1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_DOUBLE_H_
6 #define V8_DOUBLE_H_
7 
8 #include "src/base/macros.h"
9 #include "src/diy-fp.h"
10 
11 namespace v8 {
12 namespace internal {
13 
14 // We assume that doubles and uint64_t have the same endianness.
double_to_uint64(double d)15 inline uint64_t double_to_uint64(double d) { return bit_cast<uint64_t>(d); }
uint64_to_double(uint64_t d64)16 inline double uint64_to_double(uint64_t d64) { return bit_cast<double>(d64); }
17 
18 // Helper functions for doubles.
19 class Double {
20  public:
21   static constexpr uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000);
22   static constexpr uint64_t kExponentMask =
23       V8_2PART_UINT64_C(0x7FF00000, 00000000);
24   static constexpr uint64_t kSignificandMask =
25       V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
26   static constexpr uint64_t kHiddenBit =
27       V8_2PART_UINT64_C(0x00100000, 00000000);
28   static constexpr int kPhysicalSignificandSize =
29       52;  // Excludes the hidden bit.
30   static constexpr int kSignificandSize = 53;
31 
Double()32   Double() : d64_(0) {}
Double(double d)33   explicit Double(double d) : d64_(double_to_uint64(d)) {}
Double(uint64_t d64)34   explicit Double(uint64_t d64) : d64_(d64) {}
Double(DiyFp diy_fp)35   explicit Double(DiyFp diy_fp)
36     : d64_(DiyFpToUint64(diy_fp)) {}
37 
38   // The value encoded by this Double must be greater or equal to +0.0.
39   // It must not be special (infinity, or NaN).
AsDiyFp()40   DiyFp AsDiyFp() const {
41     DCHECK_GT(Sign(), 0);
42     DCHECK(!IsSpecial());
43     return DiyFp(Significand(), Exponent());
44   }
45 
46   // The value encoded by this Double must be strictly greater than 0.
AsNormalizedDiyFp()47   DiyFp AsNormalizedDiyFp() const {
48     DCHECK_GT(value(), 0.0);
49     uint64_t f = Significand();
50     int e = Exponent();
51 
52     // The current double could be a denormal.
53     while ((f & kHiddenBit) == 0) {
54       f <<= 1;
55       e--;
56     }
57     // Do the final shifts in one go.
58     f <<= DiyFp::kSignificandSize - kSignificandSize;
59     e -= DiyFp::kSignificandSize - kSignificandSize;
60     return DiyFp(f, e);
61   }
62 
63   // Returns the double's bit as uint64.
AsUint64()64   uint64_t AsUint64() const {
65     return d64_;
66   }
67 
68   // Returns the next greater double. Returns +infinity on input +infinity.
NextDouble()69   double NextDouble() const {
70     if (d64_ == kInfinity) return Double(kInfinity).value();
71     if (Sign() < 0 && Significand() == 0) {
72       // -0.0
73       return 0.0;
74     }
75     if (Sign() < 0) {
76       return Double(d64_ - 1).value();
77     } else {
78       return Double(d64_ + 1).value();
79     }
80   }
81 
Exponent()82   int Exponent() const {
83     if (IsDenormal()) return kDenormalExponent;
84 
85     uint64_t d64 = AsUint64();
86     int biased_e =
87         static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
88     return biased_e - kExponentBias;
89   }
90 
Significand()91   uint64_t Significand() const {
92     uint64_t d64 = AsUint64();
93     uint64_t significand = d64 & kSignificandMask;
94     if (!IsDenormal()) {
95       return significand + kHiddenBit;
96     } else {
97       return significand;
98     }
99   }
100 
101   // Returns true if the double is a denormal.
IsDenormal()102   bool IsDenormal() const {
103     uint64_t d64 = AsUint64();
104     return (d64 & kExponentMask) == 0;
105   }
106 
107   // We consider denormals not to be special.
108   // Hence only Infinity and NaN are special.
IsSpecial()109   bool IsSpecial() const {
110     uint64_t d64 = AsUint64();
111     return (d64 & kExponentMask) == kExponentMask;
112   }
113 
IsInfinite()114   bool IsInfinite() const {
115     uint64_t d64 = AsUint64();
116     return ((d64 & kExponentMask) == kExponentMask) &&
117         ((d64 & kSignificandMask) == 0);
118   }
119 
Sign()120   int Sign() const {
121     uint64_t d64 = AsUint64();
122     return (d64 & kSignMask) == 0? 1: -1;
123   }
124 
125   // Precondition: the value encoded by this Double must be greater or equal
126   // than +0.0.
UpperBoundary()127   DiyFp UpperBoundary() const {
128     DCHECK_GT(Sign(), 0);
129     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
130   }
131 
132   // Returns the two boundaries of this.
133   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
134   // exponent as m_plus.
135   // Precondition: the value encoded by this Double must be greater than 0.
NormalizedBoundaries(DiyFp * out_m_minus,DiyFp * out_m_plus)136   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
137     DCHECK_GT(value(), 0.0);
138     DiyFp v = this->AsDiyFp();
139     bool significand_is_zero = (v.f() == kHiddenBit);
140     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
141     DiyFp m_minus;
142     if (significand_is_zero && v.e() != kDenormalExponent) {
143       // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
144       // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
145       // at a distance of 1e8.
146       // The only exception is for the smallest normal: the largest denormal is
147       // at the same distance as its successor.
148       // Note: denormals have the same exponent as the smallest normals.
149       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
150     } else {
151       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
152     }
153     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
154     m_minus.set_e(m_plus.e());
155     *out_m_plus = m_plus;
156     *out_m_minus = m_minus;
157   }
158 
value()159   double value() const { return uint64_to_double(d64_); }
160 
161   // Returns the significand size for a given order of magnitude.
162   // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
163   // This function returns the number of significant binary digits v will have
164   // once its encoded into a double. In almost all cases this is equal to
165   // kSignificandSize. The only exception are denormals. They start with leading
166   // zeroes and their effective significand-size is hence smaller.
SignificandSizeForOrderOfMagnitude(int order)167   static int SignificandSizeForOrderOfMagnitude(int order) {
168     if (order >= (kDenormalExponent + kSignificandSize)) {
169       return kSignificandSize;
170     }
171     if (order <= kDenormalExponent) return 0;
172     return order - kDenormalExponent;
173   }
174 
175  private:
176   static constexpr int kExponentBias = 0x3FF + kPhysicalSignificandSize;
177   static constexpr int kDenormalExponent = -kExponentBias + 1;
178   static constexpr int kMaxExponent = 0x7FF - kExponentBias;
179   static constexpr uint64_t kInfinity = V8_2PART_UINT64_C(0x7FF00000, 00000000);
180 
181   // The field d64_ is not marked as const to permit the usage of the copy
182   // constructor.
183   uint64_t d64_;
184 
DiyFpToUint64(DiyFp diy_fp)185   static uint64_t DiyFpToUint64(DiyFp diy_fp) {
186     uint64_t significand = diy_fp.f();
187     int exponent = diy_fp.e();
188     while (significand > kHiddenBit + kSignificandMask) {
189       significand >>= 1;
190       exponent++;
191     }
192     if (exponent >= kMaxExponent) {
193       return kInfinity;
194     }
195     if (exponent < kDenormalExponent) {
196       return 0;
197     }
198     while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
199       significand <<= 1;
200       exponent--;
201     }
202     uint64_t biased_exponent;
203     if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
204       biased_exponent = 0;
205     } else {
206       biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
207     }
208     return (significand & kSignificandMask) |
209         (biased_exponent << kPhysicalSignificandSize);
210   }
211 };
212 
213 }  // namespace internal
214 }  // namespace v8
215 
216 #endif  // V8_DOUBLE_H_
217