1 // clang-format off
2 // Generated file (from: conv_float_large_weights_as_inputs_relaxed.mod.py). Do not edit
CreateModel(Model * model)3 void CreateModel(Model *model) {
4   OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 3, 3});
5   OperandType type1(Type::TENSOR_FLOAT32, {3, 1, 1, 3});
6   OperandType type2(Type::TENSOR_FLOAT32, {3});
7   OperandType type3(Type::INT32, {});
8   // Phase 1, operands
9   auto op1 = model->addOperand(&type0);
10   auto op2 = model->addOperand(&type1);
11   auto op3 = model->addOperand(&type2);
12   auto pad0 = model->addOperand(&type3);
13   auto stride = model->addOperand(&type3);
14   auto act = model->addOperand(&type3);
15   auto op4 = model->addOperand(&type0);
16   // Phase 2, operations
17   static int32_t pad0_init[] = {0};
18   model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1);
19   static int32_t stride_init[] = {1};
20   model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1);
21   static int32_t act_init[] = {0};
22   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
23   model->addOperation(ANEURALNETWORKS_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, act}, {op4});
24   // Phase 3, inputs and outputs
25   model->identifyInputsAndOutputs(
26     {op1, op2, op3},
27     {op4});
28   // Phase 4: set relaxed execution
29   model->relaxComputationFloat32toFloat16(true);
30   assert(model->isValid());
31 }
32 
is_ignored(int i)33 inline bool is_ignored(int i) {
34   static std::set<int> ignore = {};
35   return ignore.find(i) != ignore.end();
36 }
37 
CreateModel_dynamic_output_shape(Model * model)38 void CreateModel_dynamic_output_shape(Model *model) {
39   OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 3, 3});
40   OperandType type1(Type::TENSOR_FLOAT32, {3, 1, 1, 3});
41   OperandType type2(Type::TENSOR_FLOAT32, {3});
42   OperandType type3(Type::INT32, {});
43   OperandType type4(Type::TENSOR_FLOAT32, {0, 0, 0, 0});
44   // Phase 1, operands
45   auto op1 = model->addOperand(&type0);
46   auto op2 = model->addOperand(&type1);
47   auto op3 = model->addOperand(&type2);
48   auto pad0 = model->addOperand(&type3);
49   auto stride = model->addOperand(&type3);
50   auto act = model->addOperand(&type3);
51   auto op4 = model->addOperand(&type4);
52   // Phase 2, operations
53   static int32_t pad0_init[] = {0};
54   model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1);
55   static int32_t stride_init[] = {1};
56   model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1);
57   static int32_t act_init[] = {0};
58   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
59   model->addOperation(ANEURALNETWORKS_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, act}, {op4});
60   // Phase 3, inputs and outputs
61   model->identifyInputsAndOutputs(
62     {op1, op2, op3},
63     {op4});
64   // Phase 4: set relaxed execution
65   model->relaxComputationFloat32toFloat16(true);
66   assert(model->isValid());
67 }
68 
is_ignored_dynamic_output_shape(int i)69 inline bool is_ignored_dynamic_output_shape(int i) {
70   static std::set<int> ignore = {};
71   return ignore.find(i) != ignore.end();
72 }
73 
74