1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "space_bitmap-inl.h"
18 
19 #include "android-base/stringprintf.h"
20 
21 #include "art_field-inl.h"
22 #include "base/mem_map.h"
23 #include "dex/dex_file-inl.h"
24 #include "mirror/class-inl.h"
25 #include "mirror/object-inl.h"
26 #include "mirror/object_array.h"
27 
28 namespace art {
29 namespace gc {
30 namespace accounting {
31 
32 using android::base::StringPrintf;
33 
34 template<size_t kAlignment>
ComputeBitmapSize(uint64_t capacity)35 size_t SpaceBitmap<kAlignment>::ComputeBitmapSize(uint64_t capacity) {
36   // Number of space (heap) bytes covered by one bitmap word.
37   // (Word size in bytes = `sizeof(intptr_t)`, which is expected to be
38   // 4 on a 32-bit architecture and 8 on a 64-bit one.)
39   const uint64_t kBytesCoveredPerWord = kAlignment * kBitsPerIntPtrT;
40   // Calculate the number of words required to cover a space (heap)
41   // having a size of `capacity` bytes.
42   return (RoundUp(capacity, kBytesCoveredPerWord) / kBytesCoveredPerWord) * sizeof(intptr_t);
43 }
44 
45 template<size_t kAlignment>
ComputeHeapSize(uint64_t bitmap_bytes)46 size_t SpaceBitmap<kAlignment>::ComputeHeapSize(uint64_t bitmap_bytes) {
47   return bitmap_bytes * kBitsPerByte * kAlignment;
48 }
49 
50 template<size_t kAlignment>
CreateFromMemMap(const std::string & name,MemMap && mem_map,uint8_t * heap_begin,size_t heap_capacity)51 SpaceBitmap<kAlignment>* SpaceBitmap<kAlignment>::CreateFromMemMap(
52     const std::string& name, MemMap&& mem_map, uint8_t* heap_begin, size_t heap_capacity) {
53   CHECK(mem_map.IsValid());
54   uintptr_t* bitmap_begin = reinterpret_cast<uintptr_t*>(mem_map.Begin());
55   const size_t bitmap_size = ComputeBitmapSize(heap_capacity);
56   return new SpaceBitmap(
57       name, std::move(mem_map), bitmap_begin, bitmap_size, heap_begin, heap_capacity);
58 }
59 
60 template<size_t kAlignment>
SpaceBitmap(const std::string & name,MemMap && mem_map,uintptr_t * bitmap_begin,size_t bitmap_size,const void * heap_begin,size_t heap_capacity)61 SpaceBitmap<kAlignment>::SpaceBitmap(const std::string& name,
62                                      MemMap&& mem_map,
63                                      uintptr_t* bitmap_begin,
64                                      size_t bitmap_size,
65                                      const void* heap_begin,
66                                      size_t heap_capacity)
67     : mem_map_(std::move(mem_map)),
68       bitmap_begin_(reinterpret_cast<Atomic<uintptr_t>*>(bitmap_begin)),
69       bitmap_size_(bitmap_size),
70       heap_begin_(reinterpret_cast<uintptr_t>(heap_begin)),
71       heap_limit_(reinterpret_cast<uintptr_t>(heap_begin) + heap_capacity),
72       name_(name) {
73   CHECK(bitmap_begin_ != nullptr);
74   CHECK_NE(bitmap_size, 0U);
75 }
76 
77 template<size_t kAlignment>
~SpaceBitmap()78 SpaceBitmap<kAlignment>::~SpaceBitmap() {}
79 
80 template<size_t kAlignment>
Create(const std::string & name,uint8_t * heap_begin,size_t heap_capacity)81 SpaceBitmap<kAlignment>* SpaceBitmap<kAlignment>::Create(
82     const std::string& name, uint8_t* heap_begin, size_t heap_capacity) {
83   // Round up since `heap_capacity` is not necessarily a multiple of `kAlignment * kBitsPerIntPtrT`
84   // (we represent one word as an `intptr_t`).
85   const size_t bitmap_size = ComputeBitmapSize(heap_capacity);
86   std::string error_msg;
87   MemMap mem_map = MemMap::MapAnonymous(name.c_str(),
88                                         bitmap_size,
89                                         PROT_READ | PROT_WRITE,
90                                         /*low_4gb=*/ false,
91                                         &error_msg);
92   if (UNLIKELY(!mem_map.IsValid())) {
93     LOG(ERROR) << "Failed to allocate bitmap " << name << ": " << error_msg;
94     return nullptr;
95   }
96   return CreateFromMemMap(name, std::move(mem_map), heap_begin, heap_capacity);
97 }
98 
99 template<size_t kAlignment>
SetHeapLimit(uintptr_t new_end)100 void SpaceBitmap<kAlignment>::SetHeapLimit(uintptr_t new_end) {
101   DCHECK_ALIGNED(new_end, kBitsPerIntPtrT * kAlignment);
102   size_t new_size = OffsetToIndex(new_end - heap_begin_) * sizeof(intptr_t);
103   if (new_size < bitmap_size_) {
104     bitmap_size_ = new_size;
105   }
106   heap_limit_ = new_end;
107   // Not sure if doing this trim is necessary, since nothing past the end of the heap capacity
108   // should be marked.
109 }
110 
111 template<size_t kAlignment>
Dump() const112 std::string SpaceBitmap<kAlignment>::Dump() const {
113   return StringPrintf("%s: %p-%p", name_.c_str(), reinterpret_cast<void*>(HeapBegin()),
114                       reinterpret_cast<void*>(HeapLimit()));
115 }
116 
117 template<size_t kAlignment>
Clear()118 void SpaceBitmap<kAlignment>::Clear() {
119   if (bitmap_begin_ != nullptr) {
120     mem_map_.MadviseDontNeedAndZero();
121   }
122 }
123 
124 template<size_t kAlignment>
ClearRange(const mirror::Object * begin,const mirror::Object * end)125 void SpaceBitmap<kAlignment>::ClearRange(const mirror::Object* begin, const mirror::Object* end) {
126   uintptr_t begin_offset = reinterpret_cast<uintptr_t>(begin) - heap_begin_;
127   uintptr_t end_offset = reinterpret_cast<uintptr_t>(end) - heap_begin_;
128   // Align begin and end to bitmap word boundaries.
129   while (begin_offset < end_offset && OffsetBitIndex(begin_offset) != 0) {
130     Clear(reinterpret_cast<mirror::Object*>(heap_begin_ + begin_offset));
131     begin_offset += kAlignment;
132   }
133   while (begin_offset < end_offset && OffsetBitIndex(end_offset) != 0) {
134     end_offset -= kAlignment;
135     Clear(reinterpret_cast<mirror::Object*>(heap_begin_ + end_offset));
136   }
137   // Bitmap word boundaries.
138   const uintptr_t start_index = OffsetToIndex(begin_offset);
139   const uintptr_t end_index = OffsetToIndex(end_offset);
140   ZeroAndReleasePages(reinterpret_cast<uint8_t*>(&bitmap_begin_[start_index]),
141                       (end_index - start_index) * sizeof(*bitmap_begin_));
142 }
143 
144 template<size_t kAlignment>
CopyFrom(SpaceBitmap * source_bitmap)145 void SpaceBitmap<kAlignment>::CopyFrom(SpaceBitmap* source_bitmap) {
146   DCHECK_EQ(Size(), source_bitmap->Size());
147   const size_t count = source_bitmap->Size() / sizeof(intptr_t);
148   Atomic<uintptr_t>* const src = source_bitmap->Begin();
149   Atomic<uintptr_t>* const dest = Begin();
150   for (size_t i = 0; i < count; ++i) {
151     dest[i].store(src[i].load(std::memory_order_relaxed), std::memory_order_relaxed);
152   }
153 }
154 
155 template<size_t kAlignment>
SweepWalk(const SpaceBitmap<kAlignment> & live_bitmap,const SpaceBitmap<kAlignment> & mark_bitmap,uintptr_t sweep_begin,uintptr_t sweep_end,SpaceBitmap::SweepCallback * callback,void * arg)156 void SpaceBitmap<kAlignment>::SweepWalk(const SpaceBitmap<kAlignment>& live_bitmap,
157                                         const SpaceBitmap<kAlignment>& mark_bitmap,
158                                         uintptr_t sweep_begin, uintptr_t sweep_end,
159                                         SpaceBitmap::SweepCallback* callback, void* arg) {
160   CHECK(live_bitmap.bitmap_begin_ != nullptr);
161   CHECK(mark_bitmap.bitmap_begin_ != nullptr);
162   CHECK_EQ(live_bitmap.heap_begin_, mark_bitmap.heap_begin_);
163   CHECK_EQ(live_bitmap.bitmap_size_, mark_bitmap.bitmap_size_);
164   CHECK(callback != nullptr);
165   CHECK_LE(sweep_begin, sweep_end);
166   CHECK_GE(sweep_begin, live_bitmap.heap_begin_);
167 
168   if (sweep_end <= sweep_begin) {
169     return;
170   }
171 
172   size_t buffer_size = sizeof(intptr_t) * kBitsPerIntPtrT;
173   Atomic<uintptr_t>* live = live_bitmap.bitmap_begin_;
174   Atomic<uintptr_t>* mark = mark_bitmap.bitmap_begin_;
175   const size_t start = OffsetToIndex(sweep_begin - live_bitmap.heap_begin_);
176   const size_t end = OffsetToIndex(sweep_end - live_bitmap.heap_begin_ - 1);
177   CHECK_LT(end, live_bitmap.Size() / sizeof(intptr_t));
178 
179   if (Runtime::Current()->IsRunningOnMemoryTool()) {
180     // For memory tool, make the buffer large enough to hold all allocations. This is done since
181     // we get the size of objects (and hence read the class) inside of the freeing logic. This can
182     // cause crashes for unloaded classes since the class may get zeroed out before it is read.
183     // See b/131542326
184     for (size_t i = start; i <= end; i++) {
185       uintptr_t garbage =
186           live[i].load(std::memory_order_relaxed) & ~mark[i].load(std::memory_order_relaxed);
187       buffer_size += POPCOUNT(garbage);
188     }
189   }
190   std::vector<mirror::Object*> pointer_buf(buffer_size);
191   mirror::Object** cur_pointer = &pointer_buf[0];
192   mirror::Object** pointer_end = cur_pointer + (buffer_size - kBitsPerIntPtrT);
193 
194   for (size_t i = start; i <= end; i++) {
195     uintptr_t garbage =
196         live[i].load(std::memory_order_relaxed) & ~mark[i].load(std::memory_order_relaxed);
197     if (UNLIKELY(garbage != 0)) {
198       uintptr_t ptr_base = IndexToOffset(i) + live_bitmap.heap_begin_;
199       do {
200         const size_t shift = CTZ(garbage);
201         garbage ^= (static_cast<uintptr_t>(1)) << shift;
202         *cur_pointer++ = reinterpret_cast<mirror::Object*>(ptr_base + shift * kAlignment);
203       } while (garbage != 0);
204       // Make sure that there are always enough slots available for an
205       // entire word of one bits.
206       if (cur_pointer >= pointer_end) {
207         (*callback)(cur_pointer - &pointer_buf[0], &pointer_buf[0], arg);
208         cur_pointer  = &pointer_buf[0];
209       }
210     }
211   }
212   if (cur_pointer > &pointer_buf[0]) {
213     (*callback)(cur_pointer - &pointer_buf[0], &pointer_buf[0], arg);
214   }
215 }
216 
217 template class SpaceBitmap<kObjectAlignment>;
218 template class SpaceBitmap<kPageSize>;
219 
220 }  // namespace accounting
221 }  // namespace gc
222 }  // namespace art
223