1 //
2 // Copyright (C) 2015-2016 Google, Inc.
3 //
4 // All rights reserved.
5 //
6 // Redistribution and use in source and binary forms, with or without
7 // modification, are permitted provided that the following conditions
8 // are met:
9 //
10 //    Redistributions of source code must retain the above copyright
11 //    notice, this list of conditions and the following disclaimer.
12 //
13 //    Redistributions in binary form must reproduce the above
14 //    copyright notice, this list of conditions and the following
15 //    disclaimer in the documentation and/or other materials provided
16 //    with the distribution.
17 //
18 //    Neither the name of Google Inc. nor the names of its
19 //    contributors may be used to endorse or promote products derived
20 //    from this software without specific prior written permission.
21 //
22 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 // POSSIBILITY OF SUCH DAMAGE.
34 
35 //
36 // Visit the nodes in the glslang intermediate tree representation to
37 // propagate the 'noContraction' qualifier.
38 //
39 
40 #include "propagateNoContraction.h"
41 
42 #include <cstdlib>
43 #include <string>
44 #include <tuple>
45 #include <unordered_map>
46 #include <unordered_set>
47 
48 #include "localintermediate.h"
49 namespace {
50 
51 // Use a string to hold the access chain information, as in most cases the
52 // access chain is short and may contain only one element, which is the symbol
53 // ID.
54 // Example: struct {float a; float b;} s;
55 //  Object s.a will be represented with: <symbol ID of s>/0
56 //  Object s.b will be represented with: <symbol ID of s>/1
57 //  Object s will be represented with: <symbol ID of s>
58 // For members of vector, matrix and arrays, they will be represented with the
59 // same symbol ID of their container symbol objects. This is because their
60 // preciseness is always the same as their container symbol objects.
61 typedef std::string ObjectAccessChain;
62 
63 // The delimiter used in the ObjectAccessChain string to separate symbol ID and
64 // different level of struct indices.
65 const char ObjectAccesschainDelimiter = '/';
66 
67 // Mapping from Symbol IDs of symbol nodes, to their defining operation
68 // nodes.
69 typedef std::unordered_multimap<ObjectAccessChain, glslang::TIntermOperator*> NodeMapping;
70 // Mapping from object nodes to their access chain info string.
71 typedef std::unordered_map<glslang::TIntermTyped*, ObjectAccessChain> AccessChainMapping;
72 
73 // Set of object IDs.
74 typedef std::unordered_set<ObjectAccessChain> ObjectAccesschainSet;
75 // Set of return branch nodes.
76 typedef std::unordered_set<glslang::TIntermBranch*> ReturnBranchNodeSet;
77 
78 // A helper function to tell whether a node is 'noContraction'. Returns true if
79 // the node has 'noContraction' qualifier, otherwise false.
isPreciseObjectNode(glslang::TIntermTyped * node)80 bool isPreciseObjectNode(glslang::TIntermTyped* node)
81 {
82     return node->getType().getQualifier().noContraction;
83 }
84 
85 // Returns true if the opcode is a dereferencing one.
isDereferenceOperation(glslang::TOperator op)86 bool isDereferenceOperation(glslang::TOperator op)
87 {
88     switch (op) {
89     case glslang::EOpIndexDirect:
90     case glslang::EOpIndexDirectStruct:
91     case glslang::EOpIndexIndirect:
92     case glslang::EOpVectorSwizzle:
93     case glslang::EOpMatrixSwizzle:
94         return true;
95     default:
96         return false;
97     }
98 }
99 
100 // Returns true if the opcode leads to an assignment operation.
isAssignOperation(glslang::TOperator op)101 bool isAssignOperation(glslang::TOperator op)
102 {
103     switch (op) {
104     case glslang::EOpAssign:
105     case glslang::EOpAddAssign:
106     case glslang::EOpSubAssign:
107     case glslang::EOpMulAssign:
108     case glslang::EOpVectorTimesMatrixAssign:
109     case glslang::EOpVectorTimesScalarAssign:
110     case glslang::EOpMatrixTimesScalarAssign:
111     case glslang::EOpMatrixTimesMatrixAssign:
112     case glslang::EOpDivAssign:
113     case glslang::EOpModAssign:
114     case glslang::EOpAndAssign:
115     case glslang::EOpLeftShiftAssign:
116     case glslang::EOpRightShiftAssign:
117     case glslang::EOpInclusiveOrAssign:
118     case glslang::EOpExclusiveOrAssign:
119 
120     case glslang::EOpPostIncrement:
121     case glslang::EOpPostDecrement:
122     case glslang::EOpPreIncrement:
123     case glslang::EOpPreDecrement:
124         return true;
125     default:
126         return false;
127     }
128 }
129 
130 // A helper function to get the unsigned int from a given constant union node.
131 // Note the node should only hold a uint scalar.
getStructIndexFromConstantUnion(glslang::TIntermTyped * node)132 unsigned getStructIndexFromConstantUnion(glslang::TIntermTyped* node)
133 {
134     assert(node->getAsConstantUnion() && node->getAsConstantUnion()->isScalar());
135     unsigned struct_dereference_index = node->getAsConstantUnion()->getConstArray()[0].getUConst();
136     return struct_dereference_index;
137 }
138 
139 // A helper function to generate symbol_label.
generateSymbolLabel(glslang::TIntermSymbol * node)140 ObjectAccessChain generateSymbolLabel(glslang::TIntermSymbol* node)
141 {
142     ObjectAccessChain symbol_id =
143         std::to_string(node->getId()) + "(" + node->getName().c_str() + ")";
144     return symbol_id;
145 }
146 
147 // Returns true if the operation is an arithmetic operation and valid for
148 // the 'NoContraction' decoration.
isArithmeticOperation(glslang::TOperator op)149 bool isArithmeticOperation(glslang::TOperator op)
150 {
151     switch (op) {
152     case glslang::EOpAddAssign:
153     case glslang::EOpSubAssign:
154     case glslang::EOpMulAssign:
155     case glslang::EOpVectorTimesMatrixAssign:
156     case glslang::EOpVectorTimesScalarAssign:
157     case glslang::EOpMatrixTimesScalarAssign:
158     case glslang::EOpMatrixTimesMatrixAssign:
159     case glslang::EOpDivAssign:
160     case glslang::EOpModAssign:
161 
162     case glslang::EOpNegative:
163 
164     case glslang::EOpAdd:
165     case glslang::EOpSub:
166     case glslang::EOpMul:
167     case glslang::EOpDiv:
168     case glslang::EOpMod:
169 
170     case glslang::EOpVectorTimesScalar:
171     case glslang::EOpVectorTimesMatrix:
172     case glslang::EOpMatrixTimesVector:
173     case glslang::EOpMatrixTimesScalar:
174     case glslang::EOpMatrixTimesMatrix:
175 
176     case glslang::EOpDot:
177 
178     case glslang::EOpPostIncrement:
179     case glslang::EOpPostDecrement:
180     case glslang::EOpPreIncrement:
181     case glslang::EOpPreDecrement:
182         return true;
183     default:
184         return false;
185     }
186 }
187 
188 // A helper class to help manage the populating_initial_no_contraction_ flag.
189 template <typename T> class StateSettingGuard {
190 public:
StateSettingGuard(T * state_ptr,T new_state_value)191     StateSettingGuard(T* state_ptr, T new_state_value)
192         : state_ptr_(state_ptr), previous_state_(*state_ptr)
193     {
194         *state_ptr = new_state_value;
195     }
StateSettingGuard(T * state_ptr)196     StateSettingGuard(T* state_ptr) : state_ptr_(state_ptr), previous_state_(*state_ptr) {}
setState(T new_state_value)197     void setState(T new_state_value) { *state_ptr_ = new_state_value; }
~StateSettingGuard()198     ~StateSettingGuard() { *state_ptr_ = previous_state_; }
199 
200 private:
201     T* state_ptr_;
202     T previous_state_;
203 };
204 
205 // A helper function to get the front element from a given ObjectAccessChain
getFrontElement(const ObjectAccessChain & chain)206 ObjectAccessChain getFrontElement(const ObjectAccessChain& chain)
207 {
208     size_t pos_delimiter = chain.find(ObjectAccesschainDelimiter);
209     return pos_delimiter == std::string::npos ? chain : chain.substr(0, pos_delimiter);
210 }
211 
212 // A helper function to get the access chain starting from the second element.
subAccessChainFromSecondElement(const ObjectAccessChain & chain)213 ObjectAccessChain subAccessChainFromSecondElement(const ObjectAccessChain& chain)
214 {
215     size_t pos_delimiter = chain.find(ObjectAccesschainDelimiter);
216     return pos_delimiter == std::string::npos ? "" : chain.substr(pos_delimiter + 1);
217 }
218 
219 // A helper function to get the access chain after removing a given prefix.
getSubAccessChainAfterPrefix(const ObjectAccessChain & chain,const ObjectAccessChain & prefix)220 ObjectAccessChain getSubAccessChainAfterPrefix(const ObjectAccessChain& chain,
221                                                const ObjectAccessChain& prefix)
222 {
223     size_t pos = chain.find(prefix);
224     if (pos != 0)
225         return chain;
226     return chain.substr(prefix.length() + sizeof(ObjectAccesschainDelimiter));
227 }
228 
229 //
230 // A traverser which traverses the whole AST and populates:
231 //  1) A mapping from symbol nodes' IDs to their defining operation nodes.
232 //  2) A set of access chains of the initial precise object nodes.
233 //
234 class TSymbolDefinitionCollectingTraverser : public glslang::TIntermTraverser {
235 public:
236     TSymbolDefinitionCollectingTraverser(NodeMapping* symbol_definition_mapping,
237                                          AccessChainMapping* accesschain_mapping,
238                                          ObjectAccesschainSet* precise_objects,
239                                          ReturnBranchNodeSet* precise_return_nodes);
240 
241     bool visitUnary(glslang::TVisit, glslang::TIntermUnary*) override;
242     bool visitBinary(glslang::TVisit, glslang::TIntermBinary*) override;
243     void visitSymbol(glslang::TIntermSymbol*) override;
244     bool visitAggregate(glslang::TVisit, glslang::TIntermAggregate*) override;
245     bool visitBranch(glslang::TVisit, glslang::TIntermBranch*) override;
246 
247 protected:
248     TSymbolDefinitionCollectingTraverser& operator=(const TSymbolDefinitionCollectingTraverser&);
249 
250     // The mapping from symbol node IDs to their defining nodes. This should be
251     // populated along traversing the AST.
252     NodeMapping& symbol_definition_mapping_;
253     // The set of symbol node IDs for precise symbol nodes, the ones marked as
254     // 'noContraction'.
255     ObjectAccesschainSet& precise_objects_;
256     // The set of precise return nodes.
257     ReturnBranchNodeSet& precise_return_nodes_;
258     // A temporary cache of the symbol node whose defining node is to be found
259     // currently along traversing the AST.
260     ObjectAccessChain current_object_;
261     // A map from object node to its access chain. This traverser stores
262     // the built access chains into this map for each object node it has
263     // visited.
264     AccessChainMapping& accesschain_mapping_;
265     // The pointer to the Function Definition node, so we can get the
266     // preciseness of the return expression from it when we traverse the
267     // return branch node.
268     glslang::TIntermAggregate* current_function_definition_node_;
269 };
270 
TSymbolDefinitionCollectingTraverser(NodeMapping * symbol_definition_mapping,AccessChainMapping * accesschain_mapping,ObjectAccesschainSet * precise_objects,std::unordered_set<glslang::TIntermBranch * > * precise_return_nodes)271 TSymbolDefinitionCollectingTraverser::TSymbolDefinitionCollectingTraverser(
272     NodeMapping* symbol_definition_mapping, AccessChainMapping* accesschain_mapping,
273     ObjectAccesschainSet* precise_objects,
274     std::unordered_set<glslang::TIntermBranch*>* precise_return_nodes)
275     : TIntermTraverser(true, false, false), symbol_definition_mapping_(*symbol_definition_mapping),
276       precise_objects_(*precise_objects), precise_return_nodes_(*precise_return_nodes),
277       current_object_(), accesschain_mapping_(*accesschain_mapping),
278       current_function_definition_node_(nullptr) {}
279 
280 // Visits a symbol node, set the current_object_ to the
281 // current node symbol ID, and record a mapping from this node to the current
282 // current_object_, which is the just obtained symbol
283 // ID.
visitSymbol(glslang::TIntermSymbol * node)284 void TSymbolDefinitionCollectingTraverser::visitSymbol(glslang::TIntermSymbol* node)
285 {
286     current_object_ = generateSymbolLabel(node);
287     accesschain_mapping_[node] = current_object_;
288 }
289 
290 // Visits an aggregate node, traverses all of its children.
visitAggregate(glslang::TVisit,glslang::TIntermAggregate * node)291 bool TSymbolDefinitionCollectingTraverser::visitAggregate(glslang::TVisit,
292                                                           glslang::TIntermAggregate* node)
293 {
294     // This aggregate node might be a function definition node, in which case we need to
295     // cache this node, so we can get the preciseness information of the return value
296     // of this function later.
297     StateSettingGuard<glslang::TIntermAggregate*> current_function_definition_node_setting_guard(
298         &current_function_definition_node_);
299     if (node->getOp() == glslang::EOpFunction) {
300         // This is function definition node, we need to cache this node so that we can
301         // get the preciseness of the return value later.
302         current_function_definition_node_setting_guard.setState(node);
303     }
304     // Traverse the items in the sequence.
305     glslang::TIntermSequence& seq = node->getSequence();
306     for (int i = 0; i < (int)seq.size(); ++i) {
307         current_object_.clear();
308         seq[i]->traverse(this);
309     }
310     return false;
311 }
312 
visitBranch(glslang::TVisit,glslang::TIntermBranch * node)313 bool TSymbolDefinitionCollectingTraverser::visitBranch(glslang::TVisit,
314                                                        glslang::TIntermBranch* node)
315 {
316     if (node->getFlowOp() == glslang::EOpReturn && node->getExpression() &&
317         current_function_definition_node_ &&
318         current_function_definition_node_->getType().getQualifier().noContraction) {
319         // This node is a return node with an expression, and its function has a
320         // precise return value. We need to find the involved objects in its
321         // expression and add them to the set of initial precise objects.
322         precise_return_nodes_.insert(node);
323         node->getExpression()->traverse(this);
324     }
325     return false;
326 }
327 
328 // Visits a unary node. This might be an implicit assignment like i++, i--. etc.
visitUnary(glslang::TVisit,glslang::TIntermUnary * node)329 bool TSymbolDefinitionCollectingTraverser::visitUnary(glslang::TVisit /* visit */,
330                                                       glslang::TIntermUnary* node)
331 {
332     current_object_.clear();
333     node->getOperand()->traverse(this);
334     if (isAssignOperation(node->getOp())) {
335         // We should always be able to get an access chain of the operand node.
336         assert(!current_object_.empty());
337 
338         // If the operand node object is 'precise', we collect its access chain
339         // for the initial set of 'precise' objects.
340         if (isPreciseObjectNode(node->getOperand())) {
341             // The operand node is an 'precise' object node, add its
342             // access chain to the set of 'precise' objects. This is to collect
343             // the initial set of 'precise' objects.
344             precise_objects_.insert(current_object_);
345         }
346         // Gets the symbol ID from the object's access chain.
347         ObjectAccessChain id_symbol = getFrontElement(current_object_);
348         // Add a mapping from the symbol ID to this assignment operation node.
349         symbol_definition_mapping_.insert(std::make_pair(id_symbol, node));
350     }
351     // A unary node is not a dereference node, so we clear the access chain which
352     // is under construction.
353     current_object_.clear();
354     return false;
355 }
356 
357 // Visits a binary node and updates the mapping from symbol IDs to the definition
358 // nodes. Also collects the access chains for the initial precise objects.
visitBinary(glslang::TVisit,glslang::TIntermBinary * node)359 bool TSymbolDefinitionCollectingTraverser::visitBinary(glslang::TVisit /* visit */,
360                                                        glslang::TIntermBinary* node)
361 {
362     // Traverses the left node to build the access chain info for the object.
363     current_object_.clear();
364     node->getLeft()->traverse(this);
365 
366     if (isAssignOperation(node->getOp())) {
367         // We should always be able to get an access chain for the left node.
368         assert(!current_object_.empty());
369 
370         // If the left node object is 'precise', it is an initial precise object
371         // specified in the shader source. Adds it to the initial work list to
372         // process later.
373         if (isPreciseObjectNode(node->getLeft())) {
374             // The left node is an 'precise' object node, add its access chain to
375             // the set of 'precise' objects. This is to collect the initial set
376             // of 'precise' objects.
377             precise_objects_.insert(current_object_);
378         }
379         // Gets the symbol ID from the object access chain, which should be the
380         // first element recorded in the access chain.
381         ObjectAccessChain id_symbol = getFrontElement(current_object_);
382         // Adds a mapping from the symbol ID to this assignment operation node.
383         symbol_definition_mapping_.insert(std::make_pair(id_symbol, node));
384 
385         // Traverses the right node, there may be other 'assignment'
386         // operations in the right.
387         current_object_.clear();
388         node->getRight()->traverse(this);
389 
390     } else if (isDereferenceOperation(node->getOp())) {
391         // The left node (parent node) is a struct type object. We need to
392         // record the access chain information of the current node into its
393         // object id.
394         if (node->getOp() == glslang::EOpIndexDirectStruct) {
395             unsigned struct_dereference_index = getStructIndexFromConstantUnion(node->getRight());
396             current_object_.push_back(ObjectAccesschainDelimiter);
397             current_object_.append(std::to_string(struct_dereference_index));
398         }
399         accesschain_mapping_[node] = current_object_;
400 
401         // For a dereference node, there is no need to traverse the right child
402         // node as the right node should always be an integer type object.
403 
404     } else {
405         // For other binary nodes, still traverse the right node.
406         current_object_.clear();
407         node->getRight()->traverse(this);
408     }
409     return false;
410 }
411 
412 // Traverses the AST and returns a tuple of four members:
413 // 1) a mapping from symbol IDs to the definition nodes (aka. assignment nodes) of these symbols.
414 // 2) a mapping from object nodes in the AST to the access chains of these objects.
415 // 3) a set of access chains of precise objects.
416 // 4) a set of return nodes with precise expressions.
417 std::tuple<NodeMapping, AccessChainMapping, ObjectAccesschainSet, ReturnBranchNodeSet>
getSymbolToDefinitionMappingAndPreciseSymbolIDs(const glslang::TIntermediate & intermediate)418 getSymbolToDefinitionMappingAndPreciseSymbolIDs(const glslang::TIntermediate& intermediate)
419 {
420     auto result_tuple = std::make_tuple(NodeMapping(), AccessChainMapping(), ObjectAccesschainSet(),
421                                         ReturnBranchNodeSet());
422 
423     TIntermNode* root = intermediate.getTreeRoot();
424     if (root == 0)
425         return result_tuple;
426 
427     NodeMapping& symbol_definition_mapping = std::get<0>(result_tuple);
428     AccessChainMapping& accesschain_mapping = std::get<1>(result_tuple);
429     ObjectAccesschainSet& precise_objects = std::get<2>(result_tuple);
430     ReturnBranchNodeSet& precise_return_nodes = std::get<3>(result_tuple);
431 
432     // Traverses the AST and populate the results.
433     TSymbolDefinitionCollectingTraverser collector(&symbol_definition_mapping, &accesschain_mapping,
434                                                    &precise_objects, &precise_return_nodes);
435     root->traverse(&collector);
436 
437     return result_tuple;
438 }
439 
440 //
441 // A traverser that determine whether the left node (or operand node for unary
442 // node) of an assignment node is 'precise', containing 'precise' or not,
443 // according to the access chain a given precise object which share the same
444 // symbol as the left node.
445 //
446 // Post-orderly traverses the left node subtree of an binary assignment node and:
447 //
448 //  1) Propagates the 'precise' from the left object nodes to this object node.
449 //
450 //  2) Builds object access chain along the traversal, and also compares with
451 //  the access chain of the given 'precise' object along with the traversal to
452 //  tell if the node to be defined is 'precise' or not.
453 //
454 class TNoContractionAssigneeCheckingTraverser : public glslang::TIntermTraverser {
455 
456     enum DecisionStatus {
457         // The object node to be assigned to may contain 'precise' objects and also not 'precise' objects.
458         Mixed = 0,
459         // The object node to be assigned to is either a 'precise' object or a struct objects whose members are all 'precise'.
460         Precise = 1,
461         // The object node to be assigned to is not a 'precise' object.
462         NotPreicse = 2,
463     };
464 
465 public:
TNoContractionAssigneeCheckingTraverser(const AccessChainMapping & accesschain_mapping)466     TNoContractionAssigneeCheckingTraverser(const AccessChainMapping& accesschain_mapping)
467         : TIntermTraverser(true, false, false), accesschain_mapping_(accesschain_mapping),
468           precise_object_(nullptr) {}
469 
470     // Checks the preciseness of a given assignment node with a precise object
471     // represented as access chain. The precise object shares the same symbol
472     // with the assignee of the given assignment node. Return a tuple of two:
473     //
474     //  1) The preciseness of the assignee node of this assignment node. True
475     //  if the assignee contains 'precise' objects or is 'precise', false if
476     //  the assignee is not 'precise' according to the access chain of the given
477     //  precise object.
478     //
479     //  2) The incremental access chain from the assignee node to its nested
480     //  'precise' object, according to the access chain of the given precise
481     //  object. This incremental access chain can be empty, which means the
482     //  assignee is 'precise'. Otherwise it shows the path to the nested
483     //  precise object.
484     std::tuple<bool, ObjectAccessChain>
getPrecisenessAndRemainedAccessChain(glslang::TIntermOperator * node,const ObjectAccessChain & precise_object)485     getPrecisenessAndRemainedAccessChain(glslang::TIntermOperator* node,
486                                          const ObjectAccessChain& precise_object)
487     {
488         assert(isAssignOperation(node->getOp()));
489         precise_object_ = &precise_object;
490         ObjectAccessChain assignee_object;
491         if (glslang::TIntermBinary* BN = node->getAsBinaryNode()) {
492             // This is a binary assignment node, we need to check the
493             // preciseness of the left node.
494             assert(accesschain_mapping_.count(BN->getLeft()));
495             // The left node (assignee node) is an object node, traverse the
496             // node to let the 'precise' of nesting objects being transfered to
497             // nested objects.
498             BN->getLeft()->traverse(this);
499             // After traversing the left node, if the left node is 'precise',
500             // we can conclude this assignment should propagate 'precise'.
501             if (isPreciseObjectNode(BN->getLeft())) {
502                 return make_tuple(true, ObjectAccessChain());
503             }
504             // If the preciseness of the left node (assignee node) can not
505             // be determined by now, we need to compare the access chain string
506             // of the assignee object with the given precise object.
507             assignee_object = accesschain_mapping_.at(BN->getLeft());
508 
509         } else if (glslang::TIntermUnary* UN = node->getAsUnaryNode()) {
510             // This is a unary assignment node, we need to check the
511             // preciseness of the operand node. For unary assignment node, the
512             // operand node should always be an object node.
513             assert(accesschain_mapping_.count(UN->getOperand()));
514             // Traverse the operand node to let the 'precise' being propagated
515             // from lower nodes to upper nodes.
516             UN->getOperand()->traverse(this);
517             // After traversing the operand node, if the operand node is
518             // 'precise', this assignment should propagate 'precise'.
519             if (isPreciseObjectNode(UN->getOperand())) {
520                 return make_tuple(true, ObjectAccessChain());
521             }
522             // If the preciseness of the operand node (assignee node) can not
523             // be determined by now, we need to compare the access chain string
524             // of the assignee object with the given precise object.
525             assignee_object = accesschain_mapping_.at(UN->getOperand());
526         } else {
527             // Not a binary or unary node, should not happen.
528             assert(false);
529         }
530 
531         // Compare the access chain string of the assignee node with the given
532         // precise object to determine if this assignment should propagate
533         // 'precise'.
534         if (assignee_object.find(precise_object) == 0) {
535             // The access chain string of the given precise object is a prefix
536             // of assignee's access chain string. The assignee should be
537             // 'precise'.
538             return make_tuple(true, ObjectAccessChain());
539         } else if (precise_object.find(assignee_object) == 0) {
540             // The assignee's access chain string is a prefix of the given
541             // precise object, the assignee object contains 'precise' object,
542             // and we need to pass the remained access chain to the object nodes
543             // in the right.
544             return make_tuple(true, getSubAccessChainAfterPrefix(precise_object, assignee_object));
545         } else {
546             // The access chain strings do not match, the assignee object can
547             // not be labeled as 'precise' according to the given precise
548             // object.
549             return make_tuple(false, ObjectAccessChain());
550         }
551     }
552 
553 protected:
554     TNoContractionAssigneeCheckingTraverser& operator=(const TNoContractionAssigneeCheckingTraverser&);
555 
556     bool visitBinary(glslang::TVisit, glslang::TIntermBinary* node) override;
557     void visitSymbol(glslang::TIntermSymbol* node) override;
558 
559     // A map from object nodes to their access chain string (used as object ID).
560     const AccessChainMapping& accesschain_mapping_;
561     // A given precise object, represented in it access chain string. This
562     // precise object is used to be compared with the assignee node to tell if
563     // the assignee node is 'precise', contains 'precise' object or not
564     // 'precise'.
565     const ObjectAccessChain* precise_object_;
566 };
567 
568 // Visits a binary node. If the node is an object node, it must be a dereference
569 // node. In such cases, if the left node is 'precise', this node should also be
570 // 'precise'.
visitBinary(glslang::TVisit,glslang::TIntermBinary * node)571 bool TNoContractionAssigneeCheckingTraverser::visitBinary(glslang::TVisit,
572                                                           glslang::TIntermBinary* node)
573 {
574     // Traverses the left so that we transfer the 'precise' from nesting object
575     // to its nested object.
576     node->getLeft()->traverse(this);
577     // If this binary node is an object node, we should have it in the
578     // accesschain_mapping_.
579     if (accesschain_mapping_.count(node)) {
580         // A binary object node must be a dereference node.
581         assert(isDereferenceOperation(node->getOp()));
582         // If the left node is 'precise', this node should also be precise,
583         // otherwise, compare with the given precise_object_. If the
584         // access chain of this node matches with the given precise_object_,
585         // this node should be marked as 'precise'.
586         if (isPreciseObjectNode(node->getLeft())) {
587             node->getWritableType().getQualifier().noContraction = true;
588         } else if (accesschain_mapping_.at(node) == *precise_object_) {
589             node->getWritableType().getQualifier().noContraction = true;
590         }
591     }
592     return false;
593 }
594 
595 // Visits a symbol node, if the symbol node ID (its access chain string) matches
596 // with the given precise object, this node should be 'precise'.
visitSymbol(glslang::TIntermSymbol * node)597 void TNoContractionAssigneeCheckingTraverser::visitSymbol(glslang::TIntermSymbol* node)
598 {
599     // A symbol node should always be an object node, and should have been added
600     // to the map from object nodes to their access chain strings.
601     assert(accesschain_mapping_.count(node));
602     if (accesschain_mapping_.at(node) == *precise_object_) {
603         node->getWritableType().getQualifier().noContraction = true;
604     }
605 }
606 
607 //
608 // A traverser that only traverses the right side of binary assignment nodes
609 // and the operand node of unary assignment nodes.
610 //
611 // 1) Marks arithmetic operations as 'NoContraction'.
612 //
613 // 2) Find the object which should be marked as 'precise' in the right and
614 //    update the 'precise' object work list.
615 //
616 class TNoContractionPropagator : public glslang::TIntermTraverser {
617 public:
TNoContractionPropagator(ObjectAccesschainSet * precise_objects,const AccessChainMapping & accesschain_mapping)618     TNoContractionPropagator(ObjectAccesschainSet* precise_objects,
619                              const AccessChainMapping& accesschain_mapping)
620         : TIntermTraverser(true, false, false),
621           precise_objects_(*precise_objects), added_precise_object_ids_(),
622           remained_accesschain_(), accesschain_mapping_(accesschain_mapping) {}
623 
624     // Propagates 'precise' in the right nodes of a given assignment node with
625     // access chain record from the assignee node to a 'precise' object it
626     // contains.
627     void
propagateNoContractionInOneExpression(glslang::TIntermTyped * defining_node,const ObjectAccessChain & assignee_remained_accesschain)628     propagateNoContractionInOneExpression(glslang::TIntermTyped* defining_node,
629                                           const ObjectAccessChain& assignee_remained_accesschain)
630     {
631         remained_accesschain_ = assignee_remained_accesschain;
632         if (glslang::TIntermBinary* BN = defining_node->getAsBinaryNode()) {
633             assert(isAssignOperation(BN->getOp()));
634             BN->getRight()->traverse(this);
635             if (isArithmeticOperation(BN->getOp())) {
636                 BN->getWritableType().getQualifier().noContraction = true;
637             }
638         } else if (glslang::TIntermUnary* UN = defining_node->getAsUnaryNode()) {
639             assert(isAssignOperation(UN->getOp()));
640             UN->getOperand()->traverse(this);
641             if (isArithmeticOperation(UN->getOp())) {
642                 UN->getWritableType().getQualifier().noContraction = true;
643             }
644         }
645     }
646 
647     // Propagates 'precise' in a given precise return node.
propagateNoContractionInReturnNode(glslang::TIntermBranch * return_node)648     void propagateNoContractionInReturnNode(glslang::TIntermBranch* return_node)
649     {
650         remained_accesschain_ = "";
651         assert(return_node->getFlowOp() == glslang::EOpReturn && return_node->getExpression());
652         return_node->getExpression()->traverse(this);
653     }
654 
655 protected:
656     TNoContractionPropagator& operator=(const TNoContractionPropagator&);
657 
658     // Visits an aggregate node. The node can be a initializer list, in which
659     // case we need to find the 'precise' or 'precise' containing object node
660     // with the access chain record. In other cases, just need to traverse all
661     // the children nodes.
visitAggregate(glslang::TVisit,glslang::TIntermAggregate * node)662     bool visitAggregate(glslang::TVisit, glslang::TIntermAggregate* node) override
663     {
664         if (!remained_accesschain_.empty() && node->getOp() == glslang::EOpConstructStruct) {
665             // This is a struct initializer node, and the remained
666             // access chain is not empty, we need to refer to the
667             // assignee_remained_access_chain_ to find the nested
668             // 'precise' object. And we don't need to visit other nodes in this
669             // aggregate node.
670 
671             // Gets the struct dereference index that leads to 'precise' object.
672             ObjectAccessChain precise_accesschain_index_str =
673                 getFrontElement(remained_accesschain_);
674             unsigned precise_accesschain_index = (unsigned)strtoul(precise_accesschain_index_str.c_str(), nullptr, 10);
675             // Gets the node pointed by the access chain index extracted before.
676             glslang::TIntermTyped* potential_precise_node =
677                 node->getSequence()[precise_accesschain_index]->getAsTyped();
678             assert(potential_precise_node);
679             // Pop the front access chain index from the path, and visit the nested node.
680             {
681                 ObjectAccessChain next_level_accesschain =
682                     subAccessChainFromSecondElement(remained_accesschain_);
683                 StateSettingGuard<ObjectAccessChain> setup_remained_accesschain_for_next_level(
684                     &remained_accesschain_, next_level_accesschain);
685                 potential_precise_node->traverse(this);
686             }
687             return false;
688         }
689         return true;
690     }
691 
692     // Visits a binary node. A binary node can be an object node, e.g. a dereference node.
693     // As only the top object nodes in the right side of an assignment needs to be visited
694     // and added to 'precise' work list, this traverser won't visit the children nodes of
695     // an object node. If the binary node does not represent an object node, it should
696     // go on to traverse its children nodes and if it is an arithmetic operation node, this
697     // operation should be marked as 'noContraction'.
visitBinary(glslang::TVisit,glslang::TIntermBinary * node)698     bool visitBinary(glslang::TVisit, glslang::TIntermBinary* node) override
699     {
700         if (isDereferenceOperation(node->getOp())) {
701             // This binary node is an object node. Need to update the precise
702             // object set with the access chain of this node + remained
703             // access chain .
704             ObjectAccessChain new_precise_accesschain = accesschain_mapping_.at(node);
705             if (remained_accesschain_.empty()) {
706                 node->getWritableType().getQualifier().noContraction = true;
707             } else {
708                 new_precise_accesschain += ObjectAccesschainDelimiter + remained_accesschain_;
709             }
710             // Cache the access chain as added precise object, so we won't add the
711             // same object to the work list again.
712             if (!added_precise_object_ids_.count(new_precise_accesschain)) {
713                 precise_objects_.insert(new_precise_accesschain);
714                 added_precise_object_ids_.insert(new_precise_accesschain);
715             }
716             // Only the upper-most object nodes should be visited, so do not
717             // visit children of this object node.
718             return false;
719         }
720         // If this is an arithmetic operation, marks this node as 'noContraction'.
721         if (isArithmeticOperation(node->getOp()) && node->getBasicType() != glslang::EbtInt) {
722             node->getWritableType().getQualifier().noContraction = true;
723         }
724         // As this node is not an object node, need to traverse the children nodes.
725         return true;
726     }
727 
728     // Visits a unary node. A unary node can not be an object node. If the operation
729     // is an arithmetic operation, need to mark this node as 'noContraction'.
visitUnary(glslang::TVisit,glslang::TIntermUnary * node)730     bool visitUnary(glslang::TVisit /* visit */, glslang::TIntermUnary* node) override
731     {
732         // If this is an arithmetic operation, marks this with 'noContraction'
733         if (isArithmeticOperation(node->getOp())) {
734             node->getWritableType().getQualifier().noContraction = true;
735         }
736         return true;
737     }
738 
739     // Visits a symbol node. A symbol node is always an object node. So we
740     // should always be able to find its in our collected mapping from object
741     // nodes to access chains.  As an object node, a symbol node can be either
742     // 'precise' or containing 'precise' objects according to unused
743     // access chain information we have when we visit this node.
visitSymbol(glslang::TIntermSymbol * node)744     void visitSymbol(glslang::TIntermSymbol* node) override
745     {
746         // Symbol nodes are object nodes and should always have an
747         // access chain collected before matches with it.
748         assert(accesschain_mapping_.count(node));
749         ObjectAccessChain new_precise_accesschain = accesschain_mapping_.at(node);
750         // If the unused access chain is empty, this symbol node should be
751         // marked as 'precise'.  Otherwise, the unused access chain should be
752         // appended to the symbol ID to build a new access chain which points to
753         // the nested 'precise' object in this symbol object.
754         if (remained_accesschain_.empty()) {
755             node->getWritableType().getQualifier().noContraction = true;
756         } else {
757             new_precise_accesschain += ObjectAccesschainDelimiter + remained_accesschain_;
758         }
759         // Add the new 'precise' access chain to the work list and make sure we
760         // don't visit it again.
761         if (!added_precise_object_ids_.count(new_precise_accesschain)) {
762             precise_objects_.insert(new_precise_accesschain);
763             added_precise_object_ids_.insert(new_precise_accesschain);
764         }
765     }
766 
767     // A set of precise objects, represented as access chains.
768     ObjectAccesschainSet& precise_objects_;
769     // Visited symbol nodes, should not revisit these nodes.
770     ObjectAccesschainSet added_precise_object_ids_;
771     // The left node of an assignment operation might be an parent of 'precise' objects.
772     // This means the left node might not be an 'precise' object node, but it may contains
773     // 'precise' qualifier which should be propagated to the corresponding child node in
774     // the right. So we need the path from the left node to its nested 'precise' node to
775     // tell us how to find the corresponding 'precise' node in the right.
776     ObjectAccessChain remained_accesschain_;
777     // A map from node pointers to their access chains.
778     const AccessChainMapping& accesschain_mapping_;
779 };
780 }
781 
782 namespace glslang {
783 
PropagateNoContraction(const glslang::TIntermediate & intermediate)784 void PropagateNoContraction(const glslang::TIntermediate& intermediate)
785 {
786     // First, traverses the AST, records symbols with their defining operations
787     // and collects the initial set of precise symbols (symbol nodes that marked
788     // as 'noContraction') and precise return nodes.
789     auto mappings_and_precise_objects =
790         getSymbolToDefinitionMappingAndPreciseSymbolIDs(intermediate);
791 
792     // The mapping of symbol node IDs to their defining nodes. This enables us
793     // to get the defining node directly from a given symbol ID without
794     // traversing the tree again.
795     NodeMapping& symbol_definition_mapping = std::get<0>(mappings_and_precise_objects);
796 
797     // The mapping of object nodes to their access chains recorded.
798     AccessChainMapping& accesschain_mapping = std::get<1>(mappings_and_precise_objects);
799 
800     // The initial set of 'precise' objects which are represented as the
801     // access chain toward them.
802     ObjectAccesschainSet& precise_object_accesschains = std::get<2>(mappings_and_precise_objects);
803 
804     // The set of 'precise' return nodes.
805     ReturnBranchNodeSet& precise_return_nodes = std::get<3>(mappings_and_precise_objects);
806 
807     // Second, uses the initial set of precise objects as a work list, pops an
808     // access chain, extract the symbol ID from it. Then:
809     //  1) Check the assignee object, see if it is 'precise' object node or
810     //  contains 'precise' object. Obtain the incremental access chain from the
811     //  assignee node to its nested 'precise' node (if any).
812     //  2) If the assignee object node is 'precise' or it contains 'precise'
813     //  objects, traverses the right side of the assignment operation
814     //  expression to mark arithmetic operations as 'noContration' and update
815     //  'precise' access chain work list with new found object nodes.
816     // Repeat above steps until the work list is empty.
817     TNoContractionAssigneeCheckingTraverser checker(accesschain_mapping);
818     TNoContractionPropagator propagator(&precise_object_accesschains, accesschain_mapping);
819 
820     // We have two initial precise work lists to handle:
821     //  1) precise return nodes
822     //  2) precise object access chains
823     // We should process the precise return nodes first and the involved
824     // objects in the return expression should be added to the precise object
825     // access chain set.
826     while (!precise_return_nodes.empty()) {
827         glslang::TIntermBranch* precise_return_node = *precise_return_nodes.begin();
828         propagator.propagateNoContractionInReturnNode(precise_return_node);
829         precise_return_nodes.erase(precise_return_node);
830     }
831 
832     while (!precise_object_accesschains.empty()) {
833         // Get the access chain of a precise object from the work list.
834         ObjectAccessChain precise_object_accesschain = *precise_object_accesschains.begin();
835         // Get the symbol id from the access chain.
836         ObjectAccessChain symbol_id = getFrontElement(precise_object_accesschain);
837         // Get all the defining nodes of that symbol ID.
838         std::pair<NodeMapping::iterator, NodeMapping::iterator> range =
839             symbol_definition_mapping.equal_range(symbol_id);
840         // Visits all the assignment nodes of that symbol ID and
841         //  1) Check if the assignee node is 'precise' or contains 'precise'
842         //  objects.
843         //  2) Propagate the 'precise' to the top layer object nodes
844         //  in the right side of the assignment operation, update the 'precise'
845         //  work list with new access chains representing the new 'precise'
846         //  objects, and mark arithmetic operations as 'noContraction'.
847         for (NodeMapping::iterator defining_node_iter = range.first;
848              defining_node_iter != range.second; defining_node_iter++) {
849             TIntermOperator* defining_node = defining_node_iter->second;
850             // Check the assignee node.
851             auto checker_result = checker.getPrecisenessAndRemainedAccessChain(
852                 defining_node, precise_object_accesschain);
853             bool& contain_precise = std::get<0>(checker_result);
854             ObjectAccessChain& remained_accesschain = std::get<1>(checker_result);
855             // If the assignee node is 'precise' or contains 'precise', propagate the
856             // 'precise' to the right. Otherwise just skip this assignment node.
857             if (contain_precise) {
858                 propagator.propagateNoContractionInOneExpression(defining_node,
859                                                                  remained_accesschain);
860             }
861         }
862         // Remove the last processed 'precise' object from the work list.
863         precise_object_accesschains.erase(precise_object_accesschain);
864     }
865 }
866 };
867