1 // clang-format off
2 // Generated file (from: mul_v1_2.mod.py). Do not edit
CreateModel(Model * model)3 void CreateModel(Model *model) {
4   OperandType type0(Type::TENSOR_FLOAT16, {3});
5   OperandType type1(Type::INT32, {});
6   // Phase 1, operands
7   auto op1 = model->addOperand(&type0);
8   auto op2 = model->addOperand(&type0);
9   auto act = model->addOperand(&type1);
10   auto op3 = model->addOperand(&type0);
11   // Phase 2, operations
12   static int32_t act_init[] = {0};
13   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
14   model->addOperation(ANEURALNETWORKS_MUL, {op1, op2, act}, {op3});
15   // Phase 3, inputs and outputs
16   model->identifyInputsAndOutputs(
17     {op1, op2},
18     {op3});
19   assert(model->isValid());
20 }
21 
is_ignored(int i)22 inline bool is_ignored(int i) {
23   static std::set<int> ignore = {};
24   return ignore.find(i) != ignore.end();
25 }
26 
CreateModel_dynamic_output_shape(Model * model)27 void CreateModel_dynamic_output_shape(Model *model) {
28   OperandType type0(Type::TENSOR_FLOAT16, {3});
29   OperandType type1(Type::INT32, {});
30   OperandType type15(Type::TENSOR_FLOAT16, {0});
31   // Phase 1, operands
32   auto op1 = model->addOperand(&type0);
33   auto op2 = model->addOperand(&type0);
34   auto act = model->addOperand(&type1);
35   auto op3 = model->addOperand(&type15);
36   // Phase 2, operations
37   static int32_t act_init[] = {0};
38   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
39   model->addOperation(ANEURALNETWORKS_MUL, {op1, op2, act}, {op3});
40   // Phase 3, inputs and outputs
41   model->identifyInputsAndOutputs(
42     {op1, op2},
43     {op3});
44   assert(model->isValid());
45 }
46 
is_ignored_dynamic_output_shape(int i)47 inline bool is_ignored_dynamic_output_shape(int i) {
48   static std::set<int> ignore = {};
49   return ignore.find(i) != ignore.end();
50 }
51 
CreateModel_2(Model * model)52 void CreateModel_2(Model *model) {
53   OperandType type1(Type::INT32, {});
54   OperandType type2(Type::TENSOR_FLOAT16, {1, 2});
55   OperandType type3(Type::TENSOR_FLOAT16, {2, 2});
56   // Phase 1, operands
57   auto op11 = model->addOperand(&type2);
58   auto op21 = model->addOperand(&type3);
59   auto act1 = model->addOperand(&type1);
60   auto op31 = model->addOperand(&type3);
61   // Phase 2, operations
62   static int32_t act1_init[] = {0};
63   model->setOperandValue(act1, act1_init, sizeof(int32_t) * 1);
64   model->addOperation(ANEURALNETWORKS_MUL, {op11, op21, act1}, {op31});
65   // Phase 3, inputs and outputs
66   model->identifyInputsAndOutputs(
67     {op11, op21},
68     {op31});
69   assert(model->isValid());
70 }
71 
is_ignored_2(int i)72 inline bool is_ignored_2(int i) {
73   static std::set<int> ignore = {};
74   return ignore.find(i) != ignore.end();
75 }
76 
CreateModel_dynamic_output_shape_2(Model * model)77 void CreateModel_dynamic_output_shape_2(Model *model) {
78   OperandType type1(Type::INT32, {});
79   OperandType type16(Type::TENSOR_FLOAT16, {0, 0});
80   OperandType type2(Type::TENSOR_FLOAT16, {1, 2});
81   OperandType type3(Type::TENSOR_FLOAT16, {2, 2});
82   // Phase 1, operands
83   auto op11 = model->addOperand(&type2);
84   auto op21 = model->addOperand(&type3);
85   auto act1 = model->addOperand(&type1);
86   auto op31 = model->addOperand(&type16);
87   // Phase 2, operations
88   static int32_t act1_init[] = {0};
89   model->setOperandValue(act1, act1_init, sizeof(int32_t) * 1);
90   model->addOperation(ANEURALNETWORKS_MUL, {op11, op21, act1}, {op31});
91   // Phase 3, inputs and outputs
92   model->identifyInputsAndOutputs(
93     {op11, op21},
94     {op31});
95   assert(model->isValid());
96 }
97 
is_ignored_dynamic_output_shape_2(int i)98 inline bool is_ignored_dynamic_output_shape_2(int i) {
99   static std::set<int> ignore = {};
100   return ignore.find(i) != ignore.end();
101 }
102 
CreateModel_zero_sized(Model * model)103 void CreateModel_zero_sized(Model *model) {
104   OperandType type1(Type::INT32, {});
105   OperandType type10(Type::FLOAT32, {});
106   OperandType type11(Type::BOOL, {});
107   OperandType type12(Type::TENSOR_FLOAT32, {1, 1, 1, 2});
108   OperandType type13(Type::TENSOR_FLOAT32, {0, 2, 2, 2});
109   OperandType type14(Type::TENSOR_FLOAT32, {1, 2, 2, 1});
110   OperandType type4(Type::TENSOR_FLOAT32, {1, 2});
111   OperandType type5(Type::TENSOR_FLOAT32, {1, 8});
112   OperandType type6(Type::TENSOR_FLOAT32, {0});
113   OperandType type7(Type::TENSOR_INT32, {0});
114   OperandType type8(Type::TENSOR_FLOAT32, {0, 4});
115   OperandType type9(Type::TENSOR_INT32, {1});
116   // Phase 1, operands
117   auto scores = model->addOperand(&type4);
118   auto roi = model->addOperand(&type5);
119   auto param = model->addOperand(&type9);
120   auto param1 = model->addOperand(&type10);
121   auto param2 = model->addOperand(&type1);
122   auto param3 = model->addOperand(&type1);
123   auto param4 = model->addOperand(&type10);
124   auto param5 = model->addOperand(&type10);
125   auto param6 = model->addOperand(&type10);
126   auto scoresOut = model->addOperand(&type6);
127   auto roiOut = model->addOperand(&type8);
128   auto classesOut = model->addOperand(&type7);
129   auto batchSplitOut = model->addOperand(&type7);
130   auto in = model->addOperand(&type12);
131   auto param7 = model->addOperand(&type1);
132   auto param8 = model->addOperand(&type1);
133   auto param9 = model->addOperand(&type10);
134   auto param10 = model->addOperand(&type10);
135   auto param11 = model->addOperand(&type1);
136   auto param12 = model->addOperand(&type1);
137   auto layout = model->addOperand(&type11);
138   auto featureMap = model->addOperand(&type13);
139   auto op = model->addOperand(&type14);
140   auto param13 = model->addOperand(&type1);
141   auto out = model->addOperand(&type13);
142   // Phase 2, operations
143   static float scores_init[] = {0.9f, 0.1f};
144   model->setOperandValue(scores, scores_init, sizeof(float) * 2);
145   static float roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f};
146   model->setOperandValue(roi, roi_init, sizeof(float) * 8);
147   static int32_t param_init[] = {0};
148   model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
149   static float param1_init[] = {0.3f};
150   model->setOperandValue(param1, param1_init, sizeof(float) * 1);
151   static int32_t param2_init[] = {-1};
152   model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1);
153   static int32_t param3_init[] = {0};
154   model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1);
155   static float param4_init[] = {0.4f};
156   model->setOperandValue(param4, param4_init, sizeof(float) * 1);
157   static float param5_init[] = {1.0f};
158   model->setOperandValue(param5, param5_init, sizeof(float) * 1);
159   static float param6_init[] = {0.3f};
160   model->setOperandValue(param6, param6_init, sizeof(float) * 1);
161   static int32_t param7_init[] = {2};
162   model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1);
163   static int32_t param8_init[] = {2};
164   model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
165   static float param9_init[] = {2.0f};
166   model->setOperandValue(param9, param9_init, sizeof(float) * 1);
167   static float param10_init[] = {2.0f};
168   model->setOperandValue(param10, param10_init, sizeof(float) * 1);
169   static int32_t param11_init[] = {4};
170   model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1);
171   static int32_t param12_init[] = {4};
172   model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
173   static bool8 layout_init[] = {false};
174   model->setOperandValue(layout, layout_init, sizeof(bool8) * 1);
175   static float op_init[] = {1.0f, 2.0f, 3.0f, 4.0f};
176   model->setOperandValue(op, op_init, sizeof(float) * 4);
177   static int32_t param13_init[] = {0};
178   model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1);
179   model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut});
180   model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap});
181   model->addOperation(ANEURALNETWORKS_MUL, {featureMap, op, param13}, {out});
182   // Phase 3, inputs and outputs
183   model->identifyInputsAndOutputs(
184     {in},
185     {scoresOut, classesOut, out});
186   assert(model->isValid());
187 }
188 
is_ignored_zero_sized(int i)189 inline bool is_ignored_zero_sized(int i) {
190   static std::set<int> ignore = {};
191   return ignore.find(i) != ignore.end();
192 }
193 
CreateModel_zero_sized_relaxed(Model * model)194 void CreateModel_zero_sized_relaxed(Model *model) {
195   OperandType type1(Type::INT32, {});
196   OperandType type10(Type::FLOAT32, {});
197   OperandType type11(Type::BOOL, {});
198   OperandType type12(Type::TENSOR_FLOAT32, {1, 1, 1, 2});
199   OperandType type13(Type::TENSOR_FLOAT32, {0, 2, 2, 2});
200   OperandType type14(Type::TENSOR_FLOAT32, {1, 2, 2, 1});
201   OperandType type4(Type::TENSOR_FLOAT32, {1, 2});
202   OperandType type5(Type::TENSOR_FLOAT32, {1, 8});
203   OperandType type6(Type::TENSOR_FLOAT32, {0});
204   OperandType type7(Type::TENSOR_INT32, {0});
205   OperandType type8(Type::TENSOR_FLOAT32, {0, 4});
206   OperandType type9(Type::TENSOR_INT32, {1});
207   // Phase 1, operands
208   auto scores = model->addOperand(&type4);
209   auto roi = model->addOperand(&type5);
210   auto param = model->addOperand(&type9);
211   auto param1 = model->addOperand(&type10);
212   auto param2 = model->addOperand(&type1);
213   auto param3 = model->addOperand(&type1);
214   auto param4 = model->addOperand(&type10);
215   auto param5 = model->addOperand(&type10);
216   auto param6 = model->addOperand(&type10);
217   auto scoresOut = model->addOperand(&type6);
218   auto roiOut = model->addOperand(&type8);
219   auto classesOut = model->addOperand(&type7);
220   auto batchSplitOut = model->addOperand(&type7);
221   auto in = model->addOperand(&type12);
222   auto param7 = model->addOperand(&type1);
223   auto param8 = model->addOperand(&type1);
224   auto param9 = model->addOperand(&type10);
225   auto param10 = model->addOperand(&type10);
226   auto param11 = model->addOperand(&type1);
227   auto param12 = model->addOperand(&type1);
228   auto layout = model->addOperand(&type11);
229   auto featureMap = model->addOperand(&type13);
230   auto op = model->addOperand(&type14);
231   auto param13 = model->addOperand(&type1);
232   auto out = model->addOperand(&type13);
233   // Phase 2, operations
234   static float scores_init[] = {0.9f, 0.1f};
235   model->setOperandValue(scores, scores_init, sizeof(float) * 2);
236   static float roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f};
237   model->setOperandValue(roi, roi_init, sizeof(float) * 8);
238   static int32_t param_init[] = {0};
239   model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
240   static float param1_init[] = {0.3f};
241   model->setOperandValue(param1, param1_init, sizeof(float) * 1);
242   static int32_t param2_init[] = {-1};
243   model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1);
244   static int32_t param3_init[] = {0};
245   model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1);
246   static float param4_init[] = {0.4f};
247   model->setOperandValue(param4, param4_init, sizeof(float) * 1);
248   static float param5_init[] = {1.0f};
249   model->setOperandValue(param5, param5_init, sizeof(float) * 1);
250   static float param6_init[] = {0.3f};
251   model->setOperandValue(param6, param6_init, sizeof(float) * 1);
252   static int32_t param7_init[] = {2};
253   model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1);
254   static int32_t param8_init[] = {2};
255   model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
256   static float param9_init[] = {2.0f};
257   model->setOperandValue(param9, param9_init, sizeof(float) * 1);
258   static float param10_init[] = {2.0f};
259   model->setOperandValue(param10, param10_init, sizeof(float) * 1);
260   static int32_t param11_init[] = {4};
261   model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1);
262   static int32_t param12_init[] = {4};
263   model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
264   static bool8 layout_init[] = {false};
265   model->setOperandValue(layout, layout_init, sizeof(bool8) * 1);
266   static float op_init[] = {1.0f, 2.0f, 3.0f, 4.0f};
267   model->setOperandValue(op, op_init, sizeof(float) * 4);
268   static int32_t param13_init[] = {0};
269   model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1);
270   model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut});
271   model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap});
272   model->addOperation(ANEURALNETWORKS_MUL, {featureMap, op, param13}, {out});
273   // Phase 3, inputs and outputs
274   model->identifyInputsAndOutputs(
275     {in},
276     {scoresOut, classesOut, out});
277   // Phase 4: set relaxed execution
278   model->relaxComputationFloat32toFloat16(true);
279   assert(model->isValid());
280 }
281 
is_ignored_zero_sized_relaxed(int i)282 inline bool is_ignored_zero_sized_relaxed(int i) {
283   static std::set<int> ignore = {};
284   return ignore.find(i) != ignore.end();
285 }
286 
CreateModel_zero_sized_quant8(Model * model)287 void CreateModel_zero_sized_quant8(Model *model) {
288   OperandType type1(Type::INT32, {});
289   OperandType type10(Type::FLOAT32, {});
290   OperandType type11(Type::BOOL, {});
291   OperandType type17(Type::TENSOR_QUANT8_ASYMM, {0, 2, 2, 2}, 0.1f, 128);
292   OperandType type18(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 2}, 0.1f, 128);
293   OperandType type19(Type::TENSOR_QUANT8_ASYMM, {1, 2, 2, 1}, 0.1f, 128);
294   OperandType type20(Type::TENSOR_QUANT16_ASYMM, {1, 8}, 0.125f, 0);
295   OperandType type21(Type::TENSOR_QUANT16_ASYMM, {0, 4}, 0.125f, 0);
296   OperandType type22(Type::TENSOR_QUANT8_ASYMM, {1, 2}, 0.1f, 128);
297   OperandType type23(Type::TENSOR_QUANT8_ASYMM, {0}, 0.1f, 128);
298   OperandType type7(Type::TENSOR_INT32, {0});
299   OperandType type9(Type::TENSOR_INT32, {1});
300   // Phase 1, operands
301   auto scores = model->addOperand(&type22);
302   auto roi = model->addOperand(&type20);
303   auto param = model->addOperand(&type9);
304   auto param1 = model->addOperand(&type10);
305   auto param2 = model->addOperand(&type1);
306   auto param3 = model->addOperand(&type1);
307   auto param4 = model->addOperand(&type10);
308   auto param5 = model->addOperand(&type10);
309   auto param6 = model->addOperand(&type10);
310   auto scoresOut = model->addOperand(&type23);
311   auto roiOut = model->addOperand(&type21);
312   auto classesOut = model->addOperand(&type7);
313   auto batchSplitOut = model->addOperand(&type7);
314   auto in = model->addOperand(&type18);
315   auto param7 = model->addOperand(&type1);
316   auto param8 = model->addOperand(&type1);
317   auto param9 = model->addOperand(&type10);
318   auto param10 = model->addOperand(&type10);
319   auto param11 = model->addOperand(&type1);
320   auto param12 = model->addOperand(&type1);
321   auto layout = model->addOperand(&type11);
322   auto featureMap = model->addOperand(&type17);
323   auto op = model->addOperand(&type19);
324   auto param13 = model->addOperand(&type1);
325   auto out = model->addOperand(&type17);
326   // Phase 2, operations
327   static uint8_t scores_init[] = {137, 129};
328   model->setOperandValue(scores, scores_init, sizeof(uint8_t) * 2);
329   static uint16_t roi_init[] = {8, 8, 80, 80, 0, 0, 80, 80};
330   model->setOperandValue(roi, roi_init, sizeof(uint16_t) * 8);
331   static int32_t param_init[] = {0};
332   model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
333   static float param1_init[] = {0.3f};
334   model->setOperandValue(param1, param1_init, sizeof(float) * 1);
335   static int32_t param2_init[] = {-1};
336   model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1);
337   static int32_t param3_init[] = {0};
338   model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1);
339   static float param4_init[] = {0.4f};
340   model->setOperandValue(param4, param4_init, sizeof(float) * 1);
341   static float param5_init[] = {1.0f};
342   model->setOperandValue(param5, param5_init, sizeof(float) * 1);
343   static float param6_init[] = {0.3f};
344   model->setOperandValue(param6, param6_init, sizeof(float) * 1);
345   static int32_t param7_init[] = {2};
346   model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1);
347   static int32_t param8_init[] = {2};
348   model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
349   static float param9_init[] = {2.0f};
350   model->setOperandValue(param9, param9_init, sizeof(float) * 1);
351   static float param10_init[] = {2.0f};
352   model->setOperandValue(param10, param10_init, sizeof(float) * 1);
353   static int32_t param11_init[] = {4};
354   model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1);
355   static int32_t param12_init[] = {4};
356   model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
357   static bool8 layout_init[] = {false};
358   model->setOperandValue(layout, layout_init, sizeof(bool8) * 1);
359   static uint8_t op_init[] = {138, 148, 158, 168};
360   model->setOperandValue(op, op_init, sizeof(uint8_t) * 4);
361   static int32_t param13_init[] = {0};
362   model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1);
363   model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut});
364   model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap});
365   model->addOperation(ANEURALNETWORKS_MUL, {featureMap, op, param13}, {out});
366   // Phase 3, inputs and outputs
367   model->identifyInputsAndOutputs(
368     {in},
369     {scoresOut, classesOut, out});
370   assert(model->isValid());
371 }
372 
is_ignored_zero_sized_quant8(int i)373 inline bool is_ignored_zero_sized_quant8(int i) {
374   static std::set<int> ignore = {};
375   return ignore.find(i) != ignore.end();
376 }
377 
CreateModel_zero_sized_float16(Model * model)378 void CreateModel_zero_sized_float16(Model *model) {
379   OperandType type1(Type::INT32, {});
380   OperandType type11(Type::BOOL, {});
381   OperandType type24(Type::TENSOR_FLOAT16, {0, 2, 2, 2});
382   OperandType type25(Type::TENSOR_FLOAT16, {1, 1, 1, 2});
383   OperandType type26(Type::TENSOR_FLOAT16, {1, 2, 2, 1});
384   OperandType type27(Type::FLOAT16, {});
385   OperandType type28(Type::TENSOR_FLOAT16, {1, 8});
386   OperandType type29(Type::TENSOR_FLOAT16, {0, 4});
387   OperandType type30(Type::TENSOR_FLOAT16, {1, 2});
388   OperandType type31(Type::TENSOR_FLOAT16, {0});
389   OperandType type7(Type::TENSOR_INT32, {0});
390   OperandType type9(Type::TENSOR_INT32, {1});
391   // Phase 1, operands
392   auto scores = model->addOperand(&type30);
393   auto roi = model->addOperand(&type28);
394   auto param = model->addOperand(&type9);
395   auto param1 = model->addOperand(&type27);
396   auto param2 = model->addOperand(&type1);
397   auto param3 = model->addOperand(&type1);
398   auto param4 = model->addOperand(&type27);
399   auto param5 = model->addOperand(&type27);
400   auto param6 = model->addOperand(&type27);
401   auto scoresOut = model->addOperand(&type31);
402   auto roiOut = model->addOperand(&type29);
403   auto classesOut = model->addOperand(&type7);
404   auto batchSplitOut = model->addOperand(&type7);
405   auto in = model->addOperand(&type25);
406   auto param7 = model->addOperand(&type1);
407   auto param8 = model->addOperand(&type1);
408   auto param9 = model->addOperand(&type27);
409   auto param10 = model->addOperand(&type27);
410   auto param11 = model->addOperand(&type1);
411   auto param12 = model->addOperand(&type1);
412   auto layout = model->addOperand(&type11);
413   auto featureMap = model->addOperand(&type24);
414   auto op = model->addOperand(&type26);
415   auto param13 = model->addOperand(&type1);
416   auto out = model->addOperand(&type24);
417   // Phase 2, operations
418   static _Float16 scores_init[] = {0.8999999761581421f, 0.10000000149011612f};
419   model->setOperandValue(scores, scores_init, sizeof(_Float16) * 2);
420   static _Float16 roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f};
421   model->setOperandValue(roi, roi_init, sizeof(_Float16) * 8);
422   static int32_t param_init[] = {0};
423   model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
424   static _Float16 param1_init[] = {0.30000001192092896f};
425   model->setOperandValue(param1, param1_init, sizeof(_Float16) * 1);
426   static int32_t param2_init[] = {-1};
427   model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1);
428   static int32_t param3_init[] = {0};
429   model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1);
430   static _Float16 param4_init[] = {0.4000000059604645f};
431   model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1);
432   static _Float16 param5_init[] = {1.0f};
433   model->setOperandValue(param5, param5_init, sizeof(_Float16) * 1);
434   static _Float16 param6_init[] = {0.30000001192092896f};
435   model->setOperandValue(param6, param6_init, sizeof(_Float16) * 1);
436   static int32_t param7_init[] = {2};
437   model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1);
438   static int32_t param8_init[] = {2};
439   model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
440   static _Float16 param9_init[] = {2.0f};
441   model->setOperandValue(param9, param9_init, sizeof(_Float16) * 1);
442   static _Float16 param10_init[] = {2.0f};
443   model->setOperandValue(param10, param10_init, sizeof(_Float16) * 1);
444   static int32_t param11_init[] = {4};
445   model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1);
446   static int32_t param12_init[] = {4};
447   model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
448   static bool8 layout_init[] = {false};
449   model->setOperandValue(layout, layout_init, sizeof(bool8) * 1);
450   static _Float16 op_init[] = {1.0f, 2.0f, 3.0f, 4.0f};
451   model->setOperandValue(op, op_init, sizeof(_Float16) * 4);
452   static int32_t param13_init[] = {0};
453   model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1);
454   model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut});
455   model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap});
456   model->addOperation(ANEURALNETWORKS_MUL, {featureMap, op, param13}, {out});
457   // Phase 3, inputs and outputs
458   model->identifyInputsAndOutputs(
459     {in},
460     {scoresOut, classesOut, out});
461   assert(model->isValid());
462 }
463 
is_ignored_zero_sized_float16(int i)464 inline bool is_ignored_zero_sized_float16(int i) {
465   static std::set<int> ignore = {};
466   return ignore.find(i) != ignore.end();
467 }
468 
CreateModel_zero_sized_dynamic_output_shape(Model * model)469 void CreateModel_zero_sized_dynamic_output_shape(Model *model) {
470   OperandType type1(Type::INT32, {});
471   OperandType type10(Type::FLOAT32, {});
472   OperandType type11(Type::BOOL, {});
473   OperandType type12(Type::TENSOR_FLOAT32, {1, 1, 1, 2});
474   OperandType type13(Type::TENSOR_FLOAT32, {0, 2, 2, 2});
475   OperandType type14(Type::TENSOR_FLOAT32, {1, 2, 2, 1});
476   OperandType type32(Type::TENSOR_FLOAT32, {0, 0, 0, 0});
477   OperandType type4(Type::TENSOR_FLOAT32, {1, 2});
478   OperandType type5(Type::TENSOR_FLOAT32, {1, 8});
479   OperandType type6(Type::TENSOR_FLOAT32, {0});
480   OperandType type7(Type::TENSOR_INT32, {0});
481   OperandType type8(Type::TENSOR_FLOAT32, {0, 4});
482   OperandType type9(Type::TENSOR_INT32, {1});
483   // Phase 1, operands
484   auto scores = model->addOperand(&type4);
485   auto roi = model->addOperand(&type5);
486   auto param = model->addOperand(&type9);
487   auto param1 = model->addOperand(&type10);
488   auto param2 = model->addOperand(&type1);
489   auto param3 = model->addOperand(&type1);
490   auto param4 = model->addOperand(&type10);
491   auto param5 = model->addOperand(&type10);
492   auto param6 = model->addOperand(&type10);
493   auto scoresOut = model->addOperand(&type6);
494   auto roiOut = model->addOperand(&type8);
495   auto classesOut = model->addOperand(&type7);
496   auto batchSplitOut = model->addOperand(&type7);
497   auto in = model->addOperand(&type12);
498   auto param7 = model->addOperand(&type1);
499   auto param8 = model->addOperand(&type1);
500   auto param9 = model->addOperand(&type10);
501   auto param10 = model->addOperand(&type10);
502   auto param11 = model->addOperand(&type1);
503   auto param12 = model->addOperand(&type1);
504   auto layout = model->addOperand(&type11);
505   auto featureMap = model->addOperand(&type13);
506   auto op = model->addOperand(&type14);
507   auto param13 = model->addOperand(&type1);
508   auto out = model->addOperand(&type32);
509   // Phase 2, operations
510   static float scores_init[] = {0.9f, 0.1f};
511   model->setOperandValue(scores, scores_init, sizeof(float) * 2);
512   static float roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f};
513   model->setOperandValue(roi, roi_init, sizeof(float) * 8);
514   static int32_t param_init[] = {0};
515   model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
516   static float param1_init[] = {0.3f};
517   model->setOperandValue(param1, param1_init, sizeof(float) * 1);
518   static int32_t param2_init[] = {-1};
519   model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1);
520   static int32_t param3_init[] = {0};
521   model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1);
522   static float param4_init[] = {0.4f};
523   model->setOperandValue(param4, param4_init, sizeof(float) * 1);
524   static float param5_init[] = {1.0f};
525   model->setOperandValue(param5, param5_init, sizeof(float) * 1);
526   static float param6_init[] = {0.3f};
527   model->setOperandValue(param6, param6_init, sizeof(float) * 1);
528   static int32_t param7_init[] = {2};
529   model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1);
530   static int32_t param8_init[] = {2};
531   model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
532   static float param9_init[] = {2.0f};
533   model->setOperandValue(param9, param9_init, sizeof(float) * 1);
534   static float param10_init[] = {2.0f};
535   model->setOperandValue(param10, param10_init, sizeof(float) * 1);
536   static int32_t param11_init[] = {4};
537   model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1);
538   static int32_t param12_init[] = {4};
539   model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
540   static bool8 layout_init[] = {false};
541   model->setOperandValue(layout, layout_init, sizeof(bool8) * 1);
542   static float op_init[] = {1.0f, 2.0f, 3.0f, 4.0f};
543   model->setOperandValue(op, op_init, sizeof(float) * 4);
544   static int32_t param13_init[] = {0};
545   model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1);
546   model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut});
547   model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap});
548   model->addOperation(ANEURALNETWORKS_MUL, {featureMap, op, param13}, {out});
549   // Phase 3, inputs and outputs
550   model->identifyInputsAndOutputs(
551     {in},
552     {scoresOut, classesOut, out});
553   assert(model->isValid());
554 }
555 
is_ignored_zero_sized_dynamic_output_shape(int i)556 inline bool is_ignored_zero_sized_dynamic_output_shape(int i) {
557   static std::set<int> ignore = {};
558   return ignore.find(i) != ignore.end();
559 }
560 
CreateModel_zero_sized_dynamic_output_shape_relaxed(Model * model)561 void CreateModel_zero_sized_dynamic_output_shape_relaxed(Model *model) {
562   OperandType type1(Type::INT32, {});
563   OperandType type10(Type::FLOAT32, {});
564   OperandType type11(Type::BOOL, {});
565   OperandType type12(Type::TENSOR_FLOAT32, {1, 1, 1, 2});
566   OperandType type13(Type::TENSOR_FLOAT32, {0, 2, 2, 2});
567   OperandType type14(Type::TENSOR_FLOAT32, {1, 2, 2, 1});
568   OperandType type32(Type::TENSOR_FLOAT32, {0, 0, 0, 0});
569   OperandType type4(Type::TENSOR_FLOAT32, {1, 2});
570   OperandType type5(Type::TENSOR_FLOAT32, {1, 8});
571   OperandType type6(Type::TENSOR_FLOAT32, {0});
572   OperandType type7(Type::TENSOR_INT32, {0});
573   OperandType type8(Type::TENSOR_FLOAT32, {0, 4});
574   OperandType type9(Type::TENSOR_INT32, {1});
575   // Phase 1, operands
576   auto scores = model->addOperand(&type4);
577   auto roi = model->addOperand(&type5);
578   auto param = model->addOperand(&type9);
579   auto param1 = model->addOperand(&type10);
580   auto param2 = model->addOperand(&type1);
581   auto param3 = model->addOperand(&type1);
582   auto param4 = model->addOperand(&type10);
583   auto param5 = model->addOperand(&type10);
584   auto param6 = model->addOperand(&type10);
585   auto scoresOut = model->addOperand(&type6);
586   auto roiOut = model->addOperand(&type8);
587   auto classesOut = model->addOperand(&type7);
588   auto batchSplitOut = model->addOperand(&type7);
589   auto in = model->addOperand(&type12);
590   auto param7 = model->addOperand(&type1);
591   auto param8 = model->addOperand(&type1);
592   auto param9 = model->addOperand(&type10);
593   auto param10 = model->addOperand(&type10);
594   auto param11 = model->addOperand(&type1);
595   auto param12 = model->addOperand(&type1);
596   auto layout = model->addOperand(&type11);
597   auto featureMap = model->addOperand(&type13);
598   auto op = model->addOperand(&type14);
599   auto param13 = model->addOperand(&type1);
600   auto out = model->addOperand(&type32);
601   // Phase 2, operations
602   static float scores_init[] = {0.9f, 0.1f};
603   model->setOperandValue(scores, scores_init, sizeof(float) * 2);
604   static float roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f};
605   model->setOperandValue(roi, roi_init, sizeof(float) * 8);
606   static int32_t param_init[] = {0};
607   model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
608   static float param1_init[] = {0.3f};
609   model->setOperandValue(param1, param1_init, sizeof(float) * 1);
610   static int32_t param2_init[] = {-1};
611   model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1);
612   static int32_t param3_init[] = {0};
613   model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1);
614   static float param4_init[] = {0.4f};
615   model->setOperandValue(param4, param4_init, sizeof(float) * 1);
616   static float param5_init[] = {1.0f};
617   model->setOperandValue(param5, param5_init, sizeof(float) * 1);
618   static float param6_init[] = {0.3f};
619   model->setOperandValue(param6, param6_init, sizeof(float) * 1);
620   static int32_t param7_init[] = {2};
621   model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1);
622   static int32_t param8_init[] = {2};
623   model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
624   static float param9_init[] = {2.0f};
625   model->setOperandValue(param9, param9_init, sizeof(float) * 1);
626   static float param10_init[] = {2.0f};
627   model->setOperandValue(param10, param10_init, sizeof(float) * 1);
628   static int32_t param11_init[] = {4};
629   model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1);
630   static int32_t param12_init[] = {4};
631   model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
632   static bool8 layout_init[] = {false};
633   model->setOperandValue(layout, layout_init, sizeof(bool8) * 1);
634   static float op_init[] = {1.0f, 2.0f, 3.0f, 4.0f};
635   model->setOperandValue(op, op_init, sizeof(float) * 4);
636   static int32_t param13_init[] = {0};
637   model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1);
638   model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut});
639   model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap});
640   model->addOperation(ANEURALNETWORKS_MUL, {featureMap, op, param13}, {out});
641   // Phase 3, inputs and outputs
642   model->identifyInputsAndOutputs(
643     {in},
644     {scoresOut, classesOut, out});
645   // Phase 4: set relaxed execution
646   model->relaxComputationFloat32toFloat16(true);
647   assert(model->isValid());
648 }
649 
is_ignored_zero_sized_dynamic_output_shape_relaxed(int i)650 inline bool is_ignored_zero_sized_dynamic_output_shape_relaxed(int i) {
651   static std::set<int> ignore = {};
652   return ignore.find(i) != ignore.end();
653 }
654 
CreateModel_zero_sized_dynamic_output_shape_quant8(Model * model)655 void CreateModel_zero_sized_dynamic_output_shape_quant8(Model *model) {
656   OperandType type1(Type::INT32, {});
657   OperandType type10(Type::FLOAT32, {});
658   OperandType type11(Type::BOOL, {});
659   OperandType type17(Type::TENSOR_QUANT8_ASYMM, {0, 2, 2, 2}, 0.1f, 128);
660   OperandType type18(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 2}, 0.1f, 128);
661   OperandType type19(Type::TENSOR_QUANT8_ASYMM, {1, 2, 2, 1}, 0.1f, 128);
662   OperandType type20(Type::TENSOR_QUANT16_ASYMM, {1, 8}, 0.125f, 0);
663   OperandType type21(Type::TENSOR_QUANT16_ASYMM, {0, 4}, 0.125f, 0);
664   OperandType type22(Type::TENSOR_QUANT8_ASYMM, {1, 2}, 0.1f, 128);
665   OperandType type23(Type::TENSOR_QUANT8_ASYMM, {0}, 0.1f, 128);
666   OperandType type33(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.1f, 128);
667   OperandType type7(Type::TENSOR_INT32, {0});
668   OperandType type9(Type::TENSOR_INT32, {1});
669   // Phase 1, operands
670   auto scores = model->addOperand(&type22);
671   auto roi = model->addOperand(&type20);
672   auto param = model->addOperand(&type9);
673   auto param1 = model->addOperand(&type10);
674   auto param2 = model->addOperand(&type1);
675   auto param3 = model->addOperand(&type1);
676   auto param4 = model->addOperand(&type10);
677   auto param5 = model->addOperand(&type10);
678   auto param6 = model->addOperand(&type10);
679   auto scoresOut = model->addOperand(&type23);
680   auto roiOut = model->addOperand(&type21);
681   auto classesOut = model->addOperand(&type7);
682   auto batchSplitOut = model->addOperand(&type7);
683   auto in = model->addOperand(&type18);
684   auto param7 = model->addOperand(&type1);
685   auto param8 = model->addOperand(&type1);
686   auto param9 = model->addOperand(&type10);
687   auto param10 = model->addOperand(&type10);
688   auto param11 = model->addOperand(&type1);
689   auto param12 = model->addOperand(&type1);
690   auto layout = model->addOperand(&type11);
691   auto featureMap = model->addOperand(&type17);
692   auto op = model->addOperand(&type19);
693   auto param13 = model->addOperand(&type1);
694   auto out = model->addOperand(&type33);
695   // Phase 2, operations
696   static uint8_t scores_init[] = {137, 129};
697   model->setOperandValue(scores, scores_init, sizeof(uint8_t) * 2);
698   static uint16_t roi_init[] = {8, 8, 80, 80, 0, 0, 80, 80};
699   model->setOperandValue(roi, roi_init, sizeof(uint16_t) * 8);
700   static int32_t param_init[] = {0};
701   model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
702   static float param1_init[] = {0.3f};
703   model->setOperandValue(param1, param1_init, sizeof(float) * 1);
704   static int32_t param2_init[] = {-1};
705   model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1);
706   static int32_t param3_init[] = {0};
707   model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1);
708   static float param4_init[] = {0.4f};
709   model->setOperandValue(param4, param4_init, sizeof(float) * 1);
710   static float param5_init[] = {1.0f};
711   model->setOperandValue(param5, param5_init, sizeof(float) * 1);
712   static float param6_init[] = {0.3f};
713   model->setOperandValue(param6, param6_init, sizeof(float) * 1);
714   static int32_t param7_init[] = {2};
715   model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1);
716   static int32_t param8_init[] = {2};
717   model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
718   static float param9_init[] = {2.0f};
719   model->setOperandValue(param9, param9_init, sizeof(float) * 1);
720   static float param10_init[] = {2.0f};
721   model->setOperandValue(param10, param10_init, sizeof(float) * 1);
722   static int32_t param11_init[] = {4};
723   model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1);
724   static int32_t param12_init[] = {4};
725   model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
726   static bool8 layout_init[] = {false};
727   model->setOperandValue(layout, layout_init, sizeof(bool8) * 1);
728   static uint8_t op_init[] = {138, 148, 158, 168};
729   model->setOperandValue(op, op_init, sizeof(uint8_t) * 4);
730   static int32_t param13_init[] = {0};
731   model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1);
732   model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut});
733   model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap});
734   model->addOperation(ANEURALNETWORKS_MUL, {featureMap, op, param13}, {out});
735   // Phase 3, inputs and outputs
736   model->identifyInputsAndOutputs(
737     {in},
738     {scoresOut, classesOut, out});
739   assert(model->isValid());
740 }
741 
is_ignored_zero_sized_dynamic_output_shape_quant8(int i)742 inline bool is_ignored_zero_sized_dynamic_output_shape_quant8(int i) {
743   static std::set<int> ignore = {};
744   return ignore.find(i) != ignore.end();
745 }
746 
CreateModel_zero_sized_dynamic_output_shape_float16(Model * model)747 void CreateModel_zero_sized_dynamic_output_shape_float16(Model *model) {
748   OperandType type1(Type::INT32, {});
749   OperandType type11(Type::BOOL, {});
750   OperandType type15(Type::TENSOR_FLOAT16, {0});
751   OperandType type24(Type::TENSOR_FLOAT16, {0, 2, 2, 2});
752   OperandType type25(Type::TENSOR_FLOAT16, {1, 1, 1, 2});
753   OperandType type26(Type::TENSOR_FLOAT16, {1, 2, 2, 1});
754   OperandType type27(Type::FLOAT16, {});
755   OperandType type28(Type::TENSOR_FLOAT16, {1, 8});
756   OperandType type29(Type::TENSOR_FLOAT16, {0, 4});
757   OperandType type30(Type::TENSOR_FLOAT16, {1, 2});
758   OperandType type34(Type::TENSOR_FLOAT16, {0, 0, 0, 0});
759   OperandType type7(Type::TENSOR_INT32, {0});
760   OperandType type9(Type::TENSOR_INT32, {1});
761   // Phase 1, operands
762   auto scores = model->addOperand(&type30);
763   auto roi = model->addOperand(&type28);
764   auto param = model->addOperand(&type9);
765   auto param1 = model->addOperand(&type27);
766   auto param2 = model->addOperand(&type1);
767   auto param3 = model->addOperand(&type1);
768   auto param4 = model->addOperand(&type27);
769   auto param5 = model->addOperand(&type27);
770   auto param6 = model->addOperand(&type27);
771   auto scoresOut = model->addOperand(&type15);
772   auto roiOut = model->addOperand(&type29);
773   auto classesOut = model->addOperand(&type7);
774   auto batchSplitOut = model->addOperand(&type7);
775   auto in = model->addOperand(&type25);
776   auto param7 = model->addOperand(&type1);
777   auto param8 = model->addOperand(&type1);
778   auto param9 = model->addOperand(&type27);
779   auto param10 = model->addOperand(&type27);
780   auto param11 = model->addOperand(&type1);
781   auto param12 = model->addOperand(&type1);
782   auto layout = model->addOperand(&type11);
783   auto featureMap = model->addOperand(&type24);
784   auto op = model->addOperand(&type26);
785   auto param13 = model->addOperand(&type1);
786   auto out = model->addOperand(&type34);
787   // Phase 2, operations
788   static _Float16 scores_init[] = {0.8999999761581421f, 0.10000000149011612f};
789   model->setOperandValue(scores, scores_init, sizeof(_Float16) * 2);
790   static _Float16 roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f};
791   model->setOperandValue(roi, roi_init, sizeof(_Float16) * 8);
792   static int32_t param_init[] = {0};
793   model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
794   static _Float16 param1_init[] = {0.30000001192092896f};
795   model->setOperandValue(param1, param1_init, sizeof(_Float16) * 1);
796   static int32_t param2_init[] = {-1};
797   model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1);
798   static int32_t param3_init[] = {0};
799   model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1);
800   static _Float16 param4_init[] = {0.4000000059604645f};
801   model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1);
802   static _Float16 param5_init[] = {1.0f};
803   model->setOperandValue(param5, param5_init, sizeof(_Float16) * 1);
804   static _Float16 param6_init[] = {0.30000001192092896f};
805   model->setOperandValue(param6, param6_init, sizeof(_Float16) * 1);
806   static int32_t param7_init[] = {2};
807   model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1);
808   static int32_t param8_init[] = {2};
809   model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
810   static _Float16 param9_init[] = {2.0f};
811   model->setOperandValue(param9, param9_init, sizeof(_Float16) * 1);
812   static _Float16 param10_init[] = {2.0f};
813   model->setOperandValue(param10, param10_init, sizeof(_Float16) * 1);
814   static int32_t param11_init[] = {4};
815   model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1);
816   static int32_t param12_init[] = {4};
817   model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
818   static bool8 layout_init[] = {false};
819   model->setOperandValue(layout, layout_init, sizeof(bool8) * 1);
820   static _Float16 op_init[] = {1.0f, 2.0f, 3.0f, 4.0f};
821   model->setOperandValue(op, op_init, sizeof(_Float16) * 4);
822   static int32_t param13_init[] = {0};
823   model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1);
824   model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut});
825   model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap});
826   model->addOperation(ANEURALNETWORKS_MUL, {featureMap, op, param13}, {out});
827   // Phase 3, inputs and outputs
828   model->identifyInputsAndOutputs(
829     {in},
830     {scoresOut, classesOut, out});
831   assert(model->isValid());
832 }
833 
is_ignored_zero_sized_dynamic_output_shape_float16(int i)834 inline bool is_ignored_zero_sized_dynamic_output_shape_float16(int i) {
835   static std::set<int> ignore = {};
836   return ignore.find(i) != ignore.end();
837 }
838 
839