ($acc,&HB("ebx")); # 11 383 &xor ("edx",&DWP(1,$tbl,$acc,8)); # 11 384 &shr ("ebx",16); # 15,14 385 386 &movz ($acc,&HB("eax")); # 5 387 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 5 388 &movq ("mm3",QWP(16,$key)); 389 &movz ($acc,&HB("ebx")); # 15 390 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 15 391 &movd ("mm0","ecx"); # t[0] collected 392 393 &movz ($acc,&LB("eax")); # 4 394 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 4 395 &movd ("eax","mm2"); # 7, 6, 3, 2 396 &movz ($acc,&LB("ebx")); # 14 397 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 14 398 &movd ("ebx","mm6"); # 13,12, 9, 8 399 400 &movz ($acc,&HB("eax")); # 3 401 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 3 402 &movz ($acc,&HB("ebx")); # 9 403 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 9 404 &movd ("mm1","ecx"); # t[1] collected 405 406 &movz ($acc,&LB("eax")); # 2 407 &mov ("ecx",&DWP(2,$tbl,$acc,8)); # 2 408 &shr ("eax",16); # 7, 6 409 &punpckldq ("mm0","mm1"); # t[0,1] collected 410 &movz ($acc,&LB("ebx")); # 8 411 &xor ("ecx",&DWP(0,$tbl,$acc,8)); # 8 412 &shr ("ebx",16); # 13,12 413 414 &movz ($acc,&HB("eax")); # 7 415 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 7 416 &pxor ("mm0","mm3"); 417 &movz ("eax",&LB("eax")); # 6 418 &xor ("edx",&DWP(2,$tbl,"eax",8)); # 6 419 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0 420 &movz ($acc,&HB("ebx")); # 13 421 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 13 422 &xor ("ecx",&DWP(24,$key)); # t[2] 423 &movd ("mm4","ecx"); # t[2] collected 424 &movz ("ebx",&LB("ebx")); # 12 425 &xor ("edx",&DWP(0,$tbl,"ebx",8)); # 12 426 &shr ("ecx",16); 427 &movd ("eax","mm1"); # 5, 4, 1, 0 428 &mov ("ebx",&DWP(28,$key)); # t[3] 429 &xor ("ebx","edx"); 430 &movd ("mm5","ebx"); # t[3] collected 431 &and ("ebx",0xffff0000); 432 &or ("ebx","ecx"); 433 434 &punpckldq ("mm4","mm5"); # t[2,3] collected 435} 436 437###################################################################### 438# "Compact" block function 439###################################################################### 440 441sub enccompact() 442{ my $Fn = \&mov; 443 while ($#_>5) { pop(@_); $Fn=sub{}; } 444 my ($i,$te,@s)=@_; 445 my $tmp = $key; 446 my $out = $i==3?$s[0]:$acc; 447 448 # $Fn is used in first compact round and its purpose is to 449 # void restoration of some values from stack, so that after 450 # 4xenccompact with extra argument $key value is left there... 451 if ($i==3) { &$Fn ($key,$__key); }##%edx 452 else { &mov ($out,$s[0]); } 453 &and ($out,0xFF); 454 if ($i==1) { &shr ($s[0],16); }#%ebx[1] 455 if ($i==2) { &shr ($s[0],24); }#%ecx[2] 456 &movz ($out,&BP(-128,$te,$out,1)); 457 458 if ($i==3) { $tmp=$s[1]; }##%eax 459 &movz ($tmp,&HB($s[1])); 460 &movz ($tmp,&BP(-128,$te,$tmp,1)); 461 &shl ($tmp,8); 462 &xor ($out,$tmp); 463 464 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx 465 else { &mov ($tmp,$s[2]); 466 &shr ($tmp,16); } 467 if ($i==2) { &and ($s[1],0xFF); }#%edx[2] 468 &and ($tmp,0xFF); 469 &movz ($tmp,&BP(-128,$te,$tmp,1)); 470 &shl ($tmp,16); 471 &xor ($out,$tmp); 472 473 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx 474 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] 475 else { &mov ($tmp,$s[3]); 476 &shr ($tmp,24); } 477 &movz ($tmp,&BP(-128,$te,$tmp,1)); 478 &shl ($tmp,24); 479 &xor ($out,$tmp); 480 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 481 if ($i==3) { &mov ($s[3],$acc); } 482 &comment(); 483} 484 485sub enctransform() 486{ my @s = ($s0,$s1,$s2,$s3); 487 my $i = shift; 488 my $tmp = $tbl; 489 my $r2 = $key ; 490 491 &and ($tmp,$s[$i]); 492 &lea ($r2,&DWP(0,$s[$i],$s[$i])); 493 &mov ($acc,$tmp); 494 &shr ($tmp,7); 495 &and ($r2,0xfefefefe); 496 &sub ($acc,$tmp); 497 &mov ($tmp,$s[$i]); 498 &and ($acc,0x1b1b1b1b); 499 &rotr ($tmp,16); 500 &xor ($acc,$r2); # r2 501 &mov ($r2,$s[$i]); 502 503 &xor ($s[$i],$acc); # r0 ^ r2 504 &rotr ($r2,16+8); 505 &xor ($acc,$tmp); 506 &rotl ($s[$i],24); 507 &xor ($acc,$r2); 508 &mov ($tmp,0x80808080) if ($i!=1); 509 &xor ($s[$i],$acc); # ROTATE(r2^r0,24) ^ r2 510} 511 512&function_begin_B("_x86_AES_encrypt_compact"); 513 # note that caller is expected to allocate stack frame for me! 514 &mov ($__key,$key); # save key 515 516 &xor ($s0,&DWP(0,$key)); # xor with key 517 &xor ($s1,&DWP(4,$key)); 518 &xor ($s2,&DWP(8,$key)); 519 &xor ($s3,&DWP(12,$key)); 520 521 &mov ($acc,&DWP(240,$key)); # load key->rounds 522 &lea ($acc,&DWP(-2,$acc,$acc)); 523 &lea ($acc,&DWP(0,$key,$acc,8)); 524 &mov ($__end,$acc); # end of key schedule 525 526 # prefetch Te4 527 &mov ($key,&DWP(0-128,$tbl)); 528 &mov ($acc,&DWP(32-128,$tbl)); 529 &mov ($key,&DWP(64-128,$tbl)); 530 &mov ($acc,&DWP(96-128,$tbl)); 531 &mov ($key,&DWP(128-128,$tbl)); 532 &mov ($acc,&DWP(160-128,$tbl)); 533 &mov ($key,&DWP(192-128,$tbl)); 534 &mov ($acc,&DWP(224-128,$tbl)); 535 536 &set_label("loop",16); 537 538 &enccompact(0,$tbl,$s0,$s1,$s2,$s3,1); 539 &enccompact(1,$tbl,$s1,$s2,$s3,$s0,1); 540 &enccompact(2,$tbl,$s2,$s3,$s0,$s1,1); 541 &enccompact(3,$tbl,$s3,$s0,$s1,$s2,1); 542 &mov ($tbl,0x80808080); 543 &enctransform(2); 544 &enctransform(3); 545 &enctransform(0); 546 &enctransform(1); 547 &mov ($key,$__key); 548 &mov ($tbl,$__tbl); 549 &add ($key,16); # advance rd_key 550 &xor ($s0,&DWP(0,$key)); 551 &xor ($s1,&DWP(4,$key)); 552 &xor ($s2,&DWP(8,$key)); 553 &xor ($s3,&DWP(12,$key)); 554 555 &cmp ($key,$__end); 556 &mov ($__key,$key); 557 &jb (&label("loop")); 558 559 &enccompact(0,$tbl,$s0,$s1,$s2,$s3); 560 &enccompact(1,$tbl,$s1,$s2,$s3,$s0); 561 &enccompact(2,$tbl,$s2,$s3,$s0,$s1); 562 &enccompact(3,$tbl,$s3,$s0,$s1,$s2); 563 564 &xor ($s0,&DWP(16,$key)); 565 &xor ($s1,&DWP(20,$key)); 566 &xor ($s2,&DWP(24,$key)); 567 &xor ($s3,&DWP(28,$key)); 568 569 &ret (); 570&function_end_B("_x86_AES_encrypt_compact"); 571 572###################################################################### 573# "Compact" SSE block function. 574###################################################################### 575# 576# Performance is not actually extraordinary in comparison to pure 577# x86 code. In particular encrypt performance is virtually the same. 578# Decrypt performance on the other hand is 15-20% better on newer 579# µ-archs [but we're thankful for *any* improvement here], and ~50% 580# better on PIII:-) And additionally on the pros side this code 581# eliminates redundant references to stack and thus relieves/ 582# minimizes the pressure on the memory bus. 583# 584# MMX register layout lsb 585# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 586# | mm4 | mm0 | 587# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 588# | s3 | s2 | s1 | s0 | 589# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 590# |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0| 591# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 592# 593# Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8. 594# In this terms encryption and decryption "compact" permutation 595# matrices can be depicted as following: 596# 597# encryption lsb # decryption lsb 598# +----++----+----+----+----+ # +----++----+----+----+----+ 599# | t0 || 15 | 10 | 5 | 0 | # | t0 || 7 | 10 | 13 | 0 | 600# +----++----+----+----+----+ # +----++----+----+----+----+ 601# | t1 || 3 | 14 | 9 | 4 | # | t1 || 11 | 14 | 1 | 4 | 602# +----++----+----+----+----+ # +----++----+----+----+----+ 603# | t2 || 7 | 2 | 13 | 8 | # | t2 || 15 | 2 | 5 | 8 | 604# +----++----+----+----+----+ # +----++----+----+----+----+ 605# | t3 || 11 | 6 | 1 | 12 | # | t3 || 3 | 6 | 9 | 12 | 606# +----++----+----+----+----+ # +----++----+----+----+----+ 607# 608###################################################################### 609# Why not xmm registers? Short answer. It was actually tested and 610# was not any faster, but *contrary*, most notably on Intel CPUs. 611# Longer answer. Main advantage of using mm registers is that movd 612# latency is lower, especially on Intel P4. While arithmetic 613# instructions are twice as many, they can be scheduled every cycle 614# and not every second one when they are operating on xmm register, 615# so that "arithmetic throughput" remains virtually the same. And 616# finally the code can be executed even on elder SSE-only CPUs:-) 617 618sub sse_enccompact() 619{ 620 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0 621 &pshufw ("mm5","mm4",0x0d); # 15,14,11,10 622 &movd ("eax","mm1"); # 5, 4, 1, 0 623 &movd ("ebx","mm5"); # 15,14,11,10 624 &mov ($__key,$key); 625 626 &movz ($acc,&LB("eax")); # 0 627 &movz ("edx",&HB("eax")); # 1 628 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2 629 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0 630 &movz ($key,&LB("ebx")); # 10 631 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1 632 &shr ("eax",16); # 5, 4 633 &shl ("edx",8); # 1 634 635 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10 636 &movz ($key,&HB("ebx")); # 11 637 &shl ($acc,16); # 10 638 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8 639 &or ("ecx",$acc); # 10 640 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11 641 &movz ($key,&HB("eax")); # 5 642 &shl ($acc,24); # 11 643 &shr ("ebx",16); # 15,14 644 &or ("edx",$acc); # 11 645 646 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5 647 &movz ($key,&HB("ebx")); # 15 648 &shl ($acc,8); # 5 649 &or ("ecx",$acc); # 5 650 &movz ($acc,&BP(-128,$tbl,$key,1)); # 15 651 &movz ($key,&LB("eax")); # 4 652 &shl ($acc,24); # 15 653 &or ("ecx",$acc); # 15 654 655 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4 656 &movz ($key,&LB("ebx")); # 14 657 &movd ("eax","mm2"); # 7, 6, 3, 2 658 &movd ("mm0","ecx"); # t[0] collected 659 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 14 660 &movz ($key,&HB("eax")); # 3 661 &shl ("ecx",16); # 14 662 &movd ("ebx","mm6"); # 13,12, 9, 8 663 &or ("ecx",$acc); # 14 664 665 &movz ($acc,&BP(-128,$tbl,$key,1)); # 3 666 &movz ($key,&HB("ebx")); # 9 667 &shl ($acc,24); # 3 668 &or ("ecx",$acc); # 3 669 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9 670 &movz ($key,&LB("ebx")); # 8 671 &shl ($acc,8); # 9 672 &shr ("ebx",16); # 13,12 673 &or ("ecx",$acc); # 9 674 675 &movz ($acc,&BP(-128,$tbl,$key,1)); # 8 676 &movz ($key,&LB("eax")); # 2 677 &shr ("eax",16); # 7, 6 678 &movd ("mm1","ecx"); # t[1] collected 679 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 2 680 &movz ($key,&HB("eax")); # 7 681 &shl ("ecx",16); # 2 682 &and ("eax",0xff); # 6 683 &or ("ecx",$acc); # 2 684 685 &punpckldq ("mm0","mm1"); # t[0,1] collected 686 687 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7 688 &movz ($key,&HB("ebx")); # 13 689 &shl ($acc,24); # 7 690 &and ("ebx",0xff); # 12 691 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 6 692 &or ("ecx",$acc); # 7 693 &shl ("eax",16); # 6 694 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13 695 &or ("edx","eax"); # 6 696 &shl ($acc,8); # 13 697 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 12 698 &or ("ecx",$acc); # 13 699 &or ("edx","ebx"); # 12 700 &mov ($key,$__key); 701 &movd ("mm4","ecx"); # t[2] collected 702 &movd ("mm5","edx"); # t[3] collected 703 704 &punpckldq ("mm4","mm5"); # t[2,3] collected 705} 706 707 if (!$x86only) { 708&function_begin_B("_sse_AES_encrypt_compact"); 709 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0 710 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8 711 712 # note that caller is expected to allocate stack frame for me! 713 &mov ($acc,&DWP(240,$key)); # load key->rounds 714 &lea ($acc,&DWP(-2,$acc,$acc)); 715 &lea ($acc,&DWP(0,$key,$acc,8)); 716 &mov ($__end,$acc); # end of key schedule 717 718 &mov ($s0,0x1b1b1b1b); # magic constant 719 &mov (&DWP(8,"esp"),$s0); 720 &mov (&DWP(12,"esp"),$s0); 721 722 # prefetch Te4 723 &mov ($s0,&DWP(0-128,$tbl)); 724 &mov ($s1,&DWP(32-128,$tbl)); 725 &mov ($s2,&DWP(64-128,$tbl)); 726 &mov ($s3,&DWP(96-128,$tbl)); 727 &mov ($s0,&DWP(128-128,$tbl)); 728 &mov ($s1,&DWP(160-128,$tbl)); 729 &mov ($s2,&DWP(192-128,$tbl)); 730 &mov ($s3,&DWP(224-128,$tbl)); 731 732 &set_label("loop",16); 733 &sse_enccompact(); 734 &add ($key,16); 735 &cmp ($key,$__end); 736 &ja (&label("out")); 737 738 &movq ("mm2",&QWP(8,"esp")); 739 &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); 740 &movq ("mm1","mm0"); &movq ("mm5","mm4"); # r0 741 &pcmpgtb("mm3","mm0"); &pcmpgtb("mm7","mm4"); 742 &pand ("mm3","mm2"); &pand ("mm7","mm2"); 743 &pshufw ("mm2","mm0",0xb1); &pshufw ("mm6","mm4",0xb1);# ROTATE(r0,16) 744 &paddb ("mm0","mm0"); &paddb ("mm4","mm4"); 745 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # = r2 746 &pshufw ("mm3","mm2",0xb1); &pshufw ("mm7","mm6",0xb1);# r0 747 &pxor ("mm1","mm0"); &pxor ("mm5","mm4"); # r0^r2 748 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(r0,16) 749 750 &movq ("mm2","mm3"); &movq ("mm6","mm7"); 751 &pslld ("mm3",8); &pslld ("mm7",8); 752 &psrld ("mm2",24); &psrld ("mm6",24); 753 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= r0<<8 754 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= r0>>24 755 756 &movq ("mm3","mm1"); &movq ("mm7","mm5"); 757 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key)); 758 &psrld ("mm1",8); &psrld ("mm5",8); 759 &mov ($s0,&DWP(0-128,$tbl)); 760 &pslld ("mm3",24); &pslld ("mm7",24); 761 &mov ($s1,&DWP(64-128,$tbl)); 762 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= (r2^r0)<<8 763 &mov ($s2,&DWP(128-128,$tbl)); 764 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= (r2^r0)>>24 765 &mov ($s3,&DWP(192-128,$tbl)); 766 767 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); 768 &jmp (&label("loop")); 769 770 &set_label("out",16); 771 &pxor ("mm0",&QWP(0,$key)); 772 &pxor ("mm4",&QWP(8,$key)); 773 774 &ret (); 775&function_end_B("_sse_AES_encrypt_compact"); 776 } 777 778###################################################################### 779# Vanilla block function. 780###################################################################### 781 782sub encstep() 783{ my ($i,$te,@s) = @_; 784 my $tmp = $key; 785 my $out = $i==3?$s[0]:$acc; 786 787 # lines marked with #%e?x[i] denote "reordered" instructions... 788 if ($i==3) { &mov ($key,$__key); }##%edx 789 else { &mov ($out,$s[0]); 790 &and ($out,0xFF); } 791 if ($i==1) { &shr ($s[0],16); }#%ebx[1] 792 if ($i==2) { &shr ($s[0],24); }#%ecx[2] 793 &mov ($out,&DWP(0,$te,$out,8)); 794 795 if ($i==3) { $tmp=$s[1]; }##%eax 796 &movz ($tmp,&HB($s[1])); 797 &xor ($out,&DWP(3,$te,$tmp,8)); 798 799 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx 800 else { &mov ($tmp,$s[2]); 801 &shr ($tmp,16); } 802 if ($i==2) { &and ($s[1],0xFF); }#%edx[2] 803 &and ($tmp,0xFF); 804 &xor ($out,&DWP(2,$te,$tmp,8)); 805 806 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx 807 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] 808 else { &mov ($tmp,$s[3]); 809 &shr ($tmp,24) } 810 &xor ($out,&DWP(1,$te,$tmp,8)); 811 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 812 if ($i==3) { &mov ($s[3],$acc); } 813 &comment(); 814} 815 816sub enclast() 817{ my ($i,$te,@s)=@_; 818 my $tmp = $key; 819 my $out = $i==3?$s[0]:$acc; 820 821 if ($i==3) { &mov ($key,$__key); }##%edx 822 else { &mov ($out,$s[0]); } 823 &and ($out,0xFF); 824 if ($i==1) { &shr ($s[0],16); }#%ebx[1] 825 if ($i==2) { &shr ($s[0],24); }#%ecx[2] 826 &mov ($out,&DWP(2,$te,$out,8)); 827 &and ($out,0x000000ff); 828 829 if ($i==3) { $tmp=$s[1]; }##%eax 830 &movz ($tmp,&HB($s[1])); 831 &mov ($tmp,&DWP(0,$te,$tmp,8)); 832 &and ($tmp,0x0000ff00); 833 &xor ($out,$tmp); 834 835 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx 836 else { &mov ($tmp,$s[2]); 837 &shr ($tmp,16); } 838 if ($i==2) { &and ($s[1],0xFF); }#%edx[2] 839 &and ($tmp,0xFF); 840 &mov ($tmp,&DWP(0,$te,$tmp,8)); 841 &and ($tmp,0x00ff0000); 842 &xor ($out,$tmp); 843 844 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx 845 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] 846 else { &mov ($tmp,$s[3]); 847 &shr ($tmp,24); } 848 &mov ($tmp,&DWP(2,$te,$tmp,8)); 849 &and ($tmp,0xff000000); 850 &xor ($out,$tmp); 851 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 852 if ($i==3) { &mov ($s[3],$acc); } 853} 854 855&function_begin_B("_x86_AES_encrypt"); 856 if ($vertical_spin) { 857 # I need high parts of volatile registers to be accessible... 858 &exch ($s1="edi",$key="ebx"); 859 &mov ($s2="esi",$acc="ecx"); 860 } 861 862 # note that caller is expected to allocate stack frame for me! 863 &mov ($__key,$key); # save key 864 865 &xor ($s0,&DWP(0,$key)); # xor with key 866 &xor ($s1,&DWP(4,$key)); 867 &xor ($s2,&DWP(8,$key)); 868 &xor ($s3,&DWP(12,$key)); 869 870 &mov ($acc,&DWP(240,$key)); # load key->rounds 871 872 if ($small_footprint) { 873 &lea ($acc,&DWP(-2,$acc,$acc)); 874 &lea ($acc,&DWP(0,$key,$acc,8)); 875 &mov ($__end,$acc); # end of key schedule 876 877 &set_label("loop",16); 878 if ($vertical_spin) { 879 &encvert($tbl,$s0,$s1,$s2,$s3); 880 } else { 881 &encstep(0,$tbl,$s0,$s1,$s2,$s3); 882 &encstep(1,$tbl,$s1,$s2,$s3,$s0); 883 &encstep(2,$tbl,$s2,$s3,$s0,$s1); 884 &encstep(3,$tbl,$s3,$s0,$s1,$s2); 885 } 886 &add ($key,16); # advance rd_key 887 &xor ($s0,&DWP(0,$key)); 888 &xor ($s1,&DWP(4,$key)); 889 &xor ($s2,&DWP(8,$key)); 890 &xor ($s3,&DWP(12,$key)); 891 &cmp ($key,$__end); 892 &mov ($__key,$key); 893 &jb (&label("loop")); 894 } 895 else { 896 &cmp ($acc,10); 897 &jle (&label("10rounds")); 898 &cmp ($acc,12); 899 &jle (&label("12rounds")); 900 901 &set_label("14rounds",4); 902 for ($i=1;$i<3;$i++) { 903 if ($vertical_spin) { 904 &encvert($tbl,$s0,$s1,$s2,$s3); 905 } else { 906 &encstep(0,$tbl,$s0,$s1,$s2,$s3); 907 &encstep(1,$tbl,$s1,$s2,$s3,$s0); 908 &encstep(2,$tbl,$s2,$s3,$s0,$s1); 909 &encstep(3,$tbl,$s3,$s0,$s1,$s2); 910 } 911 &xor ($s0,&DWP(16*$i+0,$key)); 912 &xor ($s1,&DWP(16*$i+4,$key)); 913 &xor ($s2,&DWP(16*$i+8,$key)); 914 &xor ($s3,&DWP(16*$i+12,$key)); 915 } 916 &add ($key,32); 917 &mov ($__key,$key); # advance rd_key 918 &set_label("12rounds",4); 919 for ($i=1;$i<3;$i++) { 920 if ($vertical_spin) { 921 &encvert($tbl,$s0,$s1,$s2,$s3); 922 } else { 923 &encstep(0,$tbl,$s0,$s1,$s2,$s3); 924 &encstep(1,$tbl,$s1,$s2,$s3,$s0); 925 &encstep(2,$tbl,$s2,$s3,$s0,$s1); 926 &encstep(3,$tbl,$s3,$s0,$s1,$s2); 927 } 928 &xor ($s0,&DWP(16*$i+0,$key)); 929 &xor ($s1,&DWP(16*$i+4,$key)); 930 &xor ($s2,&DWP(16*$i+8,$key)); 931 &xor ($s3,&DWP(16*$i+12,$key)); 932 } 933 &add ($key,32); 934 &mov ($__key,$key); # advance rd_key 935 &set_label("10rounds",4); 936 for ($i=1;$i<10;$i++) { 937 if ($vertical_spin) { 938 &encvert($tbl,$s0,$s1,$s2,$s3); 939 } else { 940 &encstep(0,$tbl,$s0,$s1,$s2,$s3); 941 &encstep(1,$tbl,$s1,$s2,$s3,$s0); 942 &encstep(2,$tbl,$s2,$s3,$s0,$s1); 943 &encstep(3,$tbl,$s3,$s0,$s1,$s2); 944 } 945 &xor ($s0,&DWP(16*$i+0,$key)); 946 &xor ($s1,&DWP(16*$i+4,$key)); 947 &xor ($s2,&DWP(16*$i+8,$key)); 948 &xor ($s3,&DWP(16*$i+12,$key)); 949 } 950 } 951 952 if ($vertical_spin) { 953 # "reincarnate" some registers for "horizontal" spin... 954 &mov ($s1="ebx",$key="edi"); 955 &mov ($s2="ecx",$acc="esi"); 956 } 957 &enclast(0,$tbl,$s0,$s1,$s2,$s3); 958 &enclast(1,$tbl,$s1,$s2,$s3,$s0); 959 &enclast(2,$tbl,$s2,$s3,$s0,$s1); 960 &enclast(3,$tbl,$s3,$s0,$s1,$s2); 961 962 &add ($key,$small_footprint?16:160); 963 &xor ($s0,&DWP(0,$key)); 964 &xor ($s1,&DWP(4,$key)); 965 &xor ($s2,&DWP(8,$key)); 966 &xor ($s3,&DWP(12,$key)); 967 968 &ret (); 969 970&set_label("AES_Te",64); # Yes! I keep it in the code segment! 971 &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6); 972 &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591); 973 &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56); 974 &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec); 975 &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa); 976 &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb); 977 &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45); 978 &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b); 979 &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c); 980 &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83); 981 &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9); 982 &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a); 983 &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d); 984 &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f); 985 &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df); 986 &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea); 987 &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34); 988 &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b); 989 &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d); 990 &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413); 991 &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1); 992 &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6); 993 &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972); 994 &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85); 995 &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed); 996 &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511); 997 &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe); 998 &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b); 999 &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05); 1000 &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1); 1001 &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142); 1002 &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf); 1003 &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3); 1004 &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e); 1005 &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a); 1006 &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6); 1007 &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3); 1008 &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b); 1009 &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428); 1010 &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad); 1011 &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14); 1012 &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8); 1013 &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4); 1014 &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2); 1015 &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda); 1016 &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949); 1017 &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf); 1018 &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810); 1019 &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c); 1020 &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697); 1021 &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e); 1022 &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f); 1023 &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc); 1024 &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c); 1025 &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969); 1026 &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27); 1027 &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122); 1028 &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433); 1029 &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9); 1030 &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5); 1031 &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a); 1032 &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0); 1033 &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e); 1034 &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c); 1035 1036#Te4 # four copies of Te4 to choose from to avoid L1 aliasing 1037 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); 1038 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); 1039 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); 1040 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); 1041 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); 1042 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); 1043 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); 1044 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); 1045 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); 1046 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); 1047 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); 1048 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); 1049 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); 1050 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); 1051 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); 1052 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); 1053 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); 1054 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); 1055 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); 1056 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); 1057 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); 1058 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); 1059 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); 1060 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); 1061 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); 1062 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); 1063 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); 1064 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); 1065 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); 1066 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); 1067 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); 1068 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); 1069 1070 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); 1071 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); 1072 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); 1073 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); 1074 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); 1075 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); 1076 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); 1077 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); 1078 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); 1079 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); 1080 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); 1081 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); 1082 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); 1083 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); 1084 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); 1085 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); 1086 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); 1087 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); 1088 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); 1089 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); 1090 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); 1091 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); 1092 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); 1093 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); 1094 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); 1095 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); 1096 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); 1097 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); 1098 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); 1099 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); 1100 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); 1101 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); 1102 1103 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); 1104 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); 1105 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); 1106 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); 1107 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); 1108 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); 1109 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); 1110 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); 1111 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); 1112 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); 1113 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); 1114 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); 1115 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); 1116 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); 1117 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); 1118 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); 1119 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); 1120 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); 1121 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); 1122 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); 1123 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); 1124 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); 1125 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); 1126 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); 1127 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); 1128 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); 1129 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); 1130 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); 1131 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); 1132 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); 1133 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); 1134 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); 1135 1136 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); 1137 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); 1138 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); 1139 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); 1140 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); 1141 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); 1142 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); 1143 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); 1144 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); 1145 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); 1146 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); 1147 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); 1148 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); 1149 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); 1150 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); 1151 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); 1152 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); 1153 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); 1154 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); 1155 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); 1156 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); 1157 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); 1158 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); 1159 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); 1160 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); 1161 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); 1162 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); 1163 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); 1164 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); 1165 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); 1166 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); 1167 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); 1168#rcon: 1169 &data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008); 1170 &data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080); 1171 &data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000); 1172 &data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000); 1173&function_end_B("_x86_AES_encrypt"); 1174 1175# void aes_nohw_encrypt (const void *inp,void *out,const AES_KEY *key); 1176&function_begin("aes_nohw_encrypt"); 1177 &mov ($acc,&wparam(0)); # load inp 1178 &mov ($key,&wparam(2)); # load key 1179 1180 &mov ($s0,"esp"); 1181 &sub ("esp",36); 1182 &and ("esp",-64); # align to cache-line 1183 1184 # place stack frame just "above" the key schedule 1185 &lea ($s1,&DWP(-64-63,$key)); 1186 &sub ($s1,"esp"); 1187 &neg ($s1); 1188 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line 1189 &sub ("esp",$s1); 1190 &add ("esp",4); # 4 is reserved for caller's return address 1191 &mov ($_esp,$s0); # save stack pointer 1192 1193 &call (&label("pic_point")); # make it PIC! 1194 &set_label("pic_point"); 1195 &blindpop($tbl); 1196 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only); 1197 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); 1198 1199 # pick Te4 copy which can't "overlap" with stack frame or key schedule 1200 &lea ($s1,&DWP(768-4,"esp")); 1201 &sub ($s1,$tbl); 1202 &and ($s1,0x300); 1203 &lea ($tbl,&DWP(2048+128,$tbl,$s1)); 1204 1205 if (!$x86only) { 1206 &bt (&DWP(0,$s0),25); # check for SSE bit 1207 &jnc (&label("x86")); 1208 1209 &movq ("mm0",&QWP(0,$acc)); 1210 &movq ("mm4",&QWP(8,$acc)); 1211 &call ("_sse_AES_encrypt_compact"); 1212 &mov ("esp",$_esp); # restore stack pointer 1213 &mov ($acc,&wparam(1)); # load out 1214 &movq (&QWP(0,$acc),"mm0"); # write output data 1215 &movq (&QWP(8,$acc),"mm4"); 1216 &emms (); 1217 &function_end_A(); 1218 } 1219 &set_label("x86",16); 1220 &mov ($_tbl,$tbl); 1221 &mov ($s0,&DWP(0,$acc)); # load input data 1222 &mov ($s1,&DWP(4,$acc)); 1223 &mov ($s2,&DWP(8,$acc)); 1224 &mov ($s3,&DWP(12,$acc)); 1225 &call ("_x86_AES_encrypt_compact"); 1226 &mov ("esp",$_esp); # restore stack pointer 1227 &mov ($acc,&wparam(1)); # load out 1228 &mov (&DWP(0,$acc),$s0); # write output data 1229 &mov (&DWP(4,$acc),$s1); 1230 &mov (&DWP(8,$acc),$s2); 1231 &mov (&DWP(12,$acc),$s3); 1232&function_end("aes_nohw_encrypt"); 1233 1234#--------------------------------------------------------------------# 1235 1236###################################################################### 1237# "Compact" block function 1238###################################################################### 1239 1240sub deccompact() 1241{ my $Fn = \&mov; 1242 while ($#_>5) { pop(@_); $Fn=sub{}; } 1243 my ($i,$td,@s)=@_; 1244 my $tmp = $key; 1245 my $out = $i==3?$s[0]:$acc; 1246 1247 # $Fn is used in first compact round and its purpose is to 1248 # void restoration of some values from stack, so that after 1249 # 4xdeccompact with extra argument $key, $s0 and $s1 values 1250 # are left there... 1251 if($i==3) { &$Fn ($key,$__key); } 1252 else { &mov ($out,$s[0]); } 1253 &and ($out,0xFF); 1254 &movz ($out,&BP(-128,$td,$out,1)); 1255 1256 if ($i==3) { $tmp=$s[1]; } 1257 &movz ($tmp,&HB($s[1])); 1258 &movz ($tmp,&BP(-128,$td,$tmp,1)); 1259 &shl ($tmp,8); 1260 &xor ($out,$tmp); 1261 1262 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } 1263 else { mov ($tmp,$s[2]); } 1264 &shr ($tmp,16); 1265 &and ($tmp,0xFF); 1266 &movz ($tmp,&BP(-128,$td,$tmp,1)); 1267 &shl ($tmp,16); 1268 &xor ($out,$tmp); 1269 1270 if ($i==3) { $tmp=$s[3]; &$Fn ($s[2],$__s1); } 1271 else { &mov ($tmp,$s[3]); } 1272 &shr ($tmp,24); 1273 &movz ($tmp,&BP(-128,$td,$tmp,1)); 1274 &shl ($tmp,24); 1275 &xor ($out,$tmp); 1276 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 1277 if ($i==3) { &$Fn ($s[3],$__s0); } 1278} 1279 1280# must be called with 2,3,0,1 as argument sequence!!! 1281sub dectransform() 1282{ my @s = ($s0,$s1,$s2,$s3); 1283 my $i = shift; 1284 my $tmp = $key; 1285 my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1); 1286 my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1); 1287 my $tp8 = $tbl; 1288 1289 &mov ($tmp,0x80808080); 1290 &and ($tmp,$s[$i]); 1291 &mov ($acc,$tmp); 1292 &shr ($tmp,7); 1293 &lea ($tp2,&DWP(0,$s[$i],$s[$i])); 1294 &sub ($acc,$tmp); 1295 &and ($tp2,0xfefefefe); 1296 &and ($acc,0x1b1b1b1b); 1297 &xor ($tp2,$acc); 1298 &mov ($tmp,0x80808080); 1299 1300 &and ($tmp,$tp2); 1301 &mov ($acc,$tmp); 1302 &shr ($tmp,7); 1303 &lea ($tp4,&DWP(0,$tp2,$tp2)); 1304 &sub ($acc,$tmp); 1305 &and ($tp4,0xfefefefe); 1306 &and ($acc,0x1b1b1b1b); 1307 &xor ($tp2,$s[$i]); # tp2^tp1 1308 &xor ($tp4,$acc); 1309 &mov ($tmp,0x80808080); 1310 1311 &and ($tmp,$tp4); 1312 &mov ($acc,$tmp); 1313 &shr ($tmp,7); 1314 &lea ($tp8,&DWP(0,$tp4,$tp4)); 1315 &sub ($acc,$tmp); 1316 &and ($tp8,0xfefefefe); 1317 &and ($acc,0x1b1b1b1b); 1318 &xor ($tp4,$s[$i]); # tp4^tp1 1319 &rotl ($s[$i],8); # = ROTATE(tp1,8) 1320 &xor ($tp8,$acc); 1321 1322 &xor ($s[$i],$tp2); 1323 &xor ($tp2,$tp8); 1324 &xor ($s[$i],$tp4); 1325 &xor ($tp4,$tp8); 1326 &rotl ($tp2,24); 1327 &xor ($s[$i],$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1) 1328 &rotl ($tp4,16); 1329 &xor ($s[$i],$tp2); # ^= ROTATE(tp8^tp2^tp1,24) 1330 &rotl ($tp8,8); 1331 &xor ($s[$i],$tp4); # ^= ROTATE(tp8^tp4^tp1,16) 1332 &mov ($s[0],$__s0) if($i==2); #prefetch $s0 1333 &mov ($s[1],$__s1) if($i==3); #prefetch $s1 1334 &mov ($s[2],$__s2) if($i==1); 1335 &xor ($s[$i],$tp8); # ^= ROTATE(tp8,8) 1336 1337 &mov ($s[3],$__s3) if($i==1); 1338 &mov (&DWP(4+4*$i,"esp"),$s[$i]) if($i>=2); 1339} 1340 1341&function_begin_B("_x86_AES_decrypt_compact"); 1342 # note that caller is expected to allocate stack frame for me! 1343 &mov ($__key,$key); # save key 1344 1345 &xor ($s0,&DWP(0,$key)); # xor with key 1346 &xor ($s1,&DWP(4,$key)); 1347 &xor ($s2,&DWP(8,$key)); 1348 &xor ($s3,&DWP(12,$key)); 1349 1350 &mov ($acc,&DWP(240,$key)); # load key->rounds 1351 1352 &lea ($acc,&DWP(-2,$acc,$acc)); 1353 &lea ($acc,&DWP(0,$key,$acc,8)); 1354 &mov ($__end,$acc); # end of key schedule 1355 1356 # prefetch Td4 1357 &mov ($key,&DWP(0-128,$tbl)); 1358 &mov ($acc,&DWP(32-128,$tbl)); 1359 &mov ($key,&DWP(64-128,$tbl)); 1360 &mov ($acc,&DWP(96-128,$tbl)); 1361 &mov ($key,&DWP(128-128,$tbl)); 1362 &mov ($acc,&DWP(160-128,$tbl)); 1363 &mov ($key,&DWP(192-128,$tbl)); 1364 &mov ($acc,&DWP(224-128,$tbl)); 1365 1366 &set_label("loop",16); 1367 1368 &deccompact(0,$tbl,$s0,$s3,$s2,$s1,1); 1369 &deccompact(1,$tbl,$s1,$s0,$s3,$s2,1); 1370 &deccompact(2,$tbl,$s2,$s1,$s0,$s3,1); 1371 &deccompact(3,$tbl,$s3,$s2,$s1,$s0,1); 1372 &dectransform(2); 1373 &dectransform(3); 1374 &dectransform(0); 1375 &dectransform(1); 1376 &mov ($key,$__key); 1377 &mov ($tbl,$__tbl); 1378 &add ($key,16); # advance rd_key 1379 &xor ($s0,&DWP(0,$key)); 1380 &xor ($s1,&DWP(4,$key)); 1381 &xor ($s2,&DWP(8,$key)); 1382 &xor ($s3,&DWP(12,$key)); 1383 1384 &cmp ($key,$__end); 1385 &mov ($__key,$key); 1386 &jb (&label("loop")); 1387 1388 &deccompact(0,$tbl,$s0,$s3,$s2,$s1); 1389 &deccompact(1,$tbl,$s1,$s0,$s3,$s2); 1390 &deccompact(2,$tbl,$s2,$s1,$s0,$s3); 1391 &deccompact(3,$tbl,$s3,$s2,$s1,$s0); 1392 1393 &xor ($s0,&DWP(16,$key)); 1394 &xor ($s1,&DWP(20,$key)); 1395 &xor ($s2,&DWP(24,$key)); 1396 &xor ($s3,&DWP(28,$key)); 1397 1398 &ret (); 1399&function_end_B("_x86_AES_decrypt_compact"); 1400 1401###################################################################### 1402# "Compact" SSE block function. 1403###################################################################### 1404 1405sub sse_deccompact() 1406{ 1407 &pshufw ("mm1","mm0",0x0c); # 7, 6, 1, 0 1408 &pshufw ("mm5","mm4",0x09); # 13,12,11,10 1409 &movd ("eax","mm1"); # 7, 6, 1, 0 1410 &movd ("ebx","mm5"); # 13,12,11,10 1411 &mov ($__key,$key); 1412 1413 &movz ($acc,&LB("eax")); # 0 1414 &movz ("edx",&HB("eax")); # 1 1415 &pshufw ("mm2","mm0",0x06); # 3, 2, 5, 4 1416 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0 1417 &movz ($key,&LB("ebx")); # 10 1418 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1 1419 &shr ("eax",16); # 7, 6 1420 &shl ("edx",8); # 1 1421 1422 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10 1423 &movz ($key,&HB("ebx")); # 11 1424 &shl ($acc,16); # 10 1425 &pshufw ("mm6","mm4",0x03); # 9, 8,15,14 1426 &or ("ecx",$acc); # 10 1427 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11 1428 &movz ($key,&HB("eax")); # 7 1429 &shl ($acc,24); # 11 1430 &shr ("ebx",16); # 13,12 1431 &or ("edx",$acc); # 11 1432 1433 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7 1434 &movz ($key,&HB("ebx")); # 13 1435 &shl ($acc,24); # 7 1436 &or ("ecx",$acc); # 7 1437 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13 1438 &movz ($key,&LB("eax")); # 6 1439 &shl ($acc,8); # 13 1440 &movd ("eax","mm2"); # 3, 2, 5, 4 1441 &or ("ecx",$acc); # 13 1442 1443 &movz ($acc,&BP(-128,$tbl,$key,1)); # 6 1444 &movz ($key,&LB("ebx")); # 12 1445 &shl ($acc,16); # 6 1446 &movd ("ebx","mm6"); # 9, 8,15,14 1447 &movd ("mm0","ecx"); # t[0] collected 1448 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 12 1449 &movz ($key,&LB("eax")); # 4 1450 &or ("ecx",$acc); # 12 1451 1452 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4 1453 &movz ($key,&LB("ebx")); # 14 1454 &or ("edx",$acc); # 4 1455 &movz ($acc,&BP(-128,$tbl,$key,1)); # 14 1456 &movz ($key,&HB("eax")); # 5 1457 &shl ($acc,16); # 14 1458 &shr ("eax",16); # 3, 2 1459 &or ("edx",$acc); # 14 1460 1461 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5 1462 &movz ($key,&HB("ebx")); # 15 1463 &shr ("ebx",16); # 9, 8 1464 &shl ($acc,8); # 5 1465 &movd ("mm1","edx"); # t[1] collected 1466 &movz ("edx",&BP(-128,$tbl,$key,1)); # 15 1467 &movz ($key,&HB("ebx")); # 9 1468 &shl ("edx",24); # 15 1469 &and ("ebx",0xff); # 8 1470 &or ("edx",$acc); # 15 1471 1472 &punpckldq ("mm0","mm1"); # t[0,1] collected 1473 1474 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9 1475 &movz ($key,&LB("eax")); # 2 1476 &shl ($acc,8); # 9 1477 &movz ("eax",&HB("eax")); # 3 1478 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 8 1479 &or ("ecx",$acc); # 9 1480 &movz ($acc,&BP(-128,$tbl,$key,1)); # 2 1481 &or ("edx","ebx"); # 8 1482 &shl ($acc,16); # 2 1483 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 3 1484 &or ("edx",$acc); # 2 1485 &shl ("eax",24); # 3 1486 &or ("ecx","eax"); # 3 1487 &mov ($key,$__key); 1488 &movd ("mm4","edx"); # t[2] collected 1489 &movd ("mm5","ecx"); # t[3] collected 1490 1491 &punpckldq ("mm4","mm5"); # t[2,3] collected 1492} 1493 1494 if (!$x86only) { 1495&function_begin_B("_sse_AES_decrypt_compact"); 1496 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0 1497 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8 1498 1499 # note that caller is expected to allocate stack frame for me! 1500 &mov ($acc,&DWP(240,$key)); # load key->rounds 1501 &lea ($acc,&DWP(-2,$acc,$acc)); 1502 &lea ($acc,&DWP(0,$key,$acc,8)); 1503 &mov ($__end,$acc); # end of key schedule 1504 1505 &mov ($s0,0x1b1b1b1b); # magic constant 1506 &mov (&DWP(8,"esp"),$s0); 1507 &mov (&DWP(12,"esp"),$s0); 1508 1509 # prefetch Td4 1510 &mov ($s0,&DWP(0-128,$tbl)); 1511 &mov ($s1,&DWP(32-128,$tbl)); 1512 &mov ($s2,&DWP(64-128,$tbl)); 1513 &mov ($s3,&DWP(96-128,$tbl)); 1514 &mov ($s0,&DWP(128-128,$tbl)); 1515 &mov ($s1,&DWP(160-128,$tbl)); 1516 &mov ($s2,&DWP(192-128,$tbl)); 1517 &mov ($s3,&DWP(224-128,$tbl)); 1518 1519 &set_label("loop",16); 1520 &sse_deccompact(); 1521 &add ($key,16); 1522 &cmp ($key,$__end); 1523 &ja (&label("out")); 1524 1525 # ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N) 1526 &movq ("mm3","mm0"); &movq ("mm7","mm4"); 1527 &movq ("mm2","mm0",1); &movq ("mm6","mm4",1); 1528 &movq ("mm1","mm0"); &movq ("mm5","mm4"); 1529 &pshufw ("mm0","mm0",0xb1); &pshufw ("mm4","mm4",0xb1);# = ROTATE(tp0,16) 1530 &pslld ("mm2",8); &pslld ("mm6",8); 1531 &psrld ("mm3",8); &psrld ("mm7",8); 1532 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<8 1533 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>8 1534 &pslld ("mm2",16); &pslld ("mm6",16); 1535 &psrld ("mm3",16); &psrld ("mm7",16); 1536 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<24 1537 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>24 1538 1539 &movq ("mm3",&QWP(8,"esp")); 1540 &pxor ("mm2","mm2"); &pxor ("mm6","mm6"); 1541 &pcmpgtb("mm2","mm1"); &pcmpgtb("mm6","mm5"); 1542 &pand ("mm2","mm3"); &pand ("mm6","mm3"); 1543 &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); 1544 &pxor ("mm1","mm2"); &pxor ("mm5","mm6"); # tp2 1545 &movq ("mm3","mm1"); &movq ("mm7","mm5"); 1546 &movq ("mm2","mm1"); &movq ("mm6","mm5"); 1547 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp2 1548 &pslld ("mm3",24); &pslld ("mm7",24); 1549 &psrld ("mm2",8); &psrld ("mm6",8); 1550 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp2<<24 1551 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp2>>8 1552 1553 &movq ("mm2",&QWP(8,"esp")); 1554 &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); 1555 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5"); 1556 &pand ("mm3","mm2"); &pand ("mm7","mm2"); 1557 &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); 1558 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp4 1559 &pshufw ("mm3","mm1",0xb1); &pshufw ("mm7","mm5",0xb1); 1560 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp4 1561 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= ROTATE(tp4,16) 1562 1563 &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); 1564 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5"); 1565 &pand ("mm3","mm2"); &pand ("mm7","mm2"); 1566 &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); 1567 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp8 1568 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8 1569 &movq ("mm3","mm1"); &movq ("mm7","mm5"); 1570 &pshufw ("mm2","mm1",0xb1); &pshufw ("mm6","mm5",0xb1); 1571 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(tp8,16) 1572 &pslld ("mm1",8); &pslld ("mm5",8); 1573 &psrld ("mm3",8); &psrld ("mm7",8); 1574 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key)); 1575 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<8 1576 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>8 1577 &mov ($s0,&DWP(0-128,$tbl)); 1578 &pslld ("mm1",16); &pslld ("mm5",16); 1579 &mov ($s1,&DWP(64-128,$tbl)); 1580 &psrld ("mm3",16); &psrld ("mm7",16); 1581 &mov ($s2,&DWP(128-128,$tbl)); 1582 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<24 1583 &mov ($s3,&DWP(192-128,$tbl)); 1584 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>24 1585 1586 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); 1587 &jmp (&label("loop")); 1588 1589 &set_label("out",16); 1590 &pxor ("mm0",&QWP(0,$key)); 1591 &pxor ("mm4",&QWP(8,$key)); 1592 1593 &ret (); 1594&function_end_B("_sse_AES_decrypt_compact"); 1595 } 1596 1597###################################################################### 1598# Vanilla block function. 1599###################################################################### 1600 1601sub decstep() 1602{ my ($i,$td,@s) = @_; 1603 my $tmp = $key; 1604 my $out = $i==3?$s[0]:$acc; 1605 1606 # no instructions are reordered, as performance appears 1607 # optimal... or rather that all attempts to reorder didn't 1608 # result in better performance [which by the way is not a 1609 # bit lower than encryption]. 1610 if($i==3) { &mov ($key,$__key); } 1611 else { &mov ($out,$s[0]); } 1612 &and ($out,0xFF); 1613 &mov ($out,&DWP(0,$td,$out,8)); 1614 1615 if ($i==3) { $tmp=$s[1]; } 1616 &movz ($tmp,&HB($s[1])); 1617 &xor ($out,&DWP(3,$td,$tmp,8)); 1618 1619 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } 1620 else { &mov ($tmp,$s[2]); } 1621 &shr ($tmp,16); 1622 &and ($tmp,0xFF); 1623 &xor ($out,&DWP(2,$td,$tmp,8)); 1624 1625 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); } 1626 else { &mov ($tmp,$s[3]); } 1627 &shr ($tmp,24); 1628 &xor ($out,&DWP(1,$td,$tmp,8)); 1629 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 1630 if ($i==3) { &mov ($s[3],$__s0); } 1631 &comment(); 1632} 1633 1634sub declast() 1635{ my ($i,$td,@s)=@_; 1636 my $tmp = $key; 1637 my $out = $i==3?$s[0]:$acc; 1638 1639 if($i==0) { &lea ($td,&DWP(2048+128,$td)); 1640 &mov ($tmp,&DWP(0-128,$td)); 1641 &mov ($acc,&DWP(32-128,$td)); 1642 &mov ($tmp,&DWP(64-128,$td)); 1643 &mov ($acc,&DWP(96-128,$td)); 1644 &mov ($tmp,&DWP(128-128,$td)); 1645 &mov ($acc,&DWP(160-128,$td)); 1646 &mov ($tmp,&DWP(192-128,$td)); 1647 &mov ($acc,&DWP(224-128,$td)); 1648 &lea ($td,&DWP(-128,$td)); } 1649 if($i==3) { &mov ($key,$__key); } 1650 else { &mov ($out,$s[0]); } 1651 &and ($out,0xFF); 1652 &movz ($out,&BP(0,$td,$out,1)); 1653 1654 if ($i==3) { $tmp=$s[1]; } 1655 &movz ($tmp,&HB($s[1])); 1656 &movz ($tmp,&BP(0,$td,$tmp,1)); 1657 &shl ($tmp,8); 1658 &xor ($out,$tmp); 1659 1660 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } 1661 else { mov ($tmp,$s[2]); } 1662 &shr ($tmp,16); 1663 &and ($tmp,0xFF); 1664 &movz ($tmp,&BP(0,$td,$tmp,1)); 1665 &shl ($tmp,16); 1666 &xor ($out,$tmp); 1667 1668 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); } 1669 else { &mov ($tmp,$s[3]); } 1670 &shr ($tmp,24); 1671 &movz ($tmp,&BP(0,$td,$tmp,1)); 1672 &shl ($tmp,24); 1673 &xor ($out,$tmp); 1674 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 1675 if ($i==3) { &mov ($s[3],$__s0); 1676 &lea ($td,&DWP(-2048,$td)); } 1677} 1678 1679&function_begin_B("_x86_AES_decrypt"); 1680 # note that caller is expected to allocate stack frame for me! 1681 &mov ($__key,$key); # save key 1682 1683 &xor ($s0,&DWP(0,$key)); # xor with key 1684 &xor ($s1,&DWP(4,$key)); 1685 &xor ($s2,&DWP(8,$key)); 1686 &xor ($s3,&DWP(12,$key)); 1687 1688 &mov ($acc,&DWP(240,$key)); # load key->rounds 1689 1690 if ($small_footprint) { 1691 &lea ($acc,&DWP(-2,$acc,$acc)); 1692 &lea ($acc,&DWP(0,$key,$acc,8)); 1693 &mov ($__end,$acc); # end of key schedule 1694 &set_label("loop",16); 1695 &decstep(0,$tbl,$s0,$s3,$s2,$s1); 1696 &decstep(1,$tbl,$s1,$s0,$s3,$s2); 1697 &decstep(2,$tbl,$s2,$s1,$s0,$s3); 1698 &decstep(3,$tbl,$s3,$s2,$s1,$s0); 1699 &add ($key,16); # advance rd_key 1700 &xor ($s0,&DWP(0,$key)); 1701 &xor ($s1,&DWP(4,$key)); 1702 &xor ($s2,&DWP(8,$key)); 1703 &xor ($s3,&DWP(12,$key)); 1704 &cmp ($key,$__end); 1705 &mov ($__key,$key); 1706 &jb (&label("loop")); 1707 } 1708 else { 1709 &cmp ($acc,10); 1710 &jle (&label("10rounds")); 1711 &cmp ($acc,12); 1712 &jle (&label("12rounds")); 1713 1714 &set_label("14rounds",4); 1715 for ($i=1;$i<3;$i++) { 1716 &decstep(0,$tbl,$s0,$s3,$s2,$s1); 1717 &decstep(1,$tbl,$s1,$s0,$s3,$s2); 1718 &decstep(2,$tbl,$s2,$s1,$s0,$s3); 1719 &decstep(3,$tbl,$s3,$s2,$s1,$s0); 1720 &xor ($s0,&DWP(16*$i+0,$key)); 1721 &xor ($s1,&DWP(16*$i+4,$key)); 1722 &xor ($s2,&DWP(16*$i+8,$key)); 1723 &xor ($s3,&DWP(16*$i+12,$key)); 1724 } 1725 &add ($key,32); 1726 &mov ($__key,$key); # advance rd_key 1727 &set_label("12rounds",4); 1728 for ($i=1;$i<3;$i++) { 1729 &decstep(0,$tbl,$s0,$s3,$s2,$s1); 1730 &decstep(1,$tbl,$s1,$s0,$s3,$s2); 1731 &decstep(2,$tbl,$s2,$s1,$s0,$s3); 1732 &decstep(3,$tbl,$s3,$s2,$s1,$s0); 1733 &xor ($s0,&DWP(16*$i+0,$key)); 1734 &xor ($s1,&DWP(16*$i+4,$key)); 1735 &xor ($s2,&DWP(16*$i+8,$key)); 1736 &xor ($s3,&DWP(16*$i+12,$key)); 1737 } 1738 &add ($key,32); 1739 &mov ($__key,$key); # advance rd_key 1740 &set_label("10rounds",4); 1741 for ($i=1;$i<10;$i++) { 1742 &decstep(0,$tbl,$s0,$s3,$s2,$s1); 1743 &decstep(1,$tbl,$s1,$s0,$s3,$s2); 1744 &decstep(2,$tbl,$s2,$s1,$s0,$s3); 1745 &decstep(3,$tbl,$s3,$s2,$s1,$s0); 1746 &xor ($s0,&DWP(16*$i+0,$key)); 1747 &xor ($s1,&DWP(16*$i+4,$key)); 1748 &xor ($s2,&DWP(16*$i+8,$key)); 1749 &xor ($s3,&DWP(16*$i+12,$key)); 1750 } 1751 } 1752 1753 &declast(0,$tbl,$s0,$s3,$s2,$s1); 1754 &declast(1,$tbl,$s1,$s0,$s3,$s2); 1755 &declast(2,$tbl,$s2,$s1,$s0,$s3); 1756 &declast(3,$tbl,$s3,$s2,$s1,$s0); 1757 1758 &add ($key,$small_footprint?16:160); 1759 &xor ($s0,&DWP(0,$key)); 1760 &xor ($s1,&DWP(4,$key)); 1761 &xor ($s2,&DWP(8,$key)); 1762 &xor ($s3,&DWP(12,$key)); 1763 1764 &ret (); 1765 1766&set_label("AES_Td",64); # Yes! I keep it in the code segment! 1767 &_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a); 1768 &_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b); 1769 &_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5); 1770 &_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5); 1771 &_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d); 1772 &_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b); 1773 &_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295); 1774 &_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e); 1775 &_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927); 1776 &_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d); 1777 &_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362); 1778 &_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9); 1779 &_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52); 1780 &_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566); 1781 &_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3); 1782 &_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed); 1783 &_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e); 1784 &_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4); 1785 &_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4); 1786 &_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd); 1787 &_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d); 1788 &_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060); 1789 &_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967); 1790 &_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879); 1791 &_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000); 1792 &_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c); 1793 &_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36); 1794 &_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624); 1795 &_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b); 1796 &_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c); 1797 &_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12); 1798 &_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14); 1799 &_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3); 1800 &_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b); 1801 &_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8); 1802 &_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684); 1803 &_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7); 1804 &_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177); 1805 &_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947); 1806 &_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322); 1807 &_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498); 1808 &_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f); 1809 &_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54); 1810 &_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382); 1811 &_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf); 1812 &_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb); 1813 &_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83); 1814 &_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef); 1815 &_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029); 1816 &_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235); 1817 &_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733); 1818 &_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117); 1819 &_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4); 1820 &_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546); 1821 &_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb); 1822 &_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d); 1823 &_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb); 1824 &_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a); 1825 &_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773); 1826 &_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478); 1827 &_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2); 1828 &_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff); 1829 &_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664); 1830 &_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0); 1831 1832#Td4: # four copies of Td4 to choose from to avoid L1 aliasing 1833 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); 1834 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); 1835 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); 1836 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); 1837 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); 1838 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); 1839 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); 1840 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); 1841 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); 1842 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); 1843 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); 1844 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); 1845 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); 1846 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); 1847 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); 1848 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); 1849 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); 1850 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); 1851 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); 1852 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); 1853 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); 1854 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); 1855 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); 1856 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); 1857 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); 1858 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); 1859 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); 1860 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); 1861 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); 1862 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); 1863 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); 1864 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); 1865 1866 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); 1867 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); 1868 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); 1869 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); 1870 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); 1871 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); 1872 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); 1873 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); 1874 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); 1875 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); 1876 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); 1877 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); 1878 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); 1879 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); 1880 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); 1881 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); 1882 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); 1883 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); 1884 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); 1885 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); 1886 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); 1887 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); 1888 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); 1889 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); 1890 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); 1891 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); 1892 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); 1893 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); 1894 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); 1895 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); 1896 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); 1897 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); 1898 1899 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); 1900 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); 1901 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); 1902 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); 1903 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); 1904 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); 1905 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); 1906 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); 1907 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); 1908 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); 1909 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); 1910 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); 1911 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); 1912 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); 1913 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); 1914 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); 1915 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); 1916 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); 1917 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); 1918 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); 1919 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); 1920 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); 1921 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); 1922 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); 1923 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); 1924 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); 1925 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); 1926 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); 1927 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); 1928 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); 1929 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); 1930 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); 1931 1932 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); 1933 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); 1934 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); 1935 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); 1936 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); 1937 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); 1938 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); 1939 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); 1940 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); 1941 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); 1942 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); 1943 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); 1944 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); 1945 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); 1946 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); 1947 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); 1948 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); 1949 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); 1950 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); 1951 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); 1952 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); 1953 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); 1954 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); 1955 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); 1956 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); 1957 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); 1958 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); 1959 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); 1960 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); 1961 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); 1962 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); 1963 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); 1964&function_end_B("_x86_AES_decrypt"); 1965 1966# void aes_nohw_decrypt (const void *inp,void *out,const AES_KEY *key); 1967&function_begin("aes_nohw_decrypt"); 1968 &mov ($acc,&wparam(0)); # load inp 1969 &mov ($key,&wparam(2)); # load key 1970 1971 &mov ($s0,"esp"); 1972 &sub ("esp",36); 1973 &and ("esp",-64); # align to cache-line 1974 1975 # place stack frame just "above" the key schedule 1976 &lea ($s1,&DWP(-64-63,$key)); 1977 &sub ($s1,"esp"); 1978 &neg ($s1); 1979 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line 1980 &sub ("esp",$s1); 1981 &add ("esp",4); # 4 is reserved for caller's return address 1982 &mov ($_esp,$s0); # save stack pointer 1983 1984 &call (&label("pic_point")); # make it PIC! 1985 &set_label("pic_point"); 1986 &blindpop($tbl); 1987 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only); 1988 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl)); 1989 1990 # pick Td4 copy which can't "overlap" with stack frame or key schedule 1991 &lea ($s1,&DWP(768-4,"esp")); 1992 &sub ($s1,$tbl); 1993 &and ($s1,0x300); 1994 &lea ($tbl,&DWP(2048+128,$tbl,$s1)); 1995 1996 if (!$x86only) { 1997 &bt (&DWP(0,$s0),25); # check for SSE bit 1998 &jnc (&label("x86")); 1999 2000 &movq ("mm0",&QWP(0,$acc)); 2001 &movq ("mm4",&QWP(8,$acc)); 2002 &call ("_sse_AES_decrypt_compact"); 2003 &mov ("esp",$_esp); # restore stack pointer 2004 &mov ($acc,&wparam(1)); # load out 2005 &movq (&QWP(0,$acc),"mm0"); # write output data 2006 &movq (&QWP(8,$acc),"mm4"); 2007 &emms (); 2008 &function_end_A(); 2009 } 2010 &set_label("x86",16); 2011 &mov ($_tbl,$tbl); 2012 &mov ($s0,&DWP(0,$acc)); # load input data 2013 &mov ($s1,&DWP(4,$acc)); 2014 &mov ($s2,&DWP(8,$acc)); 2015 &mov ($s3,&DWP(12,$acc)); 2016 &call ("_x86_AES_decrypt_compact"); 2017 &mov ("esp",$_esp); # restore stack pointer 2018 &mov ($acc,&wparam(1)); # load out 2019 &mov (&DWP(0,$acc),$s0); # write output data 2020 &mov (&DWP(4,$acc),$s1); 2021 &mov (&DWP(8,$acc),$s2); 2022 &mov (&DWP(12,$acc),$s3); 2023&function_end("aes_nohw_decrypt"); 2024 2025# void aes_nohw_cbc_encrypt (const void char *inp, unsigned char *out, 2026# size_t length, const AES_KEY *key, 2027# unsigned char *ivp,const int enc); 2028{ 2029# stack frame layout 2030# -4(%esp) # return address 0(%esp) 2031# 0(%esp) # s0 backing store 4(%esp) 2032# 4(%esp) # s1 backing store 8(%esp) 2033# 8(%esp) # s2 backing store 12(%esp) 2034# 12(%esp) # s3 backing store 16(%esp) 2035# 16(%esp) # key backup 20(%esp) 2036# 20(%esp) # end of key schedule 24(%esp) 2037# 24(%esp) # %ebp backup 28(%esp) 2038# 28(%esp) # %esp backup 2039my $_inp=&DWP(32,"esp"); # copy of wparam(0) 2040my $_out=&DWP(36,"esp"); # copy of wparam(1) 2041my $_len=&DWP(40,"esp"); # copy of wparam(2) 2042my $_key=&DWP(44,"esp"); # copy of wparam(3) 2043my $_ivp=&DWP(48,"esp"); # copy of wparam(4) 2044my $_tmp=&DWP(52,"esp"); # volatile variable 2045# 2046my $ivec=&DWP(60,"esp"); # ivec[16] 2047my $aes_key=&DWP(76,"esp"); # copy of aes_key 2048my $mark=&DWP(76+240,"esp"); # copy of aes_key->rounds 2049 2050&function_begin("aes_nohw_cbc_encrypt"); 2051 &mov ($s2 eq "ecx"? $s2 : "",&wparam(2)); # load len 2052 &cmp ($s2,0); 2053 &je (&label("drop_out")); 2054 2055 &call (&label("pic_point")); # make it PIC! 2056 &set_label("pic_point"); 2057 &blindpop($tbl); 2058 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only); 2059 2060 &cmp (&wparam(5),0); 2061 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); 2062 &jne (&label("picked_te")); 2063 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl)); 2064 &set_label("picked_te"); 2065 2066 # one can argue if this is required 2067 &pushf (); 2068 &cld (); 2069 2070 &cmp ($s2,$speed_limit); 2071 &jb (&label("slow_way")); 2072 &test ($s2,15); 2073 &jnz (&label("slow_way")); 2074 if (!$x86only) { 2075 &bt (&DWP(0,$s0),28); # check for hyper-threading bit 2076 &jc (&label("slow_way")); 2077 } 2078 # pre-allocate aligned stack frame... 2079 &lea ($acc,&DWP(-80-244,"esp")); 2080 &and ($acc,-64); 2081 2082 # ... and make sure it doesn't alias with $tbl modulo 4096 2083 &mov ($s0,$tbl); 2084 &lea ($s1,&DWP(2048+256,$tbl)); 2085 &mov ($s3,$acc); 2086 &and ($s0,0xfff); # s = %ebp&0xfff 2087 &and ($s1,0xfff); # e = (%ebp+2048+256)&0xfff 2088 &and ($s3,0xfff); # p = %esp&0xfff 2089 2090 &cmp ($s3,$s1); # if (p>=e) %esp =- (p-e); 2091 &jb (&label("tbl_break_out")); 2092 &sub ($s3,$s1); 2093 &sub ($acc,$s3); 2094 &jmp (&label("tbl_ok")); 2095 &set_label("tbl_break_out",4); # else %esp -= (p-s)&0xfff + framesz; 2096 &sub ($s3,$s0); 2097 &and ($s3,0xfff); 2098 &add ($s3,384); 2099 &sub ($acc,$s3); 2100 &set_label("tbl_ok",4); 2101 2102 &lea ($s3,&wparam(0)); # obtain pointer to parameter block 2103 &exch ("esp",$acc); # allocate stack frame 2104 &add ("esp",4); # reserve for return address! 2105 &mov ($_tbl,$tbl); # save %ebp 2106 &mov ($_esp,$acc); # save %esp 2107 2108 &mov ($s0,&DWP(0,$s3)); # load inp 2109 &mov ($s1,&DWP(4,$s3)); # load out 2110 #&mov ($s2,&DWP(8,$s3)); # load len 2111 &mov ($key,&DWP(12,$s3)); # load key 2112 &mov ($acc,&DWP(16,$s3)); # load ivp 2113 &mov ($s3,&DWP(20,$s3)); # load enc flag 2114 2115 &mov ($_inp,$s0); # save copy of inp 2116 &mov ($_out,$s1); # save copy of out 2117 &mov ($_len,$s2); # save copy of len 2118 &mov ($_key,$key); # save copy of key 2119 &mov ($_ivp,$acc); # save copy of ivp 2120 2121 &mov ($mark,0); # copy of aes_key->rounds = 0; 2122 # do we copy key schedule to stack? 2123 &mov ($s1 eq "ebx" ? $s1 : "",$key); 2124 &mov ($s2 eq "ecx" ? $s2 : "",244/4); 2125 &sub ($s1,$tbl); 2126 &mov ("esi",$key); 2127 &and ($s1,0xfff); 2128 &lea ("edi",$aes_key); 2129 &cmp ($s1,2048+256); 2130 &jb (&label("do_copy")); 2131 &cmp ($s1,4096-244); 2132 &jb (&label("skip_copy")); 2133 &set_label("do_copy",4); 2134 &mov ($_key,"edi"); 2135 &data_word(0xA5F3F689); # rep movsd 2136 &set_label("skip_copy"); 2137 2138 &mov ($key,16); 2139 &set_label("prefetch_tbl",4); 2140 &mov ($s0,&DWP(0,$tbl)); 2141 &mov ($s1,&DWP(32,$tbl)); 2142 &mov ($s2,&DWP(64,$tbl)); 2143 &mov ($acc,&DWP(96,$tbl)); 2144 &lea ($tbl,&DWP(128,$tbl)); 2145 &sub ($key,1); 2146 &jnz (&label("prefetch_tbl")); 2147 &sub ($tbl,2048); 2148 2149 &mov ($acc,$_inp); 2150 &mov ($key,$_ivp); 2151 2152 &cmp ($s3,0); 2153 &je (&label("fast_decrypt")); 2154 2155#----------------------------- ENCRYPT -----------------------------# 2156 &mov ($s0,&DWP(0,$key)); # load iv 2157 &mov ($s1,&DWP(4,$key)); 2158 2159 &set_label("fast_enc_loop",16); 2160 &mov ($s2,&DWP(8,$key)); 2161 &mov ($s3,&DWP(12,$key)); 2162 2163 &xor ($s0,&DWP(0,$acc)); # xor input data 2164 &xor ($s1,&DWP(4,$acc)); 2165 &xor ($s2,&DWP(8,$acc)); 2166 &xor ($s3,&DWP(12,$acc)); 2167 2168 &mov ($key,$_key); # load key 2169 &call ("_x86_AES_encrypt"); 2170 2171 &mov ($acc,$_inp); # load inp 2172 &mov ($key,$_out); # load out 2173 2174 &mov (&DWP(0,$key),$s0); # save output data 2175 &mov (&DWP(4,$key),$s1); 2176 &mov (&DWP(8,$key),$s2); 2177 &mov (&DWP(12,$key),$s3); 2178 2179 &lea ($acc,&DWP(16,$acc)); # advance inp 2180 &mov ($s2,$_len); # load len 2181 &mov ($_inp,$acc); # save inp 2182 &lea ($s3,&DWP(16,$key)); # advance out 2183 &mov ($_out,$s3); # save out 2184 &sub ($s2,16); # decrease len 2185 &mov ($_len,$s2); # save len 2186 &jnz (&label("fast_enc_loop")); 2187 &mov ($acc,$_ivp); # load ivp 2188 &mov ($s2,&DWP(8,$key)); # restore last 2 dwords 2189 &mov ($s3,&DWP(12,$key)); 2190 &mov (&DWP(0,$acc),$s0); # save ivec 2191 &mov (&DWP(4,$acc),$s1); 2192 &mov (&DWP(8,$acc),$s2); 2193 &mov (&DWP(12,$acc),$s3); 2194 2195 &cmp ($mark,0); # was the key schedule copied? 2196 &mov ("edi",$_key); 2197 &je (&label("skip_ezero")); 2198 # zero copy of key schedule 2199 &mov ("ecx",240/4); 2200 &xor ("eax","eax"); 2201 &align (4); 2202 &data_word(0xABF3F689); # rep stosd 2203 &set_label("skip_ezero"); 2204 &mov ("esp",$_esp); 2205 &popf (); 2206 &set_label("drop_out"); 2207 &function_end_A(); 2208 &pushf (); # kludge, never executed 2209 2210#----------------------------- DECRYPT -----------------------------# 2211&set_label("fast_decrypt",16); 2212 2213 &cmp ($acc,$_out); 2214 &je (&label("fast_dec_in_place")); # in-place processing... 2215 2216 &mov ($_tmp,$key); 2217 2218 &align (4); 2219 &set_label("fast_dec_loop",16); 2220 &mov ($s0,&DWP(0,$acc)); # read input 2221 &mov ($s1,&DWP(4,$acc)); 2222 &mov ($s2,&DWP(8,$acc)); 2223 &mov ($s3,&DWP(12,$acc)); 2224 2225 &mov ($key,$_key); # load key 2226 &call ("_x86_AES_decrypt"); 2227 2228 &mov ($key,$_tmp); # load ivp 2229 &mov ($acc,$_len); # load len 2230 &xor ($s0,&DWP(0,$key)); # xor iv 2231 &xor ($s1,&DWP(4,$key)); 2232 &xor ($s2,&DWP(8,$key)); 2233 &xor ($s3,&DWP(12,$key)); 2234 2235 &mov ($key,$_out); # load out 2236 &mov ($acc,$_inp); # load inp 2237 2238 &mov (&DWP(0,$key),$s0); # write output 2239 &mov (&DWP(4,$key),$s1); 2240 &mov (&DWP(8,$key),$s2); 2241 &mov (&DWP(12,$key),$s3); 2242 2243 &mov ($s2,$_len); # load len 2244 &mov ($_tmp,$acc); # save ivp 2245 &lea ($acc,&DWP(16,$acc)); # advance inp 2246 &mov ($_inp,$acc); # save inp 2247 &lea ($key,&DWP(16,$key)); # advance out 2248 &mov ($_out,$key); # save out 2249 &sub ($s2,16); # decrease len 2250 &mov ($_len,$s2); # save len 2251 &jnz (&label("fast_dec_loop")); 2252 &mov ($key,$_tmp); # load temp ivp 2253 &mov ($acc,$_ivp); # load user ivp 2254 &mov ($s0,&DWP(0,$key)); # load iv 2255 &mov ($s1,&DWP(4,$key)); 2256 &mov ($s2,&DWP(8,$key)); 2257 &mov ($s3,&DWP(12,$key)); 2258 &mov (&DWP(0,$acc),$s0); # copy back to user 2259 &mov (&DWP(4,$acc),$s1); 2260 &mov (&DWP(8,$acc),$s2); 2261 &mov (&DWP(12,$acc),$s3); 2262 &jmp (&label("fast_dec_out")); 2263 2264 &set_label("fast_dec_in_place",16); 2265 &set_label("fast_dec_in_place_loop"); 2266 &mov ($s0,&DWP(0,$acc)); # read input 2267 &mov ($s1,&DWP(4,$acc)); 2268 &mov ($s2,&DWP(8,$acc)); 2269 &mov ($s3,&DWP(12,$acc)); 2270 2271 &lea ($key,$ivec); 2272 &mov (&DWP(0,$key),$s0); # copy to temp 2273 &mov (&DWP(4,$key),$s1); 2274 &mov (&DWP(8,$key),$s2); 2275 &mov (&DWP(12,$key),$s3); 2276 2277 &mov ($key,$_key); # load key 2278 &call ("_x86_AES_decrypt"); 2279 2280 &mov ($key,$_ivp); # load ivp 2281 &mov ($acc,$_out); # load out 2282 &xor ($s0,&DWP(0,$key)); # xor iv 2283 &xor ($s1,&DWP(4,$key)); 2284 &xor ($s2,&DWP(8,$key)); 2285 &xor ($s3,&DWP(12,$key)); 2286 2287 &mov (&DWP(0,$acc),$s0); # write output 2288 &mov (&DWP(4,$acc),$s1); 2289 &mov (&DWP(8,$acc),$s2); 2290 &mov (&DWP(12,$acc),$s3); 2291 2292 &lea ($acc,&DWP(16,$acc)); # advance out 2293 &mov ($_out,$acc); # save out 2294 2295 &lea ($acc,$ivec); 2296 &mov ($s0,&DWP(0,$acc)); # read temp 2297 &mov ($s1,&DWP(4,$acc)); 2298 &mov ($s2,&DWP(8,$acc)); 2299 &mov ($s3,&DWP(12,$acc)); 2300 2301 &mov (&DWP(0,$key),$s0); # copy iv 2302 &mov (&DWP(4,$key),$s1); 2303 &mov (&DWP(8,$key),$s2); 2304 &mov (&DWP(12,$key),$s3); 2305 2306 &mov ($acc,$_inp); # load inp 2307 &mov ($s2,$_len); # load len 2308 &lea ($acc,&DWP(16,$acc)); # advance inp 2309 &mov ($_inp,$acc); # save inp 2310 &sub ($s2,16); # decrease len 2311 &mov ($_len,$s2); # save len 2312 &jnz (&label("fast_dec_in_place_loop")); 2313 2314 &set_label("fast_dec_out",4); 2315 &cmp ($mark,0); # was the key schedule copied? 2316 &mov ("edi",$_key); 2317 &je (&label("skip_dzero")); 2318 # zero copy of key schedule 2319 &mov ("ecx",240/4); 2320 &xor ("eax","eax"); 2321 &align (4); 2322 &data_word(0xABF3F689); # rep stosd 2323 &set_label("skip_dzero"); 2324 &mov ("esp",$_esp); 2325 &popf (); 2326 &function_end_A(); 2327 &pushf (); # kludge, never executed 2328 2329#--------------------------- SLOW ROUTINE ---------------------------# 2330&set_label("slow_way",16); 2331 2332 &mov ($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap 2333 &mov ($key,&wparam(3)); # load key 2334 2335 # pre-allocate aligned stack frame... 2336 &lea ($acc,&DWP(-80,"esp")); 2337 &and ($acc,-64); 2338 2339 # ... and make sure it doesn't alias with $key modulo 1024 2340 &lea ($s1,&DWP(-80-63,$key)); 2341 &sub ($s1,$acc); 2342 &neg ($s1); 2343 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line 2344 &sub ($acc,$s1); 2345 2346 # pick S-box copy which can't overlap with stack frame or $key 2347 &lea ($s1,&DWP(768,$acc)); 2348 &sub ($s1,$tbl); 2349 &and ($s1,0x300); 2350 &lea ($tbl,&DWP(2048+128,$tbl,$s1)); 2351 2352 &lea ($s3,&wparam(0)); # pointer to parameter block 2353 2354 &exch ("esp",$acc); 2355 &add ("esp",4); # reserve for return address! 2356 &mov ($_tbl,$tbl); # save %ebp 2357 &mov ($_esp,$acc); # save %esp 2358 &mov ($_tmp,$s0); # save OPENSSL_ia32cap 2359 2360 &mov ($s0,&DWP(0,$s3)); # load inp 2361 &mov ($s1,&DWP(4,$s3)); # load out 2362 #&mov ($s2,&DWP(8,$s3)); # load len 2363 #&mov ($key,&DWP(12,$s3)); # load key 2364 &mov ($acc,&DWP(16,$s3)); # load ivp 2365 &mov ($s3,&DWP(20,$s3)); # load enc flag 2366 2367 &mov ($_inp,$s0); # save copy of inp 2368 &mov ($_out,$s1); # save copy of out 2369 &mov ($_len,$s2); # save copy of len 2370 &mov ($_key,$key); # save copy of key 2371 &mov ($_ivp,$acc); # save copy of ivp 2372 2373 &mov ($key,$acc); 2374 &mov ($acc,$s0); 2375 2376 &cmp ($s3,0); 2377 &je (&label("slow_decrypt")); 2378 2379#--------------------------- SLOW ENCRYPT ---------------------------# 2380 &cmp ($s2,16); 2381 &mov ($s3,$s1); 2382 &jb (&label("slow_enc_tail")); 2383 2384 if (!$x86only) { 2385 &bt ($_tmp,25); # check for SSE bit 2386 &jnc (&label("slow_enc_x86")); 2387 2388 &movq ("mm0",&QWP(0,$key)); # load iv 2389 &movq ("mm4",&QWP(8,$key)); 2390 2391 &set_label("slow_enc_loop_sse",16); 2392 &pxor ("mm0",&QWP(0,$acc)); # xor input data 2393 &pxor ("mm4",&QWP(8,$acc)); 2394 2395 &mov ($key,$_key); 2396 &call ("_sse_AES_encrypt_compact"); 2397 2398 &mov ($acc,$_inp); # load inp 2399 &mov ($key,$_out); # load out 2400 &mov ($s2,$_len); # load len 2401 2402 &movq (&QWP(0,$key),"mm0"); # save output data 2403 &movq (&QWP(8,$key),"mm4"); 2404 2405 &lea ($acc,&DWP(16,$acc)); # advance inp 2406 &mov ($_inp,$acc); # save inp 2407 &lea ($s3,&DWP(16,$key)); # advance out 2408 &mov ($_out,$s3); # save out 2409 &sub ($s2,16); # decrease len 2410 &cmp ($s2,16); 2411 &mov ($_len,$s2); # save len 2412 &jae (&label("slow_enc_loop_sse")); 2413 &test ($s2,15); 2414 &jnz (&label("slow_enc_tail")); 2415 &mov ($acc,$_ivp); # load ivp 2416 &movq (&QWP(0,$acc),"mm0"); # save ivec 2417 &movq (&QWP(8,$acc),"mm4"); 2418 &emms (); 2419 &mov ("esp",$_esp); 2420 &popf (); 2421 &function_end_A(); 2422 &pushf (); # kludge, never executed 2423 } 2424 &set_label("slow_enc_x86",16); 2425 &mov ($s0,&DWP(0,$key)); # load iv 2426 &mov ($s1,&DWP(4,$key)); 2427 2428 &set_label("slow_enc_loop_x86",4); 2429 &mov ($s2,&DWP(8,$key)); 2430 &mov ($s3,&DWP(12,$key)); 2431 2432 &xor ($s0,&DWP(0,$acc)); # xor input data 2433 &xor ($s1,&DWP(4,$acc)); 2434 &xor ($s2,&DWP(8,$acc)); 2435 &xor ($s3,&DWP(12,$acc)); 2436 2437 &mov ($key,$_key); # load key 2438 &call ("_x86_AES_encrypt_compact"); 2439 2440 &mov ($acc,$_inp); # load inp 2441 &mov ($key,$_out); # load out 2442 2443 &mov (&DWP(0,$key),$s0); # save output data 2444 &mov (&DWP(4,$key),$s1); 2445 &mov (&DWP(8,$key),$s2); 2446 &mov (&DWP(12,$key),$s3); 2447 2448 &mov ($s2,$_len); # load len 2449 &lea ($acc,&DWP(16,$acc)); # advance inp 2450 &mov ($_inp,$acc); # save inp 2451 &lea ($s3,&DWP(16,$key)); # advance out 2452 &mov ($_out,$s3); # save out 2453 &sub ($s2,16); # decrease len 2454 &cmp ($s2,16); 2455 &mov ($_len,$s2); # save len 2456 &jae (&label("slow_enc_loop_x86")); 2457 &test ($s2,15); 2458 &jnz (&label("slow_enc_tail")); 2459 &mov ($acc,$_ivp); # load ivp 2460 &mov ($s2,&DWP(8,$key)); # restore last dwords 2461 &mov ($s3,&DWP(12,$key)); 2462 &mov (&DWP(0,$acc),$s0); # save ivec 2463 &mov (&DWP(4,$acc),$s1); 2464 &mov (&DWP(8,$acc),$s2); 2465 &mov (&DWP(12,$acc),$s3); 2466 2467 &mov ("esp",$_esp); 2468 &popf (); 2469 &function_end_A(); 2470 &pushf (); # kludge, never executed 2471 2472 &set_label("slow_enc_tail",16); 2473 &emms () if (!$x86only); 2474 &mov ($key eq "edi"? $key:"",$s3); # load out to edi 2475 &mov ($s1,16); 2476 &sub ($s1,$s2); 2477 &cmp ($key,$acc eq "esi"? $acc:""); # compare with inp 2478 &je (&label("enc_in_place")); 2479 &align (4); 2480 &data_word(0xA4F3F689); # rep movsb # copy input 2481 &jmp (&label("enc_skip_in_place")); 2482 &set_label("enc_in_place"); 2483 &lea ($key,&DWP(0,$key,$s2)); 2484 &set_label("enc_skip_in_place"); 2485 &mov ($s2,$s1); 2486 &xor ($s0,$s0); 2487 &align (4); 2488 &data_word(0xAAF3F689); # rep stosb # zero tail 2489 2490 &mov ($key,$_ivp); # restore ivp 2491 &mov ($acc,$s3); # output as input 2492 &mov ($s0,&DWP(0,$key)); 2493 &mov ($s1,&DWP(4,$key)); 2494 &mov ($_len,16); # len=16 2495 &jmp (&label("slow_enc_loop_x86")); # one more spin... 2496 2497#--------------------------- SLOW DECRYPT ---------------------------# 2498&set_label("slow_decrypt",16); 2499 if (!$x86only) { 2500 &bt ($_tmp,25); # check for SSE bit 2501 &jnc (&label("slow_dec_loop_x86")); 2502 2503 &set_label("slow_dec_loop_sse",4); 2504 &movq ("mm0",&QWP(0,$acc)); # read input 2505 &movq ("mm4",&QWP(8,$acc)); 2506 2507 &mov ($key,$_key); 2508 &call ("_sse_AES_decrypt_compact"); 2509 2510 &mov ($acc,$_inp); # load inp 2511 &lea ($s0,$ivec); 2512 &mov ($s1,$_out); # load out 2513 &mov ($s2,$_len); # load len 2514 &mov ($key,$_ivp); # load ivp 2515 2516 &movq ("mm1",&QWP(0,$acc)); # re-read input 2517 &movq ("mm5",&QWP(8,$acc)); 2518 2519 &pxor ("mm0",&QWP(0,$key)); # xor iv 2520 &pxor ("mm4",&QWP(8,$key)); 2521 2522 &movq (&QWP(0,$key),"mm1"); # copy input to iv 2523 &movq (&QWP(8,$key),"mm5"); 2524 2525 &sub ($s2,16); # decrease len 2526 &jc (&label("slow_dec_partial_sse")); 2527 2528 &movq (&QWP(0,$s1),"mm0"); # write output 2529 &movq (&QWP(8,$s1),"mm4"); 2530 2531 &lea ($s1,&DWP(16,$s1)); # advance out 2532 &mov ($_out,$s1); # save out 2533 &lea ($acc,&DWP(16,$acc)); # advance inp 2534 &mov ($_inp,$acc); # save inp 2535 &mov ($_len,$s2); # save len 2536 &jnz (&label("slow_dec_loop_sse")); 2537 &emms (); 2538 &mov ("esp",$_esp); 2539 &popf (); 2540 &function_end_A(); 2541 &pushf (); # kludge, never executed 2542 2543 &set_label("slow_dec_partial_sse",16); 2544 &movq (&QWP(0,$s0),"mm0"); # save output to temp 2545 &movq (&QWP(8,$s0),"mm4"); 2546 &emms (); 2547 2548 &add ($s2 eq "ecx" ? "ecx":"",16); 2549 &mov ("edi",$s1); # out 2550 &mov ("esi",$s0); # temp 2551 &align (4); 2552 &data_word(0xA4F3F689); # rep movsb # copy partial output 2553 2554 &mov ("esp",$_esp); 2555 &popf (); 2556 &function_end_A(); 2557 &pushf (); # kludge, never executed 2558 } 2559 &set_label("slow_dec_loop_x86",16); 2560 &mov ($s0,&DWP(0,$acc)); # read input 2561 &mov ($s1,&DWP(4,$acc)); 2562 &mov ($s2,&DWP(8,$acc)); 2563 &mov ($s3,&DWP(12,$acc)); 2564 2565 &lea ($key,$ivec); 2566 &mov (&DWP(0,$key),$s0); # copy to temp 2567 &mov (&DWP(4,$key),$s1); 2568 &mov (&DWP(8,$key),$s2); 2569 &mov (&DWP(12,$key),$s3); 2570 2571 &mov ($key,$_key); # load key 2572 &call ("_x86_AES_decrypt_compact"); 2573 2574 &mov ($key,$_ivp); # load ivp 2575 &mov ($acc,$_len); # load len 2576 &xor ($s0,&DWP(0,$key)); # xor iv 2577 &xor ($s1,&DWP(4,$key)); 2578 &xor ($s2,&DWP(8,$key)); 2579 &xor ($s3,&DWP(12,$key)); 2580 2581 &sub ($acc,16); 2582 &jc (&label("slow_dec_partial_x86")); 2583 2584 &mov ($_len,$acc); # save len 2585 &mov ($acc,$_out); # load out 2586 2587 &mov (&DWP(0,$acc),$s0); # write output 2588 &mov (&DWP(4,$acc),$s1); 2589 &mov (&DWP(8,$acc),$s2); 2590 &mov (&DWP(12,$acc),$s3); 2591 2592 &lea ($acc,&DWP(16,$acc)); # advance out 2593 &mov ($_out,$acc); # save out 2594 2595 &lea ($acc,$ivec); 2596 &mov ($s0,&DWP(0,$acc)); # read temp 2597 &mov ($s1,&DWP(4,$acc)); 2598 &mov ($s2,&DWP(8,$acc)); 2599 &mov ($s3,&DWP(12,$acc)); 2600 2601 &mov (&DWP(0,$key),$s0); # copy it to iv 2602 &mov (&DWP(4,$key),$s1); 2603 &mov (&DWP(8,$key),$s2); 2604 &mov (&DWP(12,$key),$s3); 2605 2606 &mov ($acc,$_inp); # load inp 2607 &lea ($acc,&DWP(16,$acc)); # advance inp 2608 &mov ($_inp,$acc); # save inp 2609 &jnz (&label("slow_dec_loop_x86")); 2610 &mov ("esp",$_esp); 2611 &popf (); 2612 &function_end_A(); 2613 &pushf (); # kludge, never executed 2614 2615 &set_label("slow_dec_partial_x86",16); 2616 &lea ($acc,$ivec); 2617 &mov (&DWP(0,$acc),$s0); # save output to temp 2618 &mov (&DWP(4,$acc),$s1); 2619 &mov (&DWP(8,$acc),$s2); 2620 &mov (&DWP(12,$acc),$s3); 2621 2622 &mov ($acc,$_inp); 2623 &mov ($s0,&DWP(0,$acc)); # re-read input 2624 &mov ($s1,&DWP(4,$acc)); 2625 &mov ($s2,&DWP(8,$acc)); 2626 &mov ($s3,&DWP(12,$acc)); 2627 2628 &mov (&DWP(0,$key),$s0); # copy it to iv 2629 &mov (&DWP(4,$key),$s1); 2630 &mov (&DWP(8,$key),$s2); 2631 &mov (&DWP(12,$key),$s3); 2632 2633 &mov ("ecx",$_len); 2634 &mov ("edi",$_out); 2635 &lea ("esi",$ivec); 2636 &align (4); 2637 &data_word(0xA4F3F689); # rep movsb # copy partial output 2638 2639 &mov ("esp",$_esp); 2640 &popf (); 2641&function_end("aes_nohw_cbc_encrypt"); 2642} 2643 2644#------------------------------------------------------------------# 2645 2646sub enckey() 2647{ 2648 &movz ("esi",&LB("edx")); # rk[i]>>0 2649 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2650 &movz ("esi",&HB("edx")); # rk[i]>>8 2651 &shl ("ebx",24); 2652 &xor ("eax","ebx"); 2653 2654 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2655 &shr ("edx",16); 2656 &movz ("esi",&LB("edx")); # rk[i]>>16 2657 &xor ("eax","ebx"); 2658 2659 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2660 &movz ("esi",&HB("edx")); # rk[i]>>24 2661 &shl ("ebx",8); 2662 &xor ("eax","ebx"); 2663 2664 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2665 &shl ("ebx",16); 2666 &xor ("eax","ebx"); 2667 2668 &xor ("eax",&DWP(1024-128,$tbl,"ecx",4)); # rcon 2669} 2670 2671&function_begin("_x86_AES_set_encrypt_key"); 2672 &mov ("esi",&wparam(1)); # user supplied key 2673 &mov ("edi",&wparam(3)); # private key schedule 2674 2675 &test ("esi",-1); 2676 &jz (&label("badpointer")); 2677 &test ("edi",-1); 2678 &jz (&label("badpointer")); 2679 2680 &call (&label("pic_point")); 2681 &set_label("pic_point"); 2682 &blindpop($tbl); 2683 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); 2684 &lea ($tbl,&DWP(2048+128,$tbl)); 2685 2686 # prefetch Te4 2687 &mov ("eax",&DWP(0-128,$tbl)); 2688 &mov ("ebx",&DWP(32-128,$tbl)); 2689 &mov ("ecx",&DWP(64-128,$tbl)); 2690 &mov ("edx",&DWP(96-128,$tbl)); 2691 &mov ("eax",&DWP(128-128,$tbl)); 2692 &mov ("ebx",&DWP(160-128,$tbl)); 2693 &mov ("ecx",&DWP(192-128,$tbl)); 2694 &mov ("edx",&DWP(224-128,$tbl)); 2695 2696 &mov ("ecx",&wparam(2)); # number of bits in key 2697 &cmp ("ecx",128); 2698 &je (&label("10rounds")); 2699 &cmp ("ecx",192); 2700 &je (&label("12rounds")); 2701 &cmp ("ecx",256); 2702 &je (&label("14rounds")); 2703 &mov ("eax",-2); # invalid number of bits 2704 &jmp (&label("exit")); 2705 2706 &set_label("10rounds"); 2707 &mov ("eax",&DWP(0,"esi")); # copy first 4 dwords 2708 &mov ("ebx",&DWP(4,"esi")); 2709 &mov ("ecx",&DWP(8,"esi")); 2710 &mov ("edx",&DWP(12,"esi")); 2711 &mov (&DWP(0,"edi"),"eax"); 2712 &mov (&DWP(4,"edi"),"ebx"); 2713 &mov (&DWP(8,"edi"),"ecx"); 2714 &mov (&DWP(12,"edi"),"edx"); 2715 2716 &xor ("ecx","ecx"); 2717 &jmp (&label("10shortcut")); 2718 2719 &align (4); 2720 &set_label("10loop"); 2721 &mov ("eax",&DWP(0,"edi")); # rk[0] 2722 &mov ("edx",&DWP(12,"edi")); # rk[3] 2723 &set_label("10shortcut"); 2724 &enckey (); 2725 2726 &mov (&DWP(16,"edi"),"eax"); # rk[4] 2727 &xor ("eax",&DWP(4,"edi")); 2728 &mov (&DWP(20,"edi"),"eax"); # rk[5] 2729 &xor ("eax",&DWP(8,"edi")); 2730 &mov (&DWP(24,"edi"),"eax"); # rk[6] 2731 &xor ("eax",&DWP(12,"edi")); 2732 &mov (&DWP(28,"edi"),"eax"); # rk[7] 2733 &inc ("ecx"); 2734 &add ("edi",16); 2735 &cmp ("ecx",10); 2736 &jl (&label("10loop")); 2737 2738 &mov (&DWP(80,"edi"),10); # setup number of rounds 2739 &xor ("eax","eax"); 2740 &jmp (&label("exit")); 2741 2742 &set_label("12rounds"); 2743 &mov ("eax",&DWP(0,"esi")); # copy first 6 dwords 2744 &mov ("ebx",&DWP(4,"esi")); 2745 &mov ("ecx",&DWP(8,"esi")); 2746 &mov ("edx",&DWP(12,"esi")); 2747 &mov (&DWP(0,"edi"),"eax"); 2748 &mov (&DWP(4,"edi"),"ebx"); 2749 &mov (&DWP(8,"edi"),"ecx"); 2750 &mov (&DWP(12,"edi"),"edx"); 2751 &mov ("ecx",&DWP(16,"esi")); 2752 &mov ("edx",&DWP(20,"esi")); 2753 &mov (&DWP(16,"edi"),"ecx"); 2754 &mov (&DWP(20,"edi"),"edx"); 2755 2756 &xor ("ecx","ecx"); 2757 &jmp (&label("12shortcut")); 2758 2759 &align (4); 2760 &set_label("12loop"); 2761 &mov ("eax",&DWP(0,"edi")); # rk[0] 2762 &mov ("edx",&DWP(20,"edi")); # rk[5] 2763 &set_label("12shortcut"); 2764 &enckey (); 2765 2766 &mov (&DWP(24,"edi"),"eax"); # rk[6] 2767 &xor ("eax",&DWP(4,"edi")); 2768 &mov (&DWP(28,"edi"),"eax"); # rk[7] 2769 &xor ("eax",&DWP(8,"edi")); 2770 &mov (&DWP(32,"edi"),"eax"); # rk[8] 2771 &xor ("eax",&DWP(12,"edi")); 2772 &mov (&DWP(36,"edi"),"eax"); # rk[9] 2773 2774 &cmp ("ecx",7); 2775 &je (&label("12break")); 2776 &inc ("ecx"); 2777 2778 &xor ("eax",&DWP(16,"edi")); 2779 &mov (&DWP(40,"edi"),"eax"); # rk[10] 2780 &xor ("eax",&DWP(20,"edi")); 2781 &mov (&DWP(44,"edi"),"eax"); # rk[11] 2782 2783 &add ("edi",24); 2784 &jmp (&label("12loop")); 2785 2786 &set_label("12break"); 2787 &mov (&DWP(72,"edi"),12); # setup number of rounds 2788 &xor ("eax","eax"); 2789 &jmp (&label("exit")); 2790 2791 &set_label("14rounds"); 2792 &mov ("eax",&DWP(0,"esi")); # copy first 8 dwords 2793 &mov ("ebx",&DWP(4,"esi")); 2794 &mov ("ecx",&DWP(8,"esi")); 2795 &mov ("edx",&DWP(12,"esi")); 2796 &mov (&DWP(0,"edi"),"eax"); 2797 &mov (&DWP(4,"edi"),"ebx"); 2798 &mov (&DWP(8,"edi"),"ecx"); 2799 &mov (&DWP(12,"edi"),"edx"); 2800 &mov ("eax",&DWP(16,"esi")); 2801 &mov ("ebx",&DWP(20,"esi")); 2802 &mov ("ecx",&DWP(24,"esi")); 2803 &mov ("edx",&DWP(28,"esi")); 2804 &mov (&DWP(16,"edi"),"eax"); 2805 &mov (&DWP(20,"edi"),"ebx"); 2806 &mov (&DWP(24,"edi"),"ecx"); 2807 &mov (&DWP(28,"edi"),"edx"); 2808 2809 &xor ("ecx","ecx"); 2810 &jmp (&label("14shortcut")); 2811 2812 &align (4); 2813 &set_label("14loop"); 2814 &mov ("edx",&DWP(28,"edi")); # rk[7] 2815 &set_label("14shortcut"); 2816 &mov ("eax",&DWP(0,"edi")); # rk[0] 2817 2818 &enckey (); 2819 2820 &mov (&DWP(32,"edi"),"eax"); # rk[8] 2821 &xor ("eax",&DWP(4,"edi")); 2822 &mov (&DWP(36,"edi"),"eax"); # rk[9] 2823 &xor ("eax",&DWP(8,"edi")); 2824 &mov (&DWP(40,"edi"),"eax"); # rk[10] 2825 &xor ("eax",&DWP(12,"edi")); 2826 &mov (&DWP(44,"edi"),"eax"); # rk[11] 2827 2828 &cmp ("ecx",6); 2829 &je (&label("14break")); 2830 &inc ("ecx"); 2831 2832 &mov ("edx","eax"); 2833 &mov ("eax",&DWP(16,"edi")); # rk[4] 2834 &movz ("esi",&LB("edx")); # rk[11]>>0 2835 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2836 &movz ("esi",&HB("edx")); # rk[11]>>8 2837 &xor ("eax","ebx"); 2838 2839 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2840 &shr ("edx",16); 2841 &shl ("ebx",8); 2842 &movz ("esi",&LB("edx")); # rk[11]>>16 2843 &xor ("eax","ebx"); 2844 2845 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2846 &movz ("esi",&HB("edx")); # rk[11]>>24 2847 &shl ("ebx",16); 2848 &xor ("eax","ebx"); 2849 2850 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2851 &shl ("ebx",24); 2852 &xor ("eax","ebx"); 2853 2854 &mov (&DWP(48,"edi"),"eax"); # rk[12] 2855 &xor ("eax",&DWP(20,"edi")); 2856 &mov (&DWP(52,"edi"),"eax"); # rk[13] 2857 &xor ("eax",&DWP(24,"edi")); 2858 &mov (&DWP(56,"edi"),"eax"); # rk[14] 2859 &xor ("eax",&DWP(28,"edi")); 2860 &mov (&DWP(60,"edi"),"eax"); # rk[15] 2861 2862 &add ("edi",32); 2863 &jmp (&label("14loop")); 2864 2865 &set_label("14break"); 2866 &mov (&DWP(48,"edi"),14); # setup number of rounds 2867 &xor ("eax","eax"); 2868 &jmp (&label("exit")); 2869 2870 &set_label("badpointer"); 2871 &mov ("eax",-1); 2872 &set_label("exit"); 2873&function_end("_x86_AES_set_encrypt_key"); 2874 2875# int aes_nohw_set_encrypt_key(const unsigned char *userKey, const int bits, 2876# AES_KEY *key) 2877&function_begin_B("aes_nohw_set_encrypt_key"); 2878 &call ("_x86_AES_set_encrypt_key"); 2879 &ret (); 2880&function_end_B("aes_nohw_set_encrypt_key"); 2881 2882sub deckey() 2883{ my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_; 2884 my $tmp = $tbl; 2885 2886 &mov ($tmp,0x80808080); 2887 &and ($tmp,$tp1); 2888 &lea ($tp2,&DWP(0,$tp1,$tp1)); 2889 &mov ($acc,$tmp); 2890 &shr ($tmp,7); 2891 &sub ($acc,$tmp); 2892 &and ($tp2,0xfefefefe); 2893 &and ($acc,0x1b1b1b1b); 2894 &xor ($tp2,$acc); 2895 &mov ($tmp,0x80808080); 2896 2897 &and ($tmp,$tp2); 2898 &lea ($tp4,&DWP(0,$tp2,$tp2)); 2899 &mov ($acc,$tmp); 2900 &shr ($tmp,7); 2901 &sub ($acc,$tmp); 2902 &and ($tp4,0xfefefefe); 2903 &and ($acc,0x1b1b1b1b); 2904 &xor ($tp2,$tp1); # tp2^tp1 2905 &xor ($tp4,$acc); 2906 &mov ($tmp,0x80808080); 2907 2908 &and ($tmp,$tp4); 2909 &lea ($tp8,&DWP(0,$tp4,$tp4)); 2910 &mov ($acc,$tmp); 2911 &shr ($tmp,7); 2912 &xor ($tp4,$tp1); # tp4^tp1 2913 &sub ($acc,$tmp); 2914 &and ($tp8,0xfefefefe); 2915 &and ($acc,0x1b1b1b1b); 2916 &rotl ($tp1,8); # = ROTATE(tp1,8) 2917 &xor ($tp8,$acc); 2918 2919 &mov ($tmp,&DWP(4*($i+1),$key)); # modulo-scheduled load 2920 2921 &xor ($tp1,$tp2); 2922 &xor ($tp2,$tp8); 2923 &xor ($tp1,$tp4); 2924 &rotl ($tp2,24); 2925 &xor ($tp4,$tp8); 2926 &xor ($tp1,$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1) 2927 &rotl ($tp4,16); 2928 &xor ($tp1,$tp2); # ^= ROTATE(tp8^tp2^tp1,24) 2929 &rotl ($tp8,8); 2930 &xor ($tp1,$tp4); # ^= ROTATE(tp8^tp4^tp1,16) 2931 &mov ($tp2,$tmp); 2932 &xor ($tp1,$tp8); # ^= ROTATE(tp8,8) 2933 2934 &mov (&DWP(4*$i,$key),$tp1); 2935} 2936 2937# int aes_nohw_set_decrypt_key(const unsigned char *userKey, const int bits, 2938# AES_KEY *key) 2939&function_begin_B("aes_nohw_set_decrypt_key"); 2940 &call ("_x86_AES_set_encrypt_key"); 2941 &cmp ("eax",0); 2942 &je (&label("proceed")); 2943 &ret (); 2944 2945 &set_label("proceed"); 2946 &push ("ebp"); 2947 &push ("ebx"); 2948 &push ("esi"); 2949 &push ("edi"); 2950 2951 &mov ("esi",&wparam(2)); 2952 &mov ("ecx",&DWP(240,"esi")); # pull number of rounds 2953 &lea ("ecx",&DWP(0,"","ecx",4)); 2954 &lea ("edi",&DWP(0,"esi","ecx",4)); # pointer to last chunk 2955 2956 &set_label("invert",4); # invert order of chunks 2957 &mov ("eax",&DWP(0,"esi")); 2958 &mov ("ebx",&DWP(4,"esi")); 2959 &mov ("ecx",&DWP(0,"edi")); 2960 &mov ("edx",&DWP(4,"edi")); 2961 &mov (&DWP(0,"edi"),"eax"); 2962 &mov (&DWP(4,"edi"),"ebx"); 2963 &mov (&DWP(0,"esi"),"ecx"); 2964 &mov (&DWP(4,"esi"),"edx"); 2965 &mov ("eax",&DWP(8,"esi")); 2966 &mov ("ebx",&DWP(12,"esi")); 2967 &mov ("ecx",&DWP(8,"edi")); 2968 &mov ("edx",&DWP(12,"edi")); 2969 &mov (&DWP(8,"edi"),"eax"); 2970 &mov (&DWP(12,"edi"),"ebx"); 2971 &mov (&DWP(8,"esi"),"ecx"); 2972 &mov (&DWP(12,"esi"),"edx"); 2973 &add ("esi",16); 2974 &sub ("edi",16); 2975 &cmp ("esi","edi"); 2976 &jne (&label("invert")); 2977 2978 &mov ($key,&wparam(2)); 2979 &mov ($acc,&DWP(240,$key)); # pull number of rounds 2980 &lea ($acc,&DWP(-2,$acc,$acc)); 2981 &lea ($acc,&DWP(0,$key,$acc,8)); 2982 &mov (&wparam(2),$acc); 2983 2984 &mov ($s0,&DWP(16,$key)); # modulo-scheduled load 2985 &set_label("permute",4); # permute the key schedule 2986 &add ($key,16); 2987 &deckey (0,$key,$s0,$s1,$s2,$s3); 2988 &deckey (1,$key,$s1,$s2,$s3,$s0); 2989 &deckey (2,$key,$s2,$s3,$s0,$s1); 2990 &deckey (3,$key,$s3,$s0,$s1,$s2); 2991 &cmp ($key,&wparam(2)); 2992 &jb (&label("permute")); 2993 2994 &xor ("eax","eax"); # return success 2995&function_end("aes_nohw_set_decrypt_key"); 2996&asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>"); 2997 2998&asm_finish(); 2999 3000close STDOUT; 3001