1 /*------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2016 The Khronos Group Inc.
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file vktSparseResourcesImageSparseBinding.cpp
21 * \brief Sparse fully resident images with mipmaps tests
22 *//*--------------------------------------------------------------------*/
23
24 #include "vktSparseResourcesBufferSparseBinding.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkMemUtil.hpp"
35 #include "vkBarrierUtil.hpp"
36 #include "vkBuilderUtil.hpp"
37 #include "vkImageUtil.hpp"
38 #include "vkQueryUtil.hpp"
39 #include "vkTypeUtil.hpp"
40 #include "vkCmdUtil.hpp"
41
42 #include "deUniquePtr.hpp"
43 #include "deStringUtil.hpp"
44
45 #include <string>
46 #include <vector>
47
48 using namespace vk;
49
50 namespace vkt
51 {
52 namespace sparse
53 {
54 namespace
55 {
56
57 class ImageSparseBindingCase : public TestCase
58 {
59 public:
60 ImageSparseBindingCase (tcu::TestContext& testCtx,
61 const std::string& name,
62 const std::string& description,
63 const ImageType imageType,
64 const tcu::UVec3& imageSize,
65 const tcu::TextureFormat& format,
66 const bool useDeviceGroups = false);
67
68 TestInstance* createInstance (Context& context) const;
69
70 private:
71 const bool m_useDeviceGroups;
72 const ImageType m_imageType;
73 const tcu::UVec3 m_imageSize;
74 const tcu::TextureFormat m_format;
75 };
76
ImageSparseBindingCase(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const ImageType imageType,const tcu::UVec3 & imageSize,const tcu::TextureFormat & format,const bool useDeviceGroups)77 ImageSparseBindingCase::ImageSparseBindingCase (tcu::TestContext& testCtx,
78 const std::string& name,
79 const std::string& description,
80 const ImageType imageType,
81 const tcu::UVec3& imageSize,
82 const tcu::TextureFormat& format,
83 const bool useDeviceGroups)
84
85 : TestCase (testCtx, name, description)
86 , m_useDeviceGroups (useDeviceGroups)
87 , m_imageType (imageType)
88 , m_imageSize (imageSize)
89 , m_format (format)
90 {
91 }
92
93 class ImageSparseBindingInstance : public SparseResourcesBaseInstance
94 {
95 public:
96 ImageSparseBindingInstance (Context& context,
97 const ImageType imageType,
98 const tcu::UVec3& imageSize,
99 const tcu::TextureFormat& format,
100 const bool useDeviceGroups);
101
102 tcu::TestStatus iterate (void);
103
104 private:
105 const bool m_useDeviceGroups;
106 const ImageType m_imageType;
107 const tcu::UVec3 m_imageSize;
108 const tcu::TextureFormat m_format;
109 };
110
ImageSparseBindingInstance(Context & context,const ImageType imageType,const tcu::UVec3 & imageSize,const tcu::TextureFormat & format,const bool useDeviceGroups)111 ImageSparseBindingInstance::ImageSparseBindingInstance (Context& context,
112 const ImageType imageType,
113 const tcu::UVec3& imageSize,
114 const tcu::TextureFormat& format,
115 const bool useDeviceGroups)
116
117 : SparseResourcesBaseInstance (context, useDeviceGroups)
118 , m_useDeviceGroups (useDeviceGroups)
119 , m_imageType (imageType)
120 , m_imageSize (imageSize)
121 , m_format (format)
122 {
123 }
124
iterate(void)125 tcu::TestStatus ImageSparseBindingInstance::iterate (void)
126 {
127 const InstanceInterface& instance = m_context.getInstanceInterface();
128
129 {
130 // Create logical device supporting both sparse and compute queues
131 QueueRequirementsVec queueRequirements;
132 queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
133 queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
134
135 createDeviceSupportingQueues(queueRequirements);
136 }
137
138 const VkPhysicalDevice physicalDevice = getPhysicalDevice();
139 VkImageCreateInfo imageSparseInfo;
140 std::vector<DeviceMemorySp> deviceMemUniquePtrVec;
141
142 // Check if image size does not exceed device limits
143 if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize))
144 TCU_THROW(NotSupportedError, "Image size not supported for device");
145
146 // Check if device supports sparse binding
147 if (!getPhysicalDeviceFeatures(instance, physicalDevice).sparseBinding)
148 TCU_THROW(NotSupportedError, "Device does not support sparse binding");
149
150 const DeviceInterface& deviceInterface = getDeviceInterface();
151 const Queue& sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
152 const Queue& computeQueue = getQueue(VK_QUEUE_COMPUTE_BIT, 0);
153
154 // Go through all physical devices
155 for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
156 {
157 const deUint32 firstDeviceID = physDevID;
158 const deUint32 secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices;
159
160 imageSparseInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; //VkStructureType sType;
161 imageSparseInfo.pNext = DE_NULL; //const void* pNext;
162 imageSparseInfo.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT; //VkImageCreateFlags flags;
163 imageSparseInfo.imageType = mapImageType(m_imageType); //VkImageType imageType;
164 imageSparseInfo.format = mapTextureFormat(m_format); //VkFormat format;
165 imageSparseInfo.extent = makeExtent3D(getLayerSize(m_imageType, m_imageSize)); //VkExtent3D extent;
166 imageSparseInfo.arrayLayers = getNumLayers(m_imageType, m_imageSize); //deUint32 arrayLayers;
167 imageSparseInfo.samples = VK_SAMPLE_COUNT_1_BIT; //VkSampleCountFlagBits samples;
168 imageSparseInfo.tiling = VK_IMAGE_TILING_OPTIMAL; //VkImageTiling tiling;
169 imageSparseInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //VkImageLayout initialLayout;
170 imageSparseInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
171 VK_IMAGE_USAGE_TRANSFER_DST_BIT; //VkImageUsageFlags usage;
172 imageSparseInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; //VkSharingMode sharingMode;
173 imageSparseInfo.queueFamilyIndexCount = 0u; //deUint32 queueFamilyIndexCount;
174 imageSparseInfo.pQueueFamilyIndices = DE_NULL; //const deUint32* pQueueFamilyIndices;
175
176 if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
177 {
178 imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
179 }
180
181 {
182 VkImageFormatProperties imageFormatProperties;
183 instance.getPhysicalDeviceImageFormatProperties(physicalDevice,
184 imageSparseInfo.format,
185 imageSparseInfo.imageType,
186 imageSparseInfo.tiling,
187 imageSparseInfo.usage,
188 imageSparseInfo.flags,
189 &imageFormatProperties);
190
191 imageSparseInfo.mipLevels = getImageMaxMipLevels(imageFormatProperties, imageSparseInfo.extent);
192 }
193
194 // Create sparse image
195 const Unique<VkImage> imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo));
196
197 // Create sparse image memory bind semaphore
198 const Unique<VkSemaphore> imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
199
200 // Get sparse image general memory requirements
201 const VkMemoryRequirements imageSparseMemRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
202
203 // Check if required image memory size does not exceed device limits
204 if (imageSparseMemRequirements.size > getPhysicalDeviceProperties(instance, getPhysicalDevice(secondDeviceID)).limits.sparseAddressSpaceSize)
205 TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
206
207 DE_ASSERT((imageSparseMemRequirements.size % imageSparseMemRequirements.alignment) == 0);
208
209 {
210 std::vector<VkSparseMemoryBind> sparseMemoryBinds;
211 const deUint32 numSparseBinds = static_cast<deUint32>(imageSparseMemRequirements.size / imageSparseMemRequirements.alignment);
212 const deUint32 memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), imageSparseMemRequirements, MemoryRequirement::Any);
213
214 if (memoryType == NO_MATCH_FOUND)
215 return tcu::TestStatus::fail("No matching memory type found");
216
217 if (firstDeviceID != secondDeviceID)
218 {
219 VkPeerMemoryFeatureFlags peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
220 const deUint32 heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
221 deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags);
222
223 if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
224 ((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0))
225 {
226 TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST");
227 }
228 }
229
230 for (deUint32 sparseBindNdx = 0; sparseBindNdx < numSparseBinds; ++sparseBindNdx)
231 {
232 const VkSparseMemoryBind sparseMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
233 imageSparseMemRequirements.alignment, memoryType, imageSparseMemRequirements.alignment * sparseBindNdx);
234
235 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(sparseMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
236
237 sparseMemoryBinds.push_back(sparseMemoryBind);
238 }
239
240 const VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo = makeSparseImageOpaqueMemoryBindInfo(*imageSparse, numSparseBinds, &sparseMemoryBinds[0]);
241
242 const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
243 {
244 VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO_KHR, //VkStructureType sType;
245 DE_NULL, //const void* pNext;
246 firstDeviceID, //deUint32 resourceDeviceIndex;
247 secondDeviceID, //deUint32 memoryDeviceIndex;
248 };
249
250 const VkBindSparseInfo bindSparseInfo =
251 {
252 VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType;
253 m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL, //const void* pNext;
254 0u, //deUint32 waitSemaphoreCount;
255 DE_NULL, //const VkSemaphore* pWaitSemaphores;
256 0u, //deUint32 bufferBindCount;
257 DE_NULL, //const VkSparseBufferMemoryBindInfo* pBufferBinds;
258 1u, //deUint32 imageOpaqueBindCount;
259 &opaqueBindInfo, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
260 0u, //deUint32 imageBindCount;
261 DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds;
262 1u, //deUint32 signalSemaphoreCount;
263 &imageMemoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores;
264 };
265
266 // Submit sparse bind commands for execution
267 VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
268 }
269
270 // Create command buffer for compute and transfer oparations
271 const Unique<VkCommandPool> commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
272 const Unique<VkCommandBuffer> commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
273
274 std::vector<VkBufferImageCopy> bufferImageCopy(imageSparseInfo.mipLevels);
275
276 {
277 deUint32 bufferOffset = 0;
278 for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; mipmapNdx++)
279 {
280 bufferImageCopy[mipmapNdx] = makeBufferImageCopy(mipLevelExtents(imageSparseInfo.extent, mipmapNdx), imageSparseInfo.arrayLayers, mipmapNdx, static_cast<VkDeviceSize>(bufferOffset));
281 bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
282 }
283 }
284
285 // Start recording commands
286 beginCommandBuffer(deviceInterface, *commandBuffer);
287
288 const deUint32 imageSizeInBytes = getImageSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, imageSparseInfo.mipLevels, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
289 const VkBufferCreateInfo inputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
290 const Unique<VkBuffer> inputBuffer (createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
291 const de::UniquePtr<Allocation> inputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
292
293 std::vector<deUint8> referenceData(imageSizeInBytes);
294
295 for (deUint32 valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx)
296 {
297 referenceData[valueNdx] = static_cast<deUint8>((valueNdx % imageSparseMemRequirements.alignment) + 1u);
298 }
299
300 deMemcpy(inputBufferAlloc->getHostPtr(), &referenceData[0], imageSizeInBytes);
301
302 flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
303
304 {
305 const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier
306 (
307 VK_ACCESS_HOST_WRITE_BIT,
308 VK_ACCESS_TRANSFER_READ_BIT,
309 *inputBuffer,
310 0u,
311 imageSizeInBytes
312 );
313
314 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
315 }
316
317 {
318 const VkImageMemoryBarrier imageSparseTransferDstBarrier = makeImageMemoryBarrier
319 (
320 0u,
321 VK_ACCESS_TRANSFER_WRITE_BIT,
322 VK_IMAGE_LAYOUT_UNDEFINED,
323 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
324 *imageSparse,
325 makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers),
326 sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
327 sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED
328 );
329
330 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &imageSparseTransferDstBarrier);
331 }
332
333 deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageCopy.size()), &bufferImageCopy[0]);
334
335 {
336 const VkImageMemoryBarrier imageSparseTransferSrcBarrier = makeImageMemoryBarrier
337 (
338 VK_ACCESS_TRANSFER_WRITE_BIT,
339 VK_ACCESS_TRANSFER_READ_BIT,
340 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
341 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
342 *imageSparse,
343 makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
344 );
345
346 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &imageSparseTransferSrcBarrier);
347 }
348
349 const VkBufferCreateInfo outputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
350 const Unique<VkBuffer> outputBuffer (createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
351 const de::UniquePtr<Allocation> outputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
352
353 deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), &bufferImageCopy[0]);
354
355 {
356 const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier
357 (
358 VK_ACCESS_TRANSFER_WRITE_BIT,
359 VK_ACCESS_HOST_READ_BIT,
360 *outputBuffer,
361 0u,
362 imageSizeInBytes
363 );
364
365 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
366 }
367
368 // End recording commands
369 endCommandBuffer(deviceInterface, *commandBuffer);
370
371 const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
372
373 // Submit commands for execution and wait for completion
374 submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &imageMemoryBindSemaphore.get(), stageBits,
375 0, DE_NULL, m_useDeviceGroups, firstDeviceID);
376
377 // Retrieve data from buffer to host memory
378 invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
379
380 const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
381
382 // Wait for sparse queue to become idle
383 deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
384
385 for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
386 {
387 const deUint32 mipLevelSizeInBytes = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipmapNdx);
388 const deUint32 bufferOffset = static_cast<deUint32>(bufferImageCopy[mipmapNdx].bufferOffset);
389
390 if (deMemCmp(outputData + bufferOffset, &referenceData[bufferOffset], mipLevelSizeInBytes) != 0)
391 return tcu::TestStatus::fail("Failed");
392 }
393 }
394
395 return tcu::TestStatus::pass("Passed");
396 }
397
createInstance(Context & context) const398 TestInstance* ImageSparseBindingCase::createInstance (Context& context) const
399 {
400 return new ImageSparseBindingInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups);
401 }
402
403 } // anonymous ns
404
createImageSparseBindingTestsCommon(tcu::TestContext & testCtx,de::MovePtr<tcu::TestCaseGroup> testGroup,const bool useDeviceGroup=false)405 tcu::TestCaseGroup* createImageSparseBindingTestsCommon(tcu::TestContext& testCtx, de::MovePtr<tcu::TestCaseGroup> testGroup, const bool useDeviceGroup = false)
406 {
407 static const deUint32 sizeCountPerImageType = 3u;
408
409 struct ImageParameters
410 {
411 ImageType imageType;
412 tcu::UVec3 imageSizes[sizeCountPerImageType];
413 };
414
415 static const ImageParameters imageParametersArray[] =
416 {
417 { IMAGE_TYPE_1D, { tcu::UVec3(512u, 1u, 1u ), tcu::UVec3(1024u, 1u, 1u), tcu::UVec3(11u, 1u, 1u) } },
418 { IMAGE_TYPE_1D_ARRAY, { tcu::UVec3(512u, 1u, 64u), tcu::UVec3(1024u, 1u, 8u), tcu::UVec3(11u, 1u, 3u) } },
419 { IMAGE_TYPE_2D, { tcu::UVec3(512u, 256u, 1u ), tcu::UVec3(1024u, 128u, 1u), tcu::UVec3(11u, 137u, 1u) } },
420 { IMAGE_TYPE_2D_ARRAY, { tcu::UVec3(512u, 256u, 6u ), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u) } },
421 { IMAGE_TYPE_3D, { tcu::UVec3(512u, 256u, 6u ), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u) } },
422 { IMAGE_TYPE_CUBE, { tcu::UVec3(256u, 256u, 1u ), tcu::UVec3(128u, 128u, 1u), tcu::UVec3(137u, 137u, 1u) } },
423 { IMAGE_TYPE_CUBE_ARRAY,{ tcu::UVec3(256u, 256u, 6u ), tcu::UVec3(128u, 128u, 8u), tcu::UVec3(137u, 137u, 3u) } }
424 };
425
426 static const tcu::TextureFormat formats[] =
427 {
428 tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::SIGNED_INT32),
429 tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::SIGNED_INT16),
430 tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::SIGNED_INT8),
431 tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32),
432 tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT16),
433 tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT8)
434 };
435
436
437 for (deInt32 imageTypeNdx = 0; imageTypeNdx < DE_LENGTH_OF_ARRAY(imageParametersArray); ++imageTypeNdx)
438 {
439 const ImageType imageType = imageParametersArray[imageTypeNdx].imageType;
440 de::MovePtr<tcu::TestCaseGroup> imageTypeGroup(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str(), ""));
441
442 for (deInt32 formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(formats); ++formatNdx)
443 {
444 const tcu::TextureFormat& format = formats[formatNdx];
445 de::MovePtr<tcu::TestCaseGroup> formatGroup(new tcu::TestCaseGroup(testCtx, getShaderImageFormatQualifier(format).c_str(), ""));
446
447 for (deInt32 imageSizeNdx = 0; imageSizeNdx < DE_LENGTH_OF_ARRAY(imageParametersArray[imageTypeNdx].imageSizes); ++imageSizeNdx)
448 {
449 const tcu::UVec3 imageSize = imageParametersArray[imageTypeNdx].imageSizes[imageSizeNdx];
450 std::ostringstream stream;
451 stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
452
453 formatGroup->addChild(new ImageSparseBindingCase(testCtx, stream.str(), "", imageType, imageSize, format, useDeviceGroup));
454 }
455 imageTypeGroup->addChild(formatGroup.release());
456 }
457 testGroup->addChild(imageTypeGroup.release());
458 }
459
460 return testGroup.release();
461 }
462
createImageSparseBindingTests(tcu::TestContext & testCtx)463 tcu::TestCaseGroup* createImageSparseBindingTests(tcu::TestContext& testCtx)
464 {
465 de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "image_sparse_binding", "Image Sparse Binding"));
466 return createImageSparseBindingTestsCommon(testCtx, testGroup);
467 }
468
createDeviceGroupImageSparseBindingTests(tcu::TestContext & testCtx)469 tcu::TestCaseGroup* createDeviceGroupImageSparseBindingTests(tcu::TestContext& testCtx)
470 {
471 de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "device_group_image_sparse_binding", "Device Group Image Sparse Binding"));
472 return createImageSparseBindingTestsCommon(testCtx, testGroup, true);
473 }
474
475 } // sparse
476 } // vkt
477