1 // clang-format off
2 // Generated file (from: fully_connected_quant8_2.mod.py). Do not edit
CreateModel(Model * model)3 void CreateModel(Model *model) {
4   OperandType type0(Type::TENSOR_QUANT8_ASYMM, {4, 1, 5, 1}, 0.5f, 127);
5   OperandType type1(Type::TENSOR_QUANT8_ASYMM, {3, 10}, 0.5f, 127);
6   OperandType type2(Type::TENSOR_INT32, {3}, 0.25f, 0);
7   OperandType type3(Type::TENSOR_QUANT8_ASYMM, {2, 3}, 1.0f, 127);
8   OperandType type4(Type::INT32, {});
9   // Phase 1, operands
10   auto op1 = model->addOperand(&type0);
11   auto op2 = model->addOperand(&type1);
12   auto b0 = model->addOperand(&type2);
13   auto act_relu = model->addOperand(&type4);
14   auto op3 = model->addOperand(&type3);
15   // Phase 2, operations
16   static uint8_t op2_init[] = {129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147};
17   model->setOperandValue(op2, op2_init, sizeof(uint8_t) * 30);
18   static int32_t b0_init[] = {4, 8, 12};
19   model->setOperandValue(b0, b0_init, sizeof(int32_t) * 3);
20   static int32_t act_relu_init[] = {1};
21   model->setOperandValue(act_relu, act_relu_init, sizeof(int32_t) * 1);
22   model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {op1, op2, b0, act_relu}, {op3});
23   // Phase 3, inputs and outputs
24   model->identifyInputsAndOutputs(
25     {op1},
26     {op3});
27   assert(model->isValid());
28 }
29 
is_ignored(int i)30 inline bool is_ignored(int i) {
31   static std::set<int> ignore = {};
32   return ignore.find(i) != ignore.end();
33 }
34 
CreateModel_dynamic_output_shape(Model * model)35 void CreateModel_dynamic_output_shape(Model *model) {
36   OperandType type0(Type::TENSOR_QUANT8_ASYMM, {4, 1, 5, 1}, 0.5f, 127);
37   OperandType type1(Type::TENSOR_QUANT8_ASYMM, {3, 10}, 0.5f, 127);
38   OperandType type2(Type::TENSOR_INT32, {3}, 0.25f, 0);
39   OperandType type4(Type::INT32, {});
40   OperandType type5(Type::TENSOR_QUANT8_ASYMM, {0, 0}, 1.0f, 127);
41   // Phase 1, operands
42   auto op1 = model->addOperand(&type0);
43   auto op2 = model->addOperand(&type1);
44   auto b0 = model->addOperand(&type2);
45   auto act_relu = model->addOperand(&type4);
46   auto op3 = model->addOperand(&type5);
47   // Phase 2, operations
48   static uint8_t op2_init[] = {129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147};
49   model->setOperandValue(op2, op2_init, sizeof(uint8_t) * 30);
50   static int32_t b0_init[] = {4, 8, 12};
51   model->setOperandValue(b0, b0_init, sizeof(int32_t) * 3);
52   static int32_t act_relu_init[] = {1};
53   model->setOperandValue(act_relu, act_relu_init, sizeof(int32_t) * 1);
54   model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {op1, op2, b0, act_relu}, {op3});
55   // Phase 3, inputs and outputs
56   model->identifyInputsAndOutputs(
57     {op1},
58     {op3});
59   assert(model->isValid());
60 }
61 
is_ignored_dynamic_output_shape(int i)62 inline bool is_ignored_dynamic_output_shape(int i) {
63   static std::set<int> ignore = {};
64   return ignore.find(i) != ignore.end();
65 }
66 
67