1 // clang-format off
2 // Generated file (from: unidirectional_sequence_lstm_cifg_peephole.mod.py). Do not edit
CreateModel(Model * model)3 void CreateModel(Model *model) {
4 OperandType type0(Type::TENSOR_FLOAT32, {3, 1, 2});
5 OperandType type1(Type::TENSOR_FLOAT32, {4, 2});
6 OperandType type2(Type::TENSOR_FLOAT32, {4, 4});
7 OperandType type3(Type::TENSOR_FLOAT32, {4});
8 OperandType type4(Type::TENSOR_FLOAT32, {0});
9 OperandType type5(Type::TENSOR_FLOAT32, {1, 4});
10 OperandType type6(Type::INT32, {});
11 OperandType type7(Type::FLOAT32, {});
12 OperandType type8(Type::BOOL, {});
13 OperandType type9(Type::TENSOR_FLOAT32, {3, 1, 4});
14 // Phase 1, operands
15 auto input = model->addOperand(&type0);
16 auto input_to_input_weights = model->addOperand(&type1);
17 auto input_to_forget_weights = model->addOperand(&type1);
18 auto input_to_cell_weights = model->addOperand(&type1);
19 auto input_to_output_weights = model->addOperand(&type1);
20 auto recurrent_to_intput_weights = model->addOperand(&type2);
21 auto recurrent_to_forget_weights = model->addOperand(&type2);
22 auto recurrent_to_cell_weights = model->addOperand(&type2);
23 auto recurrent_to_output_weights = model->addOperand(&type2);
24 auto cell_to_input_weights = model->addOperand(&type3);
25 auto cell_to_forget_weights = model->addOperand(&type3);
26 auto cell_to_output_weights = model->addOperand(&type3);
27 auto input_gate_bias = model->addOperand(&type3);
28 auto forget_gate_bias = model->addOperand(&type3);
29 auto cell_gate_bias = model->addOperand(&type3);
30 auto output_gate_bias = model->addOperand(&type3);
31 auto projection_weights = model->addOperand(&type2);
32 auto projection_bias = model->addOperand(&type4);
33 auto output_state_in = model->addOperand(&type5);
34 auto cell_state_in = model->addOperand(&type5);
35 auto activation_param = model->addOperand(&type6);
36 auto cell_clip_param = model->addOperand(&type7);
37 auto proj_clip_param = model->addOperand(&type7);
38 auto time_major_param = model->addOperand(&type8);
39 auto input_layer_norm_weights = model->addOperand(&type3);
40 auto forget_layer_norm_weights = model->addOperand(&type3);
41 auto cell_layer_norm_weights = model->addOperand(&type3);
42 auto output_layer_norm_weights = model->addOperand(&type3);
43 auto output = model->addOperand(&type9);
44 // Phase 2, operations
45 static int32_t activation_param_init[] = {4};
46 model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
47 static float cell_clip_param_init[] = {0.0f};
48 model->setOperandValue(cell_clip_param, cell_clip_param_init, sizeof(float) * 1);
49 static float proj_clip_param_init[] = {0.0f};
50 model->setOperandValue(proj_clip_param, proj_clip_param_init, sizeof(float) * 1);
51 static bool8 time_major_param_init[] = {true};
52 model->setOperandValue(time_major_param, time_major_param_init, sizeof(bool8) * 1);
53 model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM, {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, activation_param, cell_clip_param, proj_clip_param, time_major_param, input_layer_norm_weights, forget_layer_norm_weights, cell_layer_norm_weights, output_layer_norm_weights}, {output});
54 // Phase 3, inputs and outputs
55 model->identifyInputsAndOutputs(
56 {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, input_layer_norm_weights, forget_layer_norm_weights, cell_layer_norm_weights, output_layer_norm_weights},
57 {output});
58 assert(model->isValid());
59 }
60
is_ignored(int i)61 inline bool is_ignored(int i) {
62 static std::set<int> ignore = {};
63 return ignore.find(i) != ignore.end();
64 }
65
CreateModel_dynamic_output_shape(Model * model)66 void CreateModel_dynamic_output_shape(Model *model) {
67 OperandType type0(Type::TENSOR_FLOAT32, {3, 1, 2});
68 OperandType type1(Type::TENSOR_FLOAT32, {4, 2});
69 OperandType type10(Type::TENSOR_FLOAT32, {0, 0, 0});
70 OperandType type2(Type::TENSOR_FLOAT32, {4, 4});
71 OperandType type3(Type::TENSOR_FLOAT32, {4});
72 OperandType type4(Type::TENSOR_FLOAT32, {0});
73 OperandType type5(Type::TENSOR_FLOAT32, {1, 4});
74 OperandType type6(Type::INT32, {});
75 OperandType type7(Type::FLOAT32, {});
76 OperandType type8(Type::BOOL, {});
77 // Phase 1, operands
78 auto input = model->addOperand(&type0);
79 auto input_to_input_weights = model->addOperand(&type1);
80 auto input_to_forget_weights = model->addOperand(&type1);
81 auto input_to_cell_weights = model->addOperand(&type1);
82 auto input_to_output_weights = model->addOperand(&type1);
83 auto recurrent_to_intput_weights = model->addOperand(&type2);
84 auto recurrent_to_forget_weights = model->addOperand(&type2);
85 auto recurrent_to_cell_weights = model->addOperand(&type2);
86 auto recurrent_to_output_weights = model->addOperand(&type2);
87 auto cell_to_input_weights = model->addOperand(&type3);
88 auto cell_to_forget_weights = model->addOperand(&type3);
89 auto cell_to_output_weights = model->addOperand(&type3);
90 auto input_gate_bias = model->addOperand(&type3);
91 auto forget_gate_bias = model->addOperand(&type3);
92 auto cell_gate_bias = model->addOperand(&type3);
93 auto output_gate_bias = model->addOperand(&type3);
94 auto projection_weights = model->addOperand(&type2);
95 auto projection_bias = model->addOperand(&type4);
96 auto output_state_in = model->addOperand(&type5);
97 auto cell_state_in = model->addOperand(&type5);
98 auto activation_param = model->addOperand(&type6);
99 auto cell_clip_param = model->addOperand(&type7);
100 auto proj_clip_param = model->addOperand(&type7);
101 auto time_major_param = model->addOperand(&type8);
102 auto input_layer_norm_weights = model->addOperand(&type3);
103 auto forget_layer_norm_weights = model->addOperand(&type3);
104 auto cell_layer_norm_weights = model->addOperand(&type3);
105 auto output_layer_norm_weights = model->addOperand(&type3);
106 auto output = model->addOperand(&type10);
107 // Phase 2, operations
108 static int32_t activation_param_init[] = {4};
109 model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
110 static float cell_clip_param_init[] = {0.0f};
111 model->setOperandValue(cell_clip_param, cell_clip_param_init, sizeof(float) * 1);
112 static float proj_clip_param_init[] = {0.0f};
113 model->setOperandValue(proj_clip_param, proj_clip_param_init, sizeof(float) * 1);
114 static bool8 time_major_param_init[] = {true};
115 model->setOperandValue(time_major_param, time_major_param_init, sizeof(bool8) * 1);
116 model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM, {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, activation_param, cell_clip_param, proj_clip_param, time_major_param, input_layer_norm_weights, forget_layer_norm_weights, cell_layer_norm_weights, output_layer_norm_weights}, {output});
117 // Phase 3, inputs and outputs
118 model->identifyInputsAndOutputs(
119 {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, input_layer_norm_weights, forget_layer_norm_weights, cell_layer_norm_weights, output_layer_norm_weights},
120 {output});
121 assert(model->isValid());
122 }
123
is_ignored_dynamic_output_shape(int i)124 inline bool is_ignored_dynamic_output_shape(int i) {
125 static std::set<int> ignore = {};
126 return ignore.find(i) != ignore.end();
127 }
128
129