1 // clang-format off
2 // Generated file (from: depthwise_conv2d_float_weights_as_inputs_relaxed.mod.py). Do not edit
CreateModel(Model * model)3 void CreateModel(Model *model) {
4   OperandType type0(Type::TENSOR_FLOAT32, {1, 3, 3, 2});
5   OperandType type1(Type::TENSOR_FLOAT32, {1, 2, 2, 4});
6   OperandType type2(Type::TENSOR_FLOAT32, {4});
7   OperandType type3(Type::INT32, {});
8   // Phase 1, operands
9   auto op1 = model->addOperand(&type0);
10   auto op2 = model->addOperand(&type1);
11   auto op3 = model->addOperand(&type2);
12   auto pad0 = model->addOperand(&type3);
13   auto stride = model->addOperand(&type3);
14   auto channelMultiplier = model->addOperand(&type3);
15   auto act = model->addOperand(&type3);
16   auto op4 = model->addOperand(&type1);
17   // Phase 2, operations
18   static int32_t pad0_init[] = {0};
19   model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1);
20   static int32_t stride_init[] = {1};
21   model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1);
22   static int32_t channelMultiplier_init[] = {2};
23   model->setOperandValue(channelMultiplier, channelMultiplier_init, sizeof(int32_t) * 1);
24   static int32_t act_init[] = {0};
25   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
26   model->addOperation(ANEURALNETWORKS_DEPTHWISE_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, channelMultiplier, act}, {op4});
27   // Phase 3, inputs and outputs
28   model->identifyInputsAndOutputs(
29     {op1, op2, op3},
30     {op4});
31   // Phase 4: set relaxed execution
32   model->relaxComputationFloat32toFloat16(true);
33   assert(model->isValid());
34 }
35 
is_ignored(int i)36 inline bool is_ignored(int i) {
37   static std::set<int> ignore = {};
38   return ignore.find(i) != ignore.end();
39 }
40 
CreateModel_dynamic_output_shape(Model * model)41 void CreateModel_dynamic_output_shape(Model *model) {
42   OperandType type0(Type::TENSOR_FLOAT32, {1, 3, 3, 2});
43   OperandType type1(Type::TENSOR_FLOAT32, {1, 2, 2, 4});
44   OperandType type2(Type::TENSOR_FLOAT32, {4});
45   OperandType type3(Type::INT32, {});
46   OperandType type4(Type::TENSOR_FLOAT32, {0, 0, 0, 0});
47   // Phase 1, operands
48   auto op1 = model->addOperand(&type0);
49   auto op2 = model->addOperand(&type1);
50   auto op3 = model->addOperand(&type2);
51   auto pad0 = model->addOperand(&type3);
52   auto stride = model->addOperand(&type3);
53   auto channelMultiplier = model->addOperand(&type3);
54   auto act = model->addOperand(&type3);
55   auto op4 = model->addOperand(&type4);
56   // Phase 2, operations
57   static int32_t pad0_init[] = {0};
58   model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1);
59   static int32_t stride_init[] = {1};
60   model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1);
61   static int32_t channelMultiplier_init[] = {2};
62   model->setOperandValue(channelMultiplier, channelMultiplier_init, sizeof(int32_t) * 1);
63   static int32_t act_init[] = {0};
64   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
65   model->addOperation(ANEURALNETWORKS_DEPTHWISE_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, channelMultiplier, act}, {op4});
66   // Phase 3, inputs and outputs
67   model->identifyInputsAndOutputs(
68     {op1, op2, op3},
69     {op4});
70   // Phase 4: set relaxed execution
71   model->relaxComputationFloat32toFloat16(true);
72   assert(model->isValid());
73 }
74 
is_ignored_dynamic_output_shape(int i)75 inline bool is_ignored_dynamic_output_shape(int i) {
76   static std::set<int> ignore = {};
77   return ignore.find(i) != ignore.end();
78 }
79 
80