1 // clang-format off
2 // Generated file (from: depthwise_conv2d_float_large_2_weights_as_inputs.mod.py). Do not edit
CreateModel(Model * model)3 void CreateModel(Model *model) {
4   OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 4});
5   OperandType type1(Type::TENSOR_FLOAT32, {4});
6   OperandType type2(Type::INT32, {});
7   OperandType type3(Type::TENSOR_FLOAT32, {1, 1, 1, 4});
8   // Phase 1, operands
9   auto op1 = model->addOperand(&type0);
10   auto op2 = model->addOperand(&type0);
11   auto op3 = model->addOperand(&type1);
12   auto pad0 = model->addOperand(&type2);
13   auto stride = model->addOperand(&type2);
14   auto channelMultiplier = model->addOperand(&type2);
15   auto act = model->addOperand(&type2);
16   auto op4 = model->addOperand(&type3);
17   // Phase 2, operations
18   static int32_t pad0_init[] = {0};
19   model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1);
20   static int32_t stride_init[] = {1};
21   model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1);
22   static int32_t channelMultiplier_init[] = {1};
23   model->setOperandValue(channelMultiplier, channelMultiplier_init, sizeof(int32_t) * 1);
24   static int32_t act_init[] = {0};
25   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
26   model->addOperation(ANEURALNETWORKS_DEPTHWISE_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, channelMultiplier, act}, {op4});
27   // Phase 3, inputs and outputs
28   model->identifyInputsAndOutputs(
29     {op1, op2, op3},
30     {op4});
31   assert(model->isValid());
32 }
33 
is_ignored(int i)34 inline bool is_ignored(int i) {
35   static std::set<int> ignore = {};
36   return ignore.find(i) != ignore.end();
37 }
38 
CreateModel_dynamic_output_shape(Model * model)39 void CreateModel_dynamic_output_shape(Model *model) {
40   OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 4});
41   OperandType type1(Type::TENSOR_FLOAT32, {4});
42   OperandType type2(Type::INT32, {});
43   OperandType type4(Type::TENSOR_FLOAT32, {0, 0, 0, 0});
44   // Phase 1, operands
45   auto op1 = model->addOperand(&type0);
46   auto op2 = model->addOperand(&type0);
47   auto op3 = model->addOperand(&type1);
48   auto pad0 = model->addOperand(&type2);
49   auto stride = model->addOperand(&type2);
50   auto channelMultiplier = model->addOperand(&type2);
51   auto act = model->addOperand(&type2);
52   auto op4 = model->addOperand(&type4);
53   // Phase 2, operations
54   static int32_t pad0_init[] = {0};
55   model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1);
56   static int32_t stride_init[] = {1};
57   model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1);
58   static int32_t channelMultiplier_init[] = {1};
59   model->setOperandValue(channelMultiplier, channelMultiplier_init, sizeof(int32_t) * 1);
60   static int32_t act_init[] = {0};
61   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
62   model->addOperation(ANEURALNETWORKS_DEPTHWISE_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, channelMultiplier, act}, {op4});
63   // Phase 3, inputs and outputs
64   model->identifyInputsAndOutputs(
65     {op1, op2, op3},
66     {op4});
67   assert(model->isValid());
68 }
69 
is_ignored_dynamic_output_shape(int i)70 inline bool is_ignored_dynamic_output_shape(int i) {
71   static std::set<int> ignore = {};
72   return ignore.find(i) != ignore.end();
73 }
74 
75