1#! /usr/bin/env perl 2# Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. 3# 4# Licensed under the OpenSSL license (the "License"). You may not use 5# this file except in compliance with the License. You can obtain a copy 6# in the file LICENSE in the source distribution or at 7# https://www.openssl.org/source/license.html 8 9# 10# ==================================================================== 11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 12# project. The module is, however, dual licensed under OpenSSL and 13# CRYPTOGAMS licenses depending on where you obtain it. For further 14# details see http://www.openssl.org/~appro/cryptogams/. 15# ==================================================================== 16# 17# March, June 2010 18# 19# The module implements "4-bit" GCM GHASH function and underlying 20# single multiplication operation in GF(2^128). "4-bit" means that 21# it uses 256 bytes per-key table [+128 bytes shared table]. GHASH 22# function features so called "528B" variant utilizing additional 23# 256+16 bytes of per-key storage [+512 bytes shared table]. 24# Performance results are for this streamed GHASH subroutine and are 25# expressed in cycles per processed byte, less is better: 26# 27# gcc 3.4.x(*) assembler 28# 29# P4 28.6 14.0 +100% 30# Opteron 19.3 7.7 +150% 31# Core2 17.8 8.1(**) +120% 32# Atom 31.6 16.8 +88% 33# VIA Nano 21.8 10.1 +115% 34# 35# (*) comparison is not completely fair, because C results are 36# for vanilla "256B" implementation, while assembler results 37# are for "528B";-) 38# (**) it's mystery [to me] why Core2 result is not same as for 39# Opteron; 40 41# May 2010 42# 43# Add PCLMULQDQ version performing at 2.02 cycles per processed byte. 44# See ghash-x86.pl for background information and details about coding 45# techniques. 46# 47# Special thanks to David Woodhouse for providing access to a 48# Westmere-based system on behalf of Intel Open Source Technology Centre. 49 50# December 2012 51# 52# Overhaul: aggregate Karatsuba post-processing, improve ILP in 53# reduction_alg9, increase reduction aggregate factor to 4x. As for 54# the latter. ghash-x86.pl discusses that it makes lesser sense to 55# increase aggregate factor. Then why increase here? Critical path 56# consists of 3 independent pclmulqdq instructions, Karatsuba post- 57# processing and reduction. "On top" of this we lay down aggregated 58# multiplication operations, triplets of independent pclmulqdq's. As 59# issue rate for pclmulqdq is limited, it makes lesser sense to 60# aggregate more multiplications than it takes to perform remaining 61# non-multiplication operations. 2x is near-optimal coefficient for 62# contemporary Intel CPUs (therefore modest improvement coefficient), 63# but not for Bulldozer. Latter is because logical SIMD operations 64# are twice as slow in comparison to Intel, so that critical path is 65# longer. A CPU with higher pclmulqdq issue rate would also benefit 66# from higher aggregate factor... 67# 68# Westmere 1.78(+13%) 69# Sandy Bridge 1.80(+8%) 70# Ivy Bridge 1.80(+7%) 71# Haswell 0.55(+93%) (if system doesn't support AVX) 72# Broadwell 0.45(+110%)(if system doesn't support AVX) 73# Skylake 0.44(+110%)(if system doesn't support AVX) 74# Bulldozer 1.49(+27%) 75# Silvermont 2.88(+13%) 76# Knights L 2.12(-) (if system doesn't support AVX) 77# Goldmont 1.08(+24%) 78 79# March 2013 80# 81# ... 8x aggregate factor AVX code path is using reduction algorithm 82# suggested by Shay Gueron[1]. Even though contemporary AVX-capable 83# CPUs such as Sandy and Ivy Bridge can execute it, the code performs 84# sub-optimally in comparison to above mentioned version. But thanks 85# to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that 86# it performs in 0.41 cycles per byte on Haswell processor, in 87# 0.29 on Broadwell, and in 0.36 on Skylake. 88# 89# Knights Landing achieves 1.09 cpb. 90# 91# [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest 92 93$flavour = shift; 94$output = shift; 95if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } 96 97$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); 98 99$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 100( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or 101( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or 102die "can't locate x86_64-xlate.pl"; 103 104# See the notes about |$avx| in aesni-gcm-x86_64.pl; otherwise tags will be 105# computed incorrectly. 106# 107# In upstream, this is controlled by shelling out to the compiler to check 108# versions, but BoringSSL is intended to be used with pre-generated perlasm 109# output, so this isn't useful anyway. 110$avx = 1; 111 112open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; 113*STDOUT=*OUT; 114 115$do4xaggr=1; 116 117# common register layout 118$nlo="%rax"; 119$nhi="%rbx"; 120$Zlo="%r8"; 121$Zhi="%r9"; 122$tmp="%r10"; 123$rem_4bit = "%r11"; 124 125$Xi="%rdi"; 126$Htbl="%rsi"; 127 128# per-function register layout 129$cnt="%rcx"; 130$rem="%rdx"; 131 132sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or 133 $r =~ s/%[er]([sd]i)/%\1l/ or 134 $r =~ s/%[er](bp)/%\1l/ or 135 $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; } 136 137sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm 138{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; 139 my $arg = pop; 140 $arg = "\$$arg" if ($arg*1 eq $arg); 141 $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n"; 142} 143 144{ my $N; 145 sub loop() { 146 my $inp = shift; 147 148 $N++; 149$code.=<<___; 150 xor $nlo,$nlo 151 xor $nhi,$nhi 152 mov `&LB("$Zlo")`,`&LB("$nlo")` 153 mov `&LB("$Zlo")`,`&LB("$nhi")` 154 shl \$4,`&LB("$nlo")` 155 mov \$14,$cnt 156 mov 8($Htbl,$nlo),$Zlo 157 mov ($Htbl,$nlo),$Zhi 158 and \$0xf0,`&LB("$nhi")` 159 mov $Zlo,$rem 160 jmp .Loop$N 161 162.align 16 163.Loop$N: 164 shr \$4,$Zlo 165 and \$0xf,$rem 166 mov $Zhi,$tmp 167 mov ($inp,$cnt),`&LB("$nlo")` 168 shr \$4,$Zhi 169 xor 8($Htbl,$nhi),$Zlo 170 shl \$60,$tmp 171 xor ($Htbl,$nhi),$Zhi 172 mov `&LB("$nlo")`,`&LB("$nhi")` 173 xor ($rem_4bit,$rem,8),$Zhi 174 mov $Zlo,$rem 175 shl \$4,`&LB("$nlo")` 176 xor $tmp,$Zlo 177 dec $cnt 178 js .Lbreak$N 179 180 shr \$4,$Zlo 181 and \$0xf,$rem 182 mov $Zhi,$tmp 183 shr \$4,$Zhi 184 xor 8($Htbl,$nlo),$Zlo 185 shl \$60,$tmp 186 xor ($Htbl,$nlo),$Zhi 187 and \$0xf0,`&LB("$nhi")` 188 xor ($rem_4bit,$rem,8),$Zhi 189 mov $Zlo,$rem 190 xor $tmp,$Zlo 191 jmp .Loop$N 192 193.align 16 194.Lbreak$N: 195 shr \$4,$Zlo 196 and \$0xf,$rem 197 mov $Zhi,$tmp 198 shr \$4,$Zhi 199 xor 8($Htbl,$nlo),$Zlo 200 shl \$60,$tmp 201 xor ($Htbl,$nlo),$Zhi 202 and \$0xf0,`&LB("$nhi")` 203 xor ($rem_4bit,$rem,8),$Zhi 204 mov $Zlo,$rem 205 xor $tmp,$Zlo 206 207 shr \$4,$Zlo 208 and \$0xf,$rem 209 mov $Zhi,$tmp 210 shr \$4,$Zhi 211 xor 8($Htbl,$nhi),$Zlo 212 shl \$60,$tmp 213 xor ($Htbl,$nhi),$Zhi 214 xor $tmp,$Zlo 215 xor ($rem_4bit,$rem,8),$Zhi 216 217 bswap $Zlo 218 bswap $Zhi 219___ 220}} 221 222$code=<<___; 223.text 224.extern OPENSSL_ia32cap_P 225 226.globl gcm_gmult_4bit 227.type gcm_gmult_4bit,\@function,2 228.align 16 229gcm_gmult_4bit: 230.cfi_startproc 231 push %rbx 232.cfi_push %rbx 233 push %rbp # %rbp and others are pushed exclusively in 234.cfi_push %rbp 235 push %r12 # order to reuse Win64 exception handler... 236.cfi_push %r12 237 push %r13 238.cfi_push %r13 239 push %r14 240.cfi_push %r14 241 push %r15 242.cfi_push %r15 243 sub \$280,%rsp 244.cfi_adjust_cfa_offset 280 245.Lgmult_prologue: 246 247 movzb 15($Xi),$Zlo 248 lea .Lrem_4bit(%rip),$rem_4bit 249___ 250 &loop ($Xi); 251$code.=<<___; 252 mov $Zlo,8($Xi) 253 mov $Zhi,($Xi) 254 255 lea 280+48(%rsp),%rsi 256.cfi_def_cfa %rsi,8 257 mov -8(%rsi),%rbx 258.cfi_restore %rbx 259 lea (%rsi),%rsp 260.cfi_def_cfa_register %rsp 261.Lgmult_epilogue: 262 ret 263.cfi_endproc 264.size gcm_gmult_4bit,.-gcm_gmult_4bit 265___ 266 267# per-function register layout 268$inp="%rdx"; 269$len="%rcx"; 270$rem_8bit=$rem_4bit; 271 272$code.=<<___; 273.globl gcm_ghash_4bit 274.type gcm_ghash_4bit,\@function,4 275.align 16 276gcm_ghash_4bit: 277.cfi_startproc 278 push %rbx 279.cfi_push %rbx 280 push %rbp 281.cfi_push %rbp 282 push %r12 283.cfi_push %r12 284 push %r13 285.cfi_push %r13 286 push %r14 287.cfi_push %r14 288 push %r15 289.cfi_push %r15 290 sub \$280,%rsp 291.cfi_adjust_cfa_offset 280 292.Lghash_prologue: 293 mov $inp,%r14 # reassign couple of args 294 mov $len,%r15 295___ 296{ my $inp="%r14"; 297 my $dat="%edx"; 298 my $len="%r15"; 299 my @nhi=("%ebx","%ecx"); 300 my @rem=("%r12","%r13"); 301 my $Hshr4="%rbp"; 302 303 &sub ($Htbl,-128); # size optimization 304 &lea ($Hshr4,"16+128(%rsp)"); 305 { my @lo =($nlo,$nhi); 306 my @hi =($Zlo,$Zhi); 307 308 &xor ($dat,$dat); 309 for ($i=0,$j=-2;$i<18;$i++,$j++) { 310 &mov ("$j(%rsp)",&LB($dat)) if ($i>1); 311 &or ($lo[0],$tmp) if ($i>1); 312 &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17); 313 &shr ($lo[1],4) if ($i>0 && $i<17); 314 &mov ($tmp,$hi[1]) if ($i>0 && $i<17); 315 &shr ($hi[1],4) if ($i>0 && $i<17); 316 &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1); 317 &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16); 318 &shl (&LB($dat),4) if ($i>0 && $i<17); 319 &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1); 320 &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16); 321 &shl ($tmp,60) if ($i>0 && $i<17); 322 323 push (@lo,shift(@lo)); 324 push (@hi,shift(@hi)); 325 } 326 } 327 &add ($Htbl,-128); 328 &mov ($Zlo,"8($Xi)"); 329 &mov ($Zhi,"0($Xi)"); 330 &add ($len,$inp); # pointer to the end of data 331 &lea ($rem_8bit,".Lrem_8bit(%rip)"); 332 &jmp (".Louter_loop"); 333 334$code.=".align 16\n.Louter_loop:\n"; 335 &xor ($Zhi,"($inp)"); 336 &mov ("%rdx","8($inp)"); 337 &lea ($inp,"16($inp)"); 338 &xor ("%rdx",$Zlo); 339 &mov ("($Xi)",$Zhi); 340 &mov ("8($Xi)","%rdx"); 341 &shr ("%rdx",32); 342 343 &xor ($nlo,$nlo); 344 &rol ($dat,8); 345 &mov (&LB($nlo),&LB($dat)); 346 &movz ($nhi[0],&LB($dat)); 347 &shl (&LB($nlo),4); 348 &shr ($nhi[0],4); 349 350 for ($j=11,$i=0;$i<15;$i++) { 351 &rol ($dat,8); 352 &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0); 353 &xor ($Zhi,"($Htbl,$nlo)") if ($i>0); 354 &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0); 355 &mov ($Zhi,"($Htbl,$nlo)") if ($i==0); 356 357 &mov (&LB($nlo),&LB($dat)); 358 &xor ($Zlo,$tmp) if ($i>0); 359 &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0); 360 361 &movz ($nhi[1],&LB($dat)); 362 &shl (&LB($nlo),4); 363 &movzb ($rem[0],"(%rsp,$nhi[0])"); 364 365 &shr ($nhi[1],4) if ($i<14); 366 &and ($nhi[1],0xf0) if ($i==14); 367 &shl ($rem[1],48) if ($i>0); 368 &xor ($rem[0],$Zlo); 369 370 &mov ($tmp,$Zhi); 371 &xor ($Zhi,$rem[1]) if ($i>0); 372 &shr ($Zlo,8); 373 374 &movz ($rem[0],&LB($rem[0])); 375 &mov ($dat,"$j($Xi)") if (--$j%4==0); 376 &shr ($Zhi,8); 377 378 &xor ($Zlo,"-128($Hshr4,$nhi[0],8)"); 379 &shl ($tmp,56); 380 &xor ($Zhi,"($Hshr4,$nhi[0],8)"); 381 382 unshift (@nhi,pop(@nhi)); # "rotate" registers 383 unshift (@rem,pop(@rem)); 384 } 385 &movzw ($rem[1],"($rem_8bit,$rem[1],2)"); 386 &xor ($Zlo,"8($Htbl,$nlo)"); 387 &xor ($Zhi,"($Htbl,$nlo)"); 388 389 &shl ($rem[1],48); 390 &xor ($Zlo,$tmp); 391 392 &xor ($Zhi,$rem[1]); 393 &movz ($rem[0],&LB($Zlo)); 394 &shr ($Zlo,4); 395 396 &mov ($tmp,$Zhi); 397 &shl (&LB($rem[0]),4); 398 &shr ($Zhi,4); 399 400 &xor ($Zlo,"8($Htbl,$nhi[0])"); 401 &movzw ($rem[0],"($rem_8bit,$rem[0],2)"); 402 &shl ($tmp,60); 403 404 &xor ($Zhi,"($Htbl,$nhi[0])"); 405 &xor ($Zlo,$tmp); 406 &shl ($rem[0],48); 407 408 &bswap ($Zlo); 409 &xor ($Zhi,$rem[0]); 410 411 &bswap ($Zhi); 412 &cmp ($inp,$len); 413 &jb (".Louter_loop"); 414} 415$code.=<<___; 416 mov $Zlo,8($Xi) 417 mov $Zhi,($Xi) 418 419 lea 280+48(%rsp),%rsi 420.cfi_def_cfa %rsi,8 421 mov -48(%rsi),%r15 422.cfi_restore %r15 423 mov -40(%rsi),%r14 424.cfi_restore %r14 425 mov -32(%rsi),%r13 426.cfi_restore %r13 427 mov -24(%rsi),%r12 428.cfi_restore %r12 429 mov -16(%rsi),%rbp 430.cfi_restore %rbp 431 mov -8(%rsi),%rbx 432.cfi_restore %rbx 433 lea 0(%rsi),%rsp 434.cfi_def_cfa_register %rsp 435.Lghash_epilogue: 436 ret 437.cfi_endproc 438.size gcm_ghash_4bit,.-gcm_ghash_4bit 439___ 440 441###################################################################### 442# PCLMULQDQ version. 443 444@_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order 445 ("%rdi","%rsi","%rdx","%rcx"); # Unix order 446 447($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2"; 448($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5"); 449 450sub clmul64x64_T2 { # minimal register pressure 451my ($Xhi,$Xi,$Hkey,$HK)=@_; 452 453if (!defined($HK)) { $HK = $T2; 454$code.=<<___; 455 movdqa $Xi,$Xhi # 456 pshufd \$0b01001110,$Xi,$T1 457 pshufd \$0b01001110,$Hkey,$T2 458 pxor $Xi,$T1 # 459 pxor $Hkey,$T2 460___ 461} else { 462$code.=<<___; 463 movdqa $Xi,$Xhi # 464 pshufd \$0b01001110,$Xi,$T1 465 pxor $Xi,$T1 # 466___ 467} 468$code.=<<___; 469 pclmulqdq \$0x00,$Hkey,$Xi ####### 470 pclmulqdq \$0x11,$Hkey,$Xhi ####### 471 pclmulqdq \$0x00,$HK,$T1 ####### 472 pxor $Xi,$T1 # 473 pxor $Xhi,$T1 # 474 475 movdqa $T1,$T2 # 476 psrldq \$8,$T1 477 pslldq \$8,$T2 # 478 pxor $T1,$Xhi 479 pxor $T2,$Xi # 480___ 481} 482 483sub reduction_alg9 { # 17/11 times faster than Intel version 484my ($Xhi,$Xi) = @_; 485 486$code.=<<___; 487 # 1st phase 488 movdqa $Xi,$T2 # 489 movdqa $Xi,$T1 490 psllq \$5,$Xi 491 pxor $Xi,$T1 # 492 psllq \$1,$Xi 493 pxor $T1,$Xi # 494 psllq \$57,$Xi # 495 movdqa $Xi,$T1 # 496 pslldq \$8,$Xi 497 psrldq \$8,$T1 # 498 pxor $T2,$Xi 499 pxor $T1,$Xhi # 500 501 # 2nd phase 502 movdqa $Xi,$T2 503 psrlq \$1,$Xi 504 pxor $T2,$Xhi # 505 pxor $Xi,$T2 506 psrlq \$5,$Xi 507 pxor $T2,$Xi # 508 psrlq \$1,$Xi # 509 pxor $Xhi,$Xi # 510___ 511} 512 513{ my ($Htbl,$Xip)=@_4args; 514 my $HK="%xmm6"; 515 516$code.=<<___; 517.globl gcm_init_clmul 518.type gcm_init_clmul,\@abi-omnipotent 519.align 16 520gcm_init_clmul: 521.cfi_startproc 522.L_init_clmul: 523___ 524$code.=<<___ if ($win64); 525.LSEH_begin_gcm_init_clmul: 526 # I can't trust assembler to use specific encoding:-( 527 .byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp 528 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp) 529___ 530$code.=<<___; 531 movdqu ($Xip),$Hkey 532 pshufd \$0b01001110,$Hkey,$Hkey # dword swap 533 534 # <<1 twist 535 pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword 536 movdqa $Hkey,$T1 537 psllq \$1,$Hkey 538 pxor $T3,$T3 # 539 psrlq \$63,$T1 540 pcmpgtd $T2,$T3 # broadcast carry bit 541 pslldq \$8,$T1 542 por $T1,$Hkey # H<<=1 543 544 # magic reduction 545 pand .L0x1c2_polynomial(%rip),$T3 546 pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial 547 548 # calculate H^2 549 pshufd \$0b01001110,$Hkey,$HK 550 movdqa $Hkey,$Xi 551 pxor $Hkey,$HK 552___ 553 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); 554 &reduction_alg9 ($Xhi,$Xi); 555$code.=<<___; 556 pshufd \$0b01001110,$Hkey,$T1 557 pshufd \$0b01001110,$Xi,$T2 558 pxor $Hkey,$T1 # Karatsuba pre-processing 559 movdqu $Hkey,0x00($Htbl) # save H 560 pxor $Xi,$T2 # Karatsuba pre-processing 561 movdqu $Xi,0x10($Htbl) # save H^2 562 palignr \$8,$T1,$T2 # low part is H.lo^H.hi... 563 movdqu $T2,0x20($Htbl) # save Karatsuba "salt" 564___ 565if ($do4xaggr) { 566 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^3 567 &reduction_alg9 ($Xhi,$Xi); 568$code.=<<___; 569 movdqa $Xi,$T3 570___ 571 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^4 572 &reduction_alg9 ($Xhi,$Xi); 573$code.=<<___; 574 pshufd \$0b01001110,$T3,$T1 575 pshufd \$0b01001110,$Xi,$T2 576 pxor $T3,$T1 # Karatsuba pre-processing 577 movdqu $T3,0x30($Htbl) # save H^3 578 pxor $Xi,$T2 # Karatsuba pre-processing 579 movdqu $Xi,0x40($Htbl) # save H^4 580 palignr \$8,$T1,$T2 # low part is H^3.lo^H^3.hi... 581 movdqu $T2,0x50($Htbl) # save Karatsuba "salt" 582___ 583} 584$code.=<<___ if ($win64); 585 movaps (%rsp),%xmm6 586 lea 0x18(%rsp),%rsp 587.LSEH_end_gcm_init_clmul: 588___ 589$code.=<<___; 590 ret 591.cfi_endproc 592.size gcm_init_clmul,.-gcm_init_clmul 593___ 594} 595 596{ my ($Xip,$Htbl)=@_4args; 597 598$code.=<<___; 599.globl gcm_gmult_clmul 600.type gcm_gmult_clmul,\@abi-omnipotent 601.align 16 602gcm_gmult_clmul: 603.cfi_startproc 604.L_gmult_clmul: 605 movdqu ($Xip),$Xi 606 movdqa .Lbswap_mask(%rip),$T3 607 movdqu ($Htbl),$Hkey 608 movdqu 0x20($Htbl),$T2 609 pshufb $T3,$Xi 610___ 611 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$T2); 612$code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0)); 613 # experimental alternative. special thing about is that there 614 # no dependency between the two multiplications... 615 mov \$`0xE1<<1`,%eax 616 mov \$0xA040608020C0E000,%r10 # ((7..0)·0xE0)&0xff 617 mov \$0x07,%r11d 618 movq %rax,$T1 619 movq %r10,$T2 620 movq %r11,$T3 # borrow $T3 621 pand $Xi,$T3 622 pshufb $T3,$T2 # ($Xi&7)·0xE0 623 movq %rax,$T3 624 pclmulqdq \$0x00,$Xi,$T1 # ·(0xE1<<1) 625 pxor $Xi,$T2 626 pslldq \$15,$T2 627 paddd $T2,$T2 # <<(64+56+1) 628 pxor $T2,$Xi 629 pclmulqdq \$0x01,$T3,$Xi 630 movdqa .Lbswap_mask(%rip),$T3 # reload $T3 631 psrldq \$1,$T1 632 pxor $T1,$Xhi 633 pslldq \$7,$Xi 634 pxor $Xhi,$Xi 635___ 636$code.=<<___; 637 pshufb $T3,$Xi 638 movdqu $Xi,($Xip) 639 ret 640.cfi_endproc 641.size gcm_gmult_clmul,.-gcm_gmult_clmul 642___ 643} 644 645{ my ($Xip,$Htbl,$inp,$len)=@_4args; 646 my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7)); 647 my ($T1,$T2,$T3)=map("%xmm$_",(8..10)); 648 649$code.=<<___; 650.globl gcm_ghash_clmul 651.type gcm_ghash_clmul,\@abi-omnipotent 652.align 32 653gcm_ghash_clmul: 654.cfi_startproc 655.L_ghash_clmul: 656___ 657$code.=<<___ if ($win64); 658 lea -0x88(%rsp),%rax 659.LSEH_begin_gcm_ghash_clmul: 660 # I can't trust assembler to use specific encoding:-( 661 .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp 662 .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax) 663 .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax) 664 .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax) 665 .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax) 666 .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax) 667 .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax) 668 .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax) 669 .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax) 670 .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax) 671 .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax) 672___ 673$code.=<<___; 674 movdqa .Lbswap_mask(%rip),$T3 675 676 movdqu ($Xip),$Xi 677 movdqu ($Htbl),$Hkey 678 movdqu 0x20($Htbl),$HK 679 pshufb $T3,$Xi 680 681 sub \$0x10,$len 682 jz .Lodd_tail 683 684 movdqu 0x10($Htbl),$Hkey2 685___ 686if ($do4xaggr) { 687my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15)); 688 689$code.=<<___; 690 leaq OPENSSL_ia32cap_P(%rip),%rax 691 mov 4(%rax),%eax 692 cmp \$0x30,$len 693 jb .Lskip4x 694 695 and \$`1<<26|1<<22`,%eax # isolate MOVBE+XSAVE 696 cmp \$`1<<22`,%eax # check for MOVBE without XSAVE 697 je .Lskip4x 698 699 sub \$0x30,$len 700 mov \$0xA040608020C0E000,%rax # ((7..0)·0xE0)&0xff 701 movdqu 0x30($Htbl),$Hkey3 702 movdqu 0x40($Htbl),$Hkey4 703 704 ####### 705 # Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P 706 # 707 movdqu 0x30($inp),$Xln 708 movdqu 0x20($inp),$Xl 709 pshufb $T3,$Xln 710 pshufb $T3,$Xl 711 movdqa $Xln,$Xhn 712 pshufd \$0b01001110,$Xln,$Xmn 713 pxor $Xln,$Xmn 714 pclmulqdq \$0x00,$Hkey,$Xln 715 pclmulqdq \$0x11,$Hkey,$Xhn 716 pclmulqdq \$0x00,$HK,$Xmn 717 718 movdqa $Xl,$Xh 719 pshufd \$0b01001110,$Xl,$Xm 720 pxor $Xl,$Xm 721 pclmulqdq \$0x00,$Hkey2,$Xl 722 pclmulqdq \$0x11,$Hkey2,$Xh 723 pclmulqdq \$0x10,$HK,$Xm 724 xorps $Xl,$Xln 725 xorps $Xh,$Xhn 726 movups 0x50($Htbl),$HK 727 xorps $Xm,$Xmn 728 729 movdqu 0x10($inp),$Xl 730 movdqu 0($inp),$T1 731 pshufb $T3,$Xl 732 pshufb $T3,$T1 733 movdqa $Xl,$Xh 734 pshufd \$0b01001110,$Xl,$Xm 735 pxor $T1,$Xi 736 pxor $Xl,$Xm 737 pclmulqdq \$0x00,$Hkey3,$Xl 738 movdqa $Xi,$Xhi 739 pshufd \$0b01001110,$Xi,$T1 740 pxor $Xi,$T1 741 pclmulqdq \$0x11,$Hkey3,$Xh 742 pclmulqdq \$0x00,$HK,$Xm 743 xorps $Xl,$Xln 744 xorps $Xh,$Xhn 745 746 lea 0x40($inp),$inp 747 sub \$0x40,$len 748 jc .Ltail4x 749 750 jmp .Lmod4_loop 751.align 32 752.Lmod4_loop: 753 pclmulqdq \$0x00,$Hkey4,$Xi 754 xorps $Xm,$Xmn 755 movdqu 0x30($inp),$Xl 756 pshufb $T3,$Xl 757 pclmulqdq \$0x11,$Hkey4,$Xhi 758 xorps $Xln,$Xi 759 movdqu 0x20($inp),$Xln 760 movdqa $Xl,$Xh 761 pclmulqdq \$0x10,$HK,$T1 762 pshufd \$0b01001110,$Xl,$Xm 763 xorps $Xhn,$Xhi 764 pxor $Xl,$Xm 765 pshufb $T3,$Xln 766 movups 0x20($Htbl),$HK 767 xorps $Xmn,$T1 768 pclmulqdq \$0x00,$Hkey,$Xl 769 pshufd \$0b01001110,$Xln,$Xmn 770 771 pxor $Xi,$T1 # aggregated Karatsuba post-processing 772 movdqa $Xln,$Xhn 773 pxor $Xhi,$T1 # 774 pxor $Xln,$Xmn 775 movdqa $T1,$T2 # 776 pclmulqdq \$0x11,$Hkey,$Xh 777 pslldq \$8,$T1 778 psrldq \$8,$T2 # 779 pxor $T1,$Xi 780 movdqa .L7_mask(%rip),$T1 781 pxor $T2,$Xhi # 782 movq %rax,$T2 783 784 pand $Xi,$T1 # 1st phase 785 pshufb $T1,$T2 # 786 pxor $Xi,$T2 # 787 pclmulqdq \$0x00,$HK,$Xm 788 psllq \$57,$T2 # 789 movdqa $T2,$T1 # 790 pslldq \$8,$T2 791 pclmulqdq \$0x00,$Hkey2,$Xln 792 psrldq \$8,$T1 # 793 pxor $T2,$Xi 794 pxor $T1,$Xhi # 795 movdqu 0($inp),$T1 796 797 movdqa $Xi,$T2 # 2nd phase 798 psrlq \$1,$Xi 799 pclmulqdq \$0x11,$Hkey2,$Xhn 800 xorps $Xl,$Xln 801 movdqu 0x10($inp),$Xl 802 pshufb $T3,$Xl 803 pclmulqdq \$0x10,$HK,$Xmn 804 xorps $Xh,$Xhn 805 movups 0x50($Htbl),$HK 806 pshufb $T3,$T1 807 pxor $T2,$Xhi # 808 pxor $Xi,$T2 809 psrlq \$5,$Xi 810 811 movdqa $Xl,$Xh 812 pxor $Xm,$Xmn 813 pshufd \$0b01001110,$Xl,$Xm 814 pxor $T2,$Xi # 815 pxor $T1,$Xhi 816 pxor $Xl,$Xm 817 pclmulqdq \$0x00,$Hkey3,$Xl 818 psrlq \$1,$Xi # 819 pxor $Xhi,$Xi # 820 movdqa $Xi,$Xhi 821 pclmulqdq \$0x11,$Hkey3,$Xh 822 xorps $Xl,$Xln 823 pshufd \$0b01001110,$Xi,$T1 824 pxor $Xi,$T1 825 826 pclmulqdq \$0x00,$HK,$Xm 827 xorps $Xh,$Xhn 828 829 lea 0x40($inp),$inp 830 sub \$0x40,$len 831 jnc .Lmod4_loop 832 833.Ltail4x: 834 pclmulqdq \$0x00,$Hkey4,$Xi 835 pclmulqdq \$0x11,$Hkey4,$Xhi 836 pclmulqdq \$0x10,$HK,$T1 837 xorps $Xm,$Xmn 838 xorps $Xln,$Xi 839 xorps $Xhn,$Xhi 840 pxor $Xi,$Xhi # aggregated Karatsuba post-processing 841 pxor $Xmn,$T1 842 843 pxor $Xhi,$T1 # 844 pxor $Xi,$Xhi 845 846 movdqa $T1,$T2 # 847 psrldq \$8,$T1 848 pslldq \$8,$T2 # 849 pxor $T1,$Xhi 850 pxor $T2,$Xi # 851___ 852 &reduction_alg9($Xhi,$Xi); 853$code.=<<___; 854 add \$0x40,$len 855 jz .Ldone 856 movdqu 0x20($Htbl),$HK 857 sub \$0x10,$len 858 jz .Lodd_tail 859.Lskip4x: 860___ 861} 862$code.=<<___; 863 ####### 864 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = 865 # [(H*Ii+1) + (H*Xi+1)] mod P = 866 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P 867 # 868 movdqu ($inp),$T1 # Ii 869 movdqu 16($inp),$Xln # Ii+1 870 pshufb $T3,$T1 871 pshufb $T3,$Xln 872 pxor $T1,$Xi # Ii+Xi 873 874 movdqa $Xln,$Xhn 875 pshufd \$0b01001110,$Xln,$Xmn 876 pxor $Xln,$Xmn 877 pclmulqdq \$0x00,$Hkey,$Xln 878 pclmulqdq \$0x11,$Hkey,$Xhn 879 pclmulqdq \$0x00,$HK,$Xmn 880 881 lea 32($inp),$inp # i+=2 882 nop 883 sub \$0x20,$len 884 jbe .Leven_tail 885 nop 886 jmp .Lmod_loop 887 888.align 32 889.Lmod_loop: 890 movdqa $Xi,$Xhi 891 movdqa $Xmn,$T1 892 pshufd \$0b01001110,$Xi,$Xmn # 893 pxor $Xi,$Xmn # 894 895 pclmulqdq \$0x00,$Hkey2,$Xi 896 pclmulqdq \$0x11,$Hkey2,$Xhi 897 pclmulqdq \$0x10,$HK,$Xmn 898 899 pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi) 900 pxor $Xhn,$Xhi 901 movdqu ($inp),$T2 # Ii 902 pxor $Xi,$T1 # aggregated Karatsuba post-processing 903 pshufb $T3,$T2 904 movdqu 16($inp),$Xln # Ii+1 905 906 pxor $Xhi,$T1 907 pxor $T2,$Xhi # "Ii+Xi", consume early 908 pxor $T1,$Xmn 909 pshufb $T3,$Xln 910 movdqa $Xmn,$T1 # 911 psrldq \$8,$T1 912 pslldq \$8,$Xmn # 913 pxor $T1,$Xhi 914 pxor $Xmn,$Xi # 915 916 movdqa $Xln,$Xhn # 917 918 movdqa $Xi,$T2 # 1st phase 919 movdqa $Xi,$T1 920 psllq \$5,$Xi 921 pxor $Xi,$T1 # 922 pclmulqdq \$0x00,$Hkey,$Xln ####### 923 psllq \$1,$Xi 924 pxor $T1,$Xi # 925 psllq \$57,$Xi # 926 movdqa $Xi,$T1 # 927 pslldq \$8,$Xi 928 psrldq \$8,$T1 # 929 pxor $T2,$Xi 930 pshufd \$0b01001110,$Xhn,$Xmn 931 pxor $T1,$Xhi # 932 pxor $Xhn,$Xmn # 933 934 movdqa $Xi,$T2 # 2nd phase 935 psrlq \$1,$Xi 936 pclmulqdq \$0x11,$Hkey,$Xhn ####### 937 pxor $T2,$Xhi # 938 pxor $Xi,$T2 939 psrlq \$5,$Xi 940 pxor $T2,$Xi # 941 lea 32($inp),$inp 942 psrlq \$1,$Xi # 943 pclmulqdq \$0x00,$HK,$Xmn ####### 944 pxor $Xhi,$Xi # 945 946 sub \$0x20,$len 947 ja .Lmod_loop 948 949.Leven_tail: 950 movdqa $Xi,$Xhi 951 movdqa $Xmn,$T1 952 pshufd \$0b01001110,$Xi,$Xmn # 953 pxor $Xi,$Xmn # 954 955 pclmulqdq \$0x00,$Hkey2,$Xi 956 pclmulqdq \$0x11,$Hkey2,$Xhi 957 pclmulqdq \$0x10,$HK,$Xmn 958 959 pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi) 960 pxor $Xhn,$Xhi 961 pxor $Xi,$T1 962 pxor $Xhi,$T1 963 pxor $T1,$Xmn 964 movdqa $Xmn,$T1 # 965 psrldq \$8,$T1 966 pslldq \$8,$Xmn # 967 pxor $T1,$Xhi 968 pxor $Xmn,$Xi # 969___ 970 &reduction_alg9 ($Xhi,$Xi); 971$code.=<<___; 972 test $len,$len 973 jnz .Ldone 974 975.Lodd_tail: 976 movdqu ($inp),$T1 # Ii 977 pshufb $T3,$T1 978 pxor $T1,$Xi # Ii+Xi 979___ 980 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H*(Ii+Xi) 981 &reduction_alg9 ($Xhi,$Xi); 982$code.=<<___; 983.Ldone: 984 pshufb $T3,$Xi 985 movdqu $Xi,($Xip) 986___ 987$code.=<<___ if ($win64); 988 movaps (%rsp),%xmm6 989 movaps 0x10(%rsp),%xmm7 990 movaps 0x20(%rsp),%xmm8 991 movaps 0x30(%rsp),%xmm9 992 movaps 0x40(%rsp),%xmm10 993 movaps 0x50(%rsp),%xmm11 994 movaps 0x60(%rsp),%xmm12 995 movaps 0x70(%rsp),%xmm13 996 movaps 0x80(%rsp),%xmm14 997 movaps 0x90(%rsp),%xmm15 998 lea 0xa8(%rsp),%rsp 999.LSEH_end_gcm_ghash_clmul: 1000___ 1001$code.=<<___; 1002 ret 1003.cfi_endproc 1004.size gcm_ghash_clmul,.-gcm_ghash_clmul 1005___ 1006} 1007 1008$code.=<<___; 1009.globl gcm_init_avx 1010.type gcm_init_avx,\@abi-omnipotent 1011.align 32 1012gcm_init_avx: 1013.cfi_startproc 1014___ 1015if ($avx) { 1016my ($Htbl,$Xip)=@_4args; 1017my $HK="%xmm6"; 1018 1019$code.=<<___ if ($win64); 1020.LSEH_begin_gcm_init_avx: 1021 # I can't trust assembler to use specific encoding:-( 1022 .byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp 1023 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp) 1024___ 1025$code.=<<___; 1026 vzeroupper 1027 1028 vmovdqu ($Xip),$Hkey 1029 vpshufd \$0b01001110,$Hkey,$Hkey # dword swap 1030 1031 # <<1 twist 1032 vpshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword 1033 vpsrlq \$63,$Hkey,$T1 1034 vpsllq \$1,$Hkey,$Hkey 1035 vpxor $T3,$T3,$T3 # 1036 vpcmpgtd $T2,$T3,$T3 # broadcast carry bit 1037 vpslldq \$8,$T1,$T1 1038 vpor $T1,$Hkey,$Hkey # H<<=1 1039 1040 # magic reduction 1041 vpand .L0x1c2_polynomial(%rip),$T3,$T3 1042 vpxor $T3,$Hkey,$Hkey # if(carry) H^=0x1c2_polynomial 1043 1044 vpunpckhqdq $Hkey,$Hkey,$HK 1045 vmovdqa $Hkey,$Xi 1046 vpxor $Hkey,$HK,$HK 1047 mov \$4,%r10 # up to H^8 1048 jmp .Linit_start_avx 1049___ 1050 1051sub clmul64x64_avx { 1052my ($Xhi,$Xi,$Hkey,$HK)=@_; 1053 1054if (!defined($HK)) { $HK = $T2; 1055$code.=<<___; 1056 vpunpckhqdq $Xi,$Xi,$T1 1057 vpunpckhqdq $Hkey,$Hkey,$T2 1058 vpxor $Xi,$T1,$T1 # 1059 vpxor $Hkey,$T2,$T2 1060___ 1061} else { 1062$code.=<<___; 1063 vpunpckhqdq $Xi,$Xi,$T1 1064 vpxor $Xi,$T1,$T1 # 1065___ 1066} 1067$code.=<<___; 1068 vpclmulqdq \$0x11,$Hkey,$Xi,$Xhi ####### 1069 vpclmulqdq \$0x00,$Hkey,$Xi,$Xi ####### 1070 vpclmulqdq \$0x00,$HK,$T1,$T1 ####### 1071 vpxor $Xi,$Xhi,$T2 # 1072 vpxor $T2,$T1,$T1 # 1073 1074 vpslldq \$8,$T1,$T2 # 1075 vpsrldq \$8,$T1,$T1 1076 vpxor $T2,$Xi,$Xi # 1077 vpxor $T1,$Xhi,$Xhi 1078___ 1079} 1080 1081sub reduction_avx { 1082my ($Xhi,$Xi) = @_; 1083 1084$code.=<<___; 1085 vpsllq \$57,$Xi,$T1 # 1st phase 1086 vpsllq \$62,$Xi,$T2 1087 vpxor $T1,$T2,$T2 # 1088 vpsllq \$63,$Xi,$T1 1089 vpxor $T1,$T2,$T2 # 1090 vpslldq \$8,$T2,$T1 # 1091 vpsrldq \$8,$T2,$T2 1092 vpxor $T1,$Xi,$Xi # 1093 vpxor $T2,$Xhi,$Xhi 1094 1095 vpsrlq \$1,$Xi,$T2 # 2nd phase 1096 vpxor $Xi,$Xhi,$Xhi 1097 vpxor $T2,$Xi,$Xi # 1098 vpsrlq \$5,$T2,$T2 1099 vpxor $T2,$Xi,$Xi # 1100 vpsrlq \$1,$Xi,$Xi # 1101 vpxor $Xhi,$Xi,$Xi # 1102___ 1103} 1104 1105$code.=<<___; 1106.align 32 1107.Linit_loop_avx: 1108 vpalignr \$8,$T1,$T2,$T3 # low part is H.lo^H.hi... 1109 vmovdqu $T3,-0x10($Htbl) # save Karatsuba "salt" 1110___ 1111 &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^3,5,7 1112 &reduction_avx ($Xhi,$Xi); 1113$code.=<<___; 1114.Linit_start_avx: 1115 vmovdqa $Xi,$T3 1116___ 1117 &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^2,4,6,8 1118 &reduction_avx ($Xhi,$Xi); 1119$code.=<<___; 1120 vpshufd \$0b01001110,$T3,$T1 1121 vpshufd \$0b01001110,$Xi,$T2 1122 vpxor $T3,$T1,$T1 # Karatsuba pre-processing 1123 vmovdqu $T3,0x00($Htbl) # save H^1,3,5,7 1124 vpxor $Xi,$T2,$T2 # Karatsuba pre-processing 1125 vmovdqu $Xi,0x10($Htbl) # save H^2,4,6,8 1126 lea 0x30($Htbl),$Htbl 1127 sub \$1,%r10 1128 jnz .Linit_loop_avx 1129 1130 vpalignr \$8,$T2,$T1,$T3 # last "salt" is flipped 1131 vmovdqu $T3,-0x10($Htbl) 1132 1133 vzeroupper 1134___ 1135$code.=<<___ if ($win64); 1136 movaps (%rsp),%xmm6 1137 lea 0x18(%rsp),%rsp 1138.LSEH_end_gcm_init_avx: 1139___ 1140$code.=<<___; 1141 ret 1142.cfi_endproc 1143.size gcm_init_avx,.-gcm_init_avx 1144___ 1145} else { 1146$code.=<<___; 1147 jmp .L_init_clmul 1148.size gcm_init_avx,.-gcm_init_avx 1149___ 1150} 1151 1152$code.=<<___; 1153.globl gcm_gmult_avx 1154.type gcm_gmult_avx,\@abi-omnipotent 1155.align 32 1156gcm_gmult_avx: 1157.cfi_startproc 1158 jmp .L_gmult_clmul 1159.cfi_endproc 1160.size gcm_gmult_avx,.-gcm_gmult_avx 1161___ 1162 1163$code.=<<___; 1164.globl gcm_ghash_avx 1165.type gcm_ghash_avx,\@abi-omnipotent 1166.align 32 1167gcm_ghash_avx: 1168.cfi_startproc 1169___ 1170if ($avx) { 1171my ($Xip,$Htbl,$inp,$len)=@_4args; 1172my ($Xlo,$Xhi,$Xmi, 1173 $Zlo,$Zhi,$Zmi, 1174 $Hkey,$HK,$T1,$T2, 1175 $Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15)); 1176 1177$code.=<<___ if ($win64); 1178 lea -0x88(%rsp),%rax 1179.LSEH_begin_gcm_ghash_avx: 1180 # I can't trust assembler to use specific encoding:-( 1181 .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp 1182 .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax) 1183 .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax) 1184 .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax) 1185 .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax) 1186 .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax) 1187 .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax) 1188 .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax) 1189 .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax) 1190 .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax) 1191 .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax) 1192___ 1193$code.=<<___; 1194 vzeroupper 1195 1196 vmovdqu ($Xip),$Xi # load $Xi 1197 lea .L0x1c2_polynomial(%rip),%r10 1198 lea 0x40($Htbl),$Htbl # size optimization 1199 vmovdqu .Lbswap_mask(%rip),$bswap 1200 vpshufb $bswap,$Xi,$Xi 1201 cmp \$0x80,$len 1202 jb .Lshort_avx 1203 sub \$0x80,$len 1204 1205 vmovdqu 0x70($inp),$Ii # I[7] 1206 vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1 1207 vpshufb $bswap,$Ii,$Ii 1208 vmovdqu 0x20-0x40($Htbl),$HK 1209 1210 vpunpckhqdq $Ii,$Ii,$T2 1211 vmovdqu 0x60($inp),$Ij # I[6] 1212 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo 1213 vpxor $Ii,$T2,$T2 1214 vpshufb $bswap,$Ij,$Ij 1215 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi 1216 vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2 1217 vpunpckhqdq $Ij,$Ij,$T1 1218 vmovdqu 0x50($inp),$Ii # I[5] 1219 vpclmulqdq \$0x00,$HK,$T2,$Xmi 1220 vpxor $Ij,$T1,$T1 1221 1222 vpshufb $bswap,$Ii,$Ii 1223 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo 1224 vpunpckhqdq $Ii,$Ii,$T2 1225 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi 1226 vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3 1227 vpxor $Ii,$T2,$T2 1228 vmovdqu 0x40($inp),$Ij # I[4] 1229 vpclmulqdq \$0x10,$HK,$T1,$Zmi 1230 vmovdqu 0x50-0x40($Htbl),$HK 1231 1232 vpshufb $bswap,$Ij,$Ij 1233 vpxor $Xlo,$Zlo,$Zlo 1234 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo 1235 vpxor $Xhi,$Zhi,$Zhi 1236 vpunpckhqdq $Ij,$Ij,$T1 1237 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi 1238 vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4 1239 vpxor $Xmi,$Zmi,$Zmi 1240 vpclmulqdq \$0x00,$HK,$T2,$Xmi 1241 vpxor $Ij,$T1,$T1 1242 1243 vmovdqu 0x30($inp),$Ii # I[3] 1244 vpxor $Zlo,$Xlo,$Xlo 1245 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo 1246 vpxor $Zhi,$Xhi,$Xhi 1247 vpshufb $bswap,$Ii,$Ii 1248 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi 1249 vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5 1250 vpxor $Zmi,$Xmi,$Xmi 1251 vpunpckhqdq $Ii,$Ii,$T2 1252 vpclmulqdq \$0x10,$HK,$T1,$Zmi 1253 vmovdqu 0x80-0x40($Htbl),$HK 1254 vpxor $Ii,$T2,$T2 1255 1256 vmovdqu 0x20($inp),$Ij # I[2] 1257 vpxor $Xlo,$Zlo,$Zlo 1258 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo 1259 vpxor $Xhi,$Zhi,$Zhi 1260 vpshufb $bswap,$Ij,$Ij 1261 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi 1262 vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6 1263 vpxor $Xmi,$Zmi,$Zmi 1264 vpunpckhqdq $Ij,$Ij,$T1 1265 vpclmulqdq \$0x00,$HK,$T2,$Xmi 1266 vpxor $Ij,$T1,$T1 1267 1268 vmovdqu 0x10($inp),$Ii # I[1] 1269 vpxor $Zlo,$Xlo,$Xlo 1270 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo 1271 vpxor $Zhi,$Xhi,$Xhi 1272 vpshufb $bswap,$Ii,$Ii 1273 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi 1274 vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7 1275 vpxor $Zmi,$Xmi,$Xmi 1276 vpunpckhqdq $Ii,$Ii,$T2 1277 vpclmulqdq \$0x10,$HK,$T1,$Zmi 1278 vmovdqu 0xb0-0x40($Htbl),$HK 1279 vpxor $Ii,$T2,$T2 1280 1281 vmovdqu ($inp),$Ij # I[0] 1282 vpxor $Xlo,$Zlo,$Zlo 1283 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo 1284 vpxor $Xhi,$Zhi,$Zhi 1285 vpshufb $bswap,$Ij,$Ij 1286 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi 1287 vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8 1288 vpxor $Xmi,$Zmi,$Zmi 1289 vpclmulqdq \$0x10,$HK,$T2,$Xmi 1290 1291 lea 0x80($inp),$inp 1292 cmp \$0x80,$len 1293 jb .Ltail_avx 1294 1295 vpxor $Xi,$Ij,$Ij # accumulate $Xi 1296 sub \$0x80,$len 1297 jmp .Loop8x_avx 1298 1299.align 32 1300.Loop8x_avx: 1301 vpunpckhqdq $Ij,$Ij,$T1 1302 vmovdqu 0x70($inp),$Ii # I[7] 1303 vpxor $Xlo,$Zlo,$Zlo 1304 vpxor $Ij,$T1,$T1 1305 vpclmulqdq \$0x00,$Hkey,$Ij,$Xi 1306 vpshufb $bswap,$Ii,$Ii 1307 vpxor $Xhi,$Zhi,$Zhi 1308 vpclmulqdq \$0x11,$Hkey,$Ij,$Xo 1309 vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1 1310 vpunpckhqdq $Ii,$Ii,$T2 1311 vpxor $Xmi,$Zmi,$Zmi 1312 vpclmulqdq \$0x00,$HK,$T1,$Tred 1313 vmovdqu 0x20-0x40($Htbl),$HK 1314 vpxor $Ii,$T2,$T2 1315 1316 vmovdqu 0x60($inp),$Ij # I[6] 1317 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo 1318 vpxor $Zlo,$Xi,$Xi # collect result 1319 vpshufb $bswap,$Ij,$Ij 1320 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi 1321 vxorps $Zhi,$Xo,$Xo 1322 vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2 1323 vpunpckhqdq $Ij,$Ij,$T1 1324 vpclmulqdq \$0x00,$HK, $T2,$Xmi 1325 vpxor $Zmi,$Tred,$Tred 1326 vxorps $Ij,$T1,$T1 1327 1328 vmovdqu 0x50($inp),$Ii # I[5] 1329 vpxor $Xi,$Tred,$Tred # aggregated Karatsuba post-processing 1330 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo 1331 vpxor $Xo,$Tred,$Tred 1332 vpslldq \$8,$Tred,$T2 1333 vpxor $Xlo,$Zlo,$Zlo 1334 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi 1335 vpsrldq \$8,$Tred,$Tred 1336 vpxor $T2, $Xi, $Xi 1337 vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3 1338 vpshufb $bswap,$Ii,$Ii 1339 vxorps $Tred,$Xo, $Xo 1340 vpxor $Xhi,$Zhi,$Zhi 1341 vpunpckhqdq $Ii,$Ii,$T2 1342 vpclmulqdq \$0x10,$HK, $T1,$Zmi 1343 vmovdqu 0x50-0x40($Htbl),$HK 1344 vpxor $Ii,$T2,$T2 1345 vpxor $Xmi,$Zmi,$Zmi 1346 1347 vmovdqu 0x40($inp),$Ij # I[4] 1348 vpalignr \$8,$Xi,$Xi,$Tred # 1st phase 1349 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo 1350 vpshufb $bswap,$Ij,$Ij 1351 vpxor $Zlo,$Xlo,$Xlo 1352 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi 1353 vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4 1354 vpunpckhqdq $Ij,$Ij,$T1 1355 vpxor $Zhi,$Xhi,$Xhi 1356 vpclmulqdq \$0x00,$HK, $T2,$Xmi 1357 vxorps $Ij,$T1,$T1 1358 vpxor $Zmi,$Xmi,$Xmi 1359 1360 vmovdqu 0x30($inp),$Ii # I[3] 1361 vpclmulqdq \$0x10,(%r10),$Xi,$Xi 1362 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo 1363 vpshufb $bswap,$Ii,$Ii 1364 vpxor $Xlo,$Zlo,$Zlo 1365 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi 1366 vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5 1367 vpunpckhqdq $Ii,$Ii,$T2 1368 vpxor $Xhi,$Zhi,$Zhi 1369 vpclmulqdq \$0x10,$HK, $T1,$Zmi 1370 vmovdqu 0x80-0x40($Htbl),$HK 1371 vpxor $Ii,$T2,$T2 1372 vpxor $Xmi,$Zmi,$Zmi 1373 1374 vmovdqu 0x20($inp),$Ij # I[2] 1375 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo 1376 vpshufb $bswap,$Ij,$Ij 1377 vpxor $Zlo,$Xlo,$Xlo 1378 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi 1379 vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6 1380 vpunpckhqdq $Ij,$Ij,$T1 1381 vpxor $Zhi,$Xhi,$Xhi 1382 vpclmulqdq \$0x00,$HK, $T2,$Xmi 1383 vpxor $Ij,$T1,$T1 1384 vpxor $Zmi,$Xmi,$Xmi 1385 vxorps $Tred,$Xi,$Xi 1386 1387 vmovdqu 0x10($inp),$Ii # I[1] 1388 vpalignr \$8,$Xi,$Xi,$Tred # 2nd phase 1389 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo 1390 vpshufb $bswap,$Ii,$Ii 1391 vpxor $Xlo,$Zlo,$Zlo 1392 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi 1393 vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7 1394 vpclmulqdq \$0x10,(%r10),$Xi,$Xi 1395 vxorps $Xo,$Tred,$Tred 1396 vpunpckhqdq $Ii,$Ii,$T2 1397 vpxor $Xhi,$Zhi,$Zhi 1398 vpclmulqdq \$0x10,$HK, $T1,$Zmi 1399 vmovdqu 0xb0-0x40($Htbl),$HK 1400 vpxor $Ii,$T2,$T2 1401 vpxor $Xmi,$Zmi,$Zmi 1402 1403 vmovdqu ($inp),$Ij # I[0] 1404 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo 1405 vpshufb $bswap,$Ij,$Ij 1406 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi 1407 vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8 1408 vpxor $Tred,$Ij,$Ij 1409 vpclmulqdq \$0x10,$HK, $T2,$Xmi 1410 vpxor $Xi,$Ij,$Ij # accumulate $Xi 1411 1412 lea 0x80($inp),$inp 1413 sub \$0x80,$len 1414 jnc .Loop8x_avx 1415 1416 add \$0x80,$len 1417 jmp .Ltail_no_xor_avx 1418 1419.align 32 1420.Lshort_avx: 1421 vmovdqu -0x10($inp,$len),$Ii # very last word 1422 lea ($inp,$len),$inp 1423 vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1 1424 vmovdqu 0x20-0x40($Htbl),$HK 1425 vpshufb $bswap,$Ii,$Ij 1426 1427 vmovdqa $Xlo,$Zlo # subtle way to zero $Zlo, 1428 vmovdqa $Xhi,$Zhi # $Zhi and 1429 vmovdqa $Xmi,$Zmi # $Zmi 1430 sub \$0x10,$len 1431 jz .Ltail_avx 1432 1433 vpunpckhqdq $Ij,$Ij,$T1 1434 vpxor $Xlo,$Zlo,$Zlo 1435 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo 1436 vpxor $Ij,$T1,$T1 1437 vmovdqu -0x20($inp),$Ii 1438 vpxor $Xhi,$Zhi,$Zhi 1439 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi 1440 vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2 1441 vpshufb $bswap,$Ii,$Ij 1442 vpxor $Xmi,$Zmi,$Zmi 1443 vpclmulqdq \$0x00,$HK,$T1,$Xmi 1444 vpsrldq \$8,$HK,$HK 1445 sub \$0x10,$len 1446 jz .Ltail_avx 1447 1448 vpunpckhqdq $Ij,$Ij,$T1 1449 vpxor $Xlo,$Zlo,$Zlo 1450 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo 1451 vpxor $Ij,$T1,$T1 1452 vmovdqu -0x30($inp),$Ii 1453 vpxor $Xhi,$Zhi,$Zhi 1454 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi 1455 vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3 1456 vpshufb $bswap,$Ii,$Ij 1457 vpxor $Xmi,$Zmi,$Zmi 1458 vpclmulqdq \$0x00,$HK,$T1,$Xmi 1459 vmovdqu 0x50-0x40($Htbl),$HK 1460 sub \$0x10,$len 1461 jz .Ltail_avx 1462 1463 vpunpckhqdq $Ij,$Ij,$T1 1464 vpxor $Xlo,$Zlo,$Zlo 1465 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo 1466 vpxor $Ij,$T1,$T1 1467 vmovdqu -0x40($inp),$Ii 1468 vpxor $Xhi,$Zhi,$Zhi 1469 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi 1470 vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4 1471 vpshufb $bswap,$Ii,$Ij 1472 vpxor $Xmi,$Zmi,$Zmi 1473 vpclmulqdq \$0x00,$HK,$T1,$Xmi 1474 vpsrldq \$8,$HK,$HK 1475 sub \$0x10,$len 1476 jz .Ltail_avx 1477 1478 vpunpckhqdq $Ij,$Ij,$T1 1479 vpxor $Xlo,$Zlo,$Zlo 1480 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo 1481 vpxor $Ij,$T1,$T1 1482 vmovdqu -0x50($inp),$Ii 1483 vpxor $Xhi,$Zhi,$Zhi 1484 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi 1485 vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5 1486 vpshufb $bswap,$Ii,$Ij 1487 vpxor $Xmi,$Zmi,$Zmi 1488 vpclmulqdq \$0x00,$HK,$T1,$Xmi 1489 vmovdqu 0x80-0x40($Htbl),$HK 1490 sub \$0x10,$len 1491 jz .Ltail_avx 1492 1493 vpunpckhqdq $Ij,$Ij,$T1 1494 vpxor $Xlo,$Zlo,$Zlo 1495 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo 1496 vpxor $Ij,$T1,$T1 1497 vmovdqu -0x60($inp),$Ii 1498 vpxor $Xhi,$Zhi,$Zhi 1499 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi 1500 vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6 1501 vpshufb $bswap,$Ii,$Ij 1502 vpxor $Xmi,$Zmi,$Zmi 1503 vpclmulqdq \$0x00,$HK,$T1,$Xmi 1504 vpsrldq \$8,$HK,$HK 1505 sub \$0x10,$len 1506 jz .Ltail_avx 1507 1508 vpunpckhqdq $Ij,$Ij,$T1 1509 vpxor $Xlo,$Zlo,$Zlo 1510 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo 1511 vpxor $Ij,$T1,$T1 1512 vmovdqu -0x70($inp),$Ii 1513 vpxor $Xhi,$Zhi,$Zhi 1514 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi 1515 vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7 1516 vpshufb $bswap,$Ii,$Ij 1517 vpxor $Xmi,$Zmi,$Zmi 1518 vpclmulqdq \$0x00,$HK,$T1,$Xmi 1519 vmovq 0xb8-0x40($Htbl),$HK 1520 sub \$0x10,$len 1521 jmp .Ltail_avx 1522 1523.align 32 1524.Ltail_avx: 1525 vpxor $Xi,$Ij,$Ij # accumulate $Xi 1526.Ltail_no_xor_avx: 1527 vpunpckhqdq $Ij,$Ij,$T1 1528 vpxor $Xlo,$Zlo,$Zlo 1529 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo 1530 vpxor $Ij,$T1,$T1 1531 vpxor $Xhi,$Zhi,$Zhi 1532 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi 1533 vpxor $Xmi,$Zmi,$Zmi 1534 vpclmulqdq \$0x00,$HK,$T1,$Xmi 1535 1536 vmovdqu (%r10),$Tred 1537 1538 vpxor $Xlo,$Zlo,$Xi 1539 vpxor $Xhi,$Zhi,$Xo 1540 vpxor $Xmi,$Zmi,$Zmi 1541 1542 vpxor $Xi, $Zmi,$Zmi # aggregated Karatsuba post-processing 1543 vpxor $Xo, $Zmi,$Zmi 1544 vpslldq \$8, $Zmi,$T2 1545 vpsrldq \$8, $Zmi,$Zmi 1546 vpxor $T2, $Xi, $Xi 1547 vpxor $Zmi,$Xo, $Xo 1548 1549 vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 1st phase 1550 vpalignr \$8,$Xi,$Xi,$Xi 1551 vpxor $T2,$Xi,$Xi 1552 1553 vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 2nd phase 1554 vpalignr \$8,$Xi,$Xi,$Xi 1555 vpxor $Xo,$Xi,$Xi 1556 vpxor $T2,$Xi,$Xi 1557 1558 cmp \$0,$len 1559 jne .Lshort_avx 1560 1561 vpshufb $bswap,$Xi,$Xi 1562 vmovdqu $Xi,($Xip) 1563 vzeroupper 1564___ 1565$code.=<<___ if ($win64); 1566 movaps (%rsp),%xmm6 1567 movaps 0x10(%rsp),%xmm7 1568 movaps 0x20(%rsp),%xmm8 1569 movaps 0x30(%rsp),%xmm9 1570 movaps 0x40(%rsp),%xmm10 1571 movaps 0x50(%rsp),%xmm11 1572 movaps 0x60(%rsp),%xmm12 1573 movaps 0x70(%rsp),%xmm13 1574 movaps 0x80(%rsp),%xmm14 1575 movaps 0x90(%rsp),%xmm15 1576 lea 0xa8(%rsp),%rsp 1577.LSEH_end_gcm_ghash_avx: 1578___ 1579$code.=<<___; 1580 ret 1581.cfi_endproc 1582.size gcm_ghash_avx,.-gcm_ghash_avx 1583___ 1584} else { 1585$code.=<<___; 1586 jmp .L_ghash_clmul 1587.size gcm_ghash_avx,.-gcm_ghash_avx 1588___ 1589} 1590 1591$code.=<<___; 1592.align 64 1593.Lbswap_mask: 1594 .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 1595.L0x1c2_polynomial: 1596 .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2 1597.L7_mask: 1598 .long 7,0,7,0 1599.L7_mask_poly: 1600 .long 7,0,`0xE1<<1`,0 1601.align 64 1602.type .Lrem_4bit,\@object 1603.Lrem_4bit: 1604 .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16` 1605 .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16` 1606 .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16` 1607 .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16` 1608.type .Lrem_8bit,\@object 1609.Lrem_8bit: 1610 .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E 1611 .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E 1612 .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E 1613 .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E 1614 .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E 1615 .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E 1616 .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E 1617 .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E 1618 .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE 1619 .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE 1620 .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE 1621 .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE 1622 .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E 1623 .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E 1624 .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE 1625 .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE 1626 .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E 1627 .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E 1628 .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E 1629 .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E 1630 .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E 1631 .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E 1632 .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E 1633 .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E 1634 .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE 1635 .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE 1636 .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE 1637 .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE 1638 .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E 1639 .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E 1640 .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE 1641 .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE 1642 1643.asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>" 1644.align 64 1645___ 1646 1647# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, 1648# CONTEXT *context,DISPATCHER_CONTEXT *disp) 1649if ($win64) { 1650$rec="%rcx"; 1651$frame="%rdx"; 1652$context="%r8"; 1653$disp="%r9"; 1654 1655$code.=<<___; 1656.extern __imp_RtlVirtualUnwind 1657.type se_handler,\@abi-omnipotent 1658.align 16 1659se_handler: 1660 push %rsi 1661 push %rdi 1662 push %rbx 1663 push %rbp 1664 push %r12 1665 push %r13 1666 push %r14 1667 push %r15 1668 pushfq 1669 sub \$64,%rsp 1670 1671 mov 120($context),%rax # pull context->Rax 1672 mov 248($context),%rbx # pull context->Rip 1673 1674 mov 8($disp),%rsi # disp->ImageBase 1675 mov 56($disp),%r11 # disp->HandlerData 1676 1677 mov 0(%r11),%r10d # HandlerData[0] 1678 lea (%rsi,%r10),%r10 # prologue label 1679 cmp %r10,%rbx # context->Rip<prologue label 1680 jb .Lin_prologue 1681 1682 mov 152($context),%rax # pull context->Rsp 1683 1684 mov 4(%r11),%r10d # HandlerData[1] 1685 lea (%rsi,%r10),%r10 # epilogue label 1686 cmp %r10,%rbx # context->Rip>=epilogue label 1687 jae .Lin_prologue 1688 1689 lea 48+280(%rax),%rax # adjust "rsp" 1690 1691 mov -8(%rax),%rbx 1692 mov -16(%rax),%rbp 1693 mov -24(%rax),%r12 1694 mov -32(%rax),%r13 1695 mov -40(%rax),%r14 1696 mov -48(%rax),%r15 1697 mov %rbx,144($context) # restore context->Rbx 1698 mov %rbp,160($context) # restore context->Rbp 1699 mov %r12,216($context) # restore context->R12 1700 mov %r13,224($context) # restore context->R13 1701 mov %r14,232($context) # restore context->R14 1702 mov %r15,240($context) # restore context->R15 1703 1704.Lin_prologue: 1705 mov 8(%rax),%rdi 1706 mov 16(%rax),%rsi 1707 mov %rax,152($context) # restore context->Rsp 1708 mov %rsi,168($context) # restore context->Rsi 1709 mov %rdi,176($context) # restore context->Rdi 1710 1711 mov 40($disp),%rdi # disp->ContextRecord 1712 mov $context,%rsi # context 1713 mov \$`1232/8`,%ecx # sizeof(CONTEXT) 1714 .long 0xa548f3fc # cld; rep movsq 1715 1716 mov $disp,%rsi 1717 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER 1718 mov 8(%rsi),%rdx # arg2, disp->ImageBase 1719 mov 0(%rsi),%r8 # arg3, disp->ControlPc 1720 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry 1721 mov 40(%rsi),%r10 # disp->ContextRecord 1722 lea 56(%rsi),%r11 # &disp->HandlerData 1723 lea 24(%rsi),%r12 # &disp->EstablisherFrame 1724 mov %r10,32(%rsp) # arg5 1725 mov %r11,40(%rsp) # arg6 1726 mov %r12,48(%rsp) # arg7 1727 mov %rcx,56(%rsp) # arg8, (NULL) 1728 call *__imp_RtlVirtualUnwind(%rip) 1729 1730 mov \$1,%eax # ExceptionContinueSearch 1731 add \$64,%rsp 1732 popfq 1733 pop %r15 1734 pop %r14 1735 pop %r13 1736 pop %r12 1737 pop %rbp 1738 pop %rbx 1739 pop %rdi 1740 pop %rsi 1741 ret 1742.size se_handler,.-se_handler 1743 1744.section .pdata 1745.align 4 1746 .rva .LSEH_begin_gcm_gmult_4bit 1747 .rva .LSEH_end_gcm_gmult_4bit 1748 .rva .LSEH_info_gcm_gmult_4bit 1749 1750 .rva .LSEH_begin_gcm_ghash_4bit 1751 .rva .LSEH_end_gcm_ghash_4bit 1752 .rva .LSEH_info_gcm_ghash_4bit 1753 1754 .rva .LSEH_begin_gcm_init_clmul 1755 .rva .LSEH_end_gcm_init_clmul 1756 .rva .LSEH_info_gcm_init_clmul 1757 1758 .rva .LSEH_begin_gcm_ghash_clmul 1759 .rva .LSEH_end_gcm_ghash_clmul 1760 .rva .LSEH_info_gcm_ghash_clmul 1761___ 1762$code.=<<___ if ($avx); 1763 .rva .LSEH_begin_gcm_init_avx 1764 .rva .LSEH_end_gcm_init_avx 1765 .rva .LSEH_info_gcm_init_clmul 1766 1767 .rva .LSEH_begin_gcm_ghash_avx 1768 .rva .LSEH_end_gcm_ghash_avx 1769 .rva .LSEH_info_gcm_ghash_clmul 1770___ 1771$code.=<<___; 1772.section .xdata 1773.align 8 1774.LSEH_info_gcm_gmult_4bit: 1775 .byte 9,0,0,0 1776 .rva se_handler 1777 .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData 1778.LSEH_info_gcm_ghash_4bit: 1779 .byte 9,0,0,0 1780 .rva se_handler 1781 .rva .Lghash_prologue,.Lghash_epilogue # HandlerData 1782.LSEH_info_gcm_init_clmul: 1783 .byte 0x01,0x08,0x03,0x00 1784 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6 1785 .byte 0x04,0x22,0x00,0x00 #sub rsp,0x18 1786.LSEH_info_gcm_ghash_clmul: 1787 .byte 0x01,0x33,0x16,0x00 1788 .byte 0x33,0xf8,0x09,0x00 #movaps 0x90(rsp),xmm15 1789 .byte 0x2e,0xe8,0x08,0x00 #movaps 0x80(rsp),xmm14 1790 .byte 0x29,0xd8,0x07,0x00 #movaps 0x70(rsp),xmm13 1791 .byte 0x24,0xc8,0x06,0x00 #movaps 0x60(rsp),xmm12 1792 .byte 0x1f,0xb8,0x05,0x00 #movaps 0x50(rsp),xmm11 1793 .byte 0x1a,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10 1794 .byte 0x15,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9 1795 .byte 0x10,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8 1796 .byte 0x0c,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7 1797 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6 1798 .byte 0x04,0x01,0x15,0x00 #sub rsp,0xa8 1799___ 1800} 1801 1802$code =~ s/\`([^\`]*)\`/eval($1)/gem; 1803 1804print $code; 1805 1806close STDOUT; 1807