1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // from google3/util/gtl/shared_ptr.h
32 
33 #ifndef GOOGLE_PROTOBUF_STUBS_SHARED_PTR_H__
34 #define GOOGLE_PROTOBUF_STUBS_SHARED_PTR_H__
35 
36 #include <google/protobuf/stubs/atomicops.h>
37 
38 #include <algorithm>  // for swap
39 #include <stddef.h>
40 #include <memory>
41 
42 namespace google {
43 namespace protobuf {
44 namespace internal {
45 
46 // Alias to std::shared_ptr for any C++11 platform,
47 // and for any supported MSVC compiler.
48 #if !defined(UTIL_GTL_USE_STD_SHARED_PTR) && \
49     (defined(COMPILER_MSVC) || defined(LANG_CXX11))
50 #define UTIL_GTL_USE_STD_SHARED_PTR 1
51 #endif
52 
53 #if defined(UTIL_GTL_USE_STD_SHARED_PTR) && UTIL_GTL_USE_STD_SHARED_PTR
54 
55 // These are transitional.  They will be going away soon.
56 // Please just #include <memory> and just type std::shared_ptr yourself, instead
57 // of relying on this file.
58 //
59 // Migration doc: http://go/std-shared-ptr-lsc
60 using std::enable_shared_from_this;
61 using std::shared_ptr;
62 using std::static_pointer_cast;
63 using std::weak_ptr;
64 
65 #else  // below, UTIL_GTL_USE_STD_SHARED_PTR not set or set to 0.
66 
67 // For everything else there is the google3 implementation.
68 inline bool RefCountDec(volatile Atomic32 *ptr) {
69   return Barrier_AtomicIncrement(ptr, -1) != 0;
70 }
71 
72 inline void RefCountInc(volatile Atomic32 *ptr) {
73   NoBarrier_AtomicIncrement(ptr, 1);
74 }
75 
76 template <typename T> class shared_ptr;
77 template <typename T> class weak_ptr;
78 
79 // This class is an internal implementation detail for shared_ptr. If two
80 // shared_ptrs point to the same object, they also share a control block.
81 // An "empty" shared_pointer refers to NULL and also has a NULL control block.
82 // It contains all of the state that's needed for reference counting or any
83 // other kind of resource management. In this implementation the control block
84 // happens to consist of two atomic words, the reference count (the number
85 // of shared_ptrs that share ownership of the object) and the weak count
86 // (the number of weak_ptrs that observe the object, plus 1 if the
87 // refcount is nonzero).
88 //
89 // The "plus 1" is to prevent a race condition in the shared_ptr and
90 // weak_ptr destructors. We need to make sure the control block is
91 // only deleted once, so we need to make sure that at most one
92 // object sees the weak count decremented from 1 to 0.
93 class SharedPtrControlBlock {
94   template <typename T> friend class shared_ptr;
95   template <typename T> friend class weak_ptr;
96  private:
97   SharedPtrControlBlock() : refcount_(1), weak_count_(1) { }
98   Atomic32 refcount_;
99   Atomic32 weak_count_;
100 };
101 
102 // Forward declaration. The class is defined below.
103 template <typename T> class enable_shared_from_this;
104 
105 template <typename T>
106 class shared_ptr {
107   template <typename U> friend class weak_ptr;
108  public:
109   typedef T element_type;
110 
111   shared_ptr() : ptr_(NULL), control_block_(NULL) {}
112 
113   explicit shared_ptr(T* ptr)
114       : ptr_(ptr),
115         control_block_(ptr != NULL ? new SharedPtrControlBlock : NULL) {
116     // If p is non-null and T inherits from enable_shared_from_this, we
117     // set up the data that shared_from_this needs.
118     MaybeSetupWeakThis(ptr);
119   }
120 
121   // Copy constructor: makes this object a copy of ptr, and increments
122   // the reference count.
123   template <typename U>
124   shared_ptr(const shared_ptr<U>& ptr)
125       : ptr_(NULL),
126         control_block_(NULL) {
127     Initialize(ptr);
128   }
129   // Need non-templated version to prevent the compiler-generated default
130   shared_ptr(const shared_ptr<T>& ptr)
131       : ptr_(NULL),
132         control_block_(NULL) {
133     Initialize(ptr);
134   }
135 
136   // Assignment operator. Replaces the existing shared_ptr with ptr.
137   // Increment ptr's reference count and decrement the one being replaced.
138   template <typename U>
139   shared_ptr<T>& operator=(const shared_ptr<U>& ptr) {
140     if (ptr_ != ptr.ptr_) {
141       shared_ptr<T> me(ptr);   // will hold our previous state to be destroyed.
142       swap(me);
143     }
144     return *this;
145   }
146 
147   // Need non-templated version to prevent the compiler-generated default
148   shared_ptr<T>& operator=(const shared_ptr<T>& ptr) {
149     if (ptr_ != ptr.ptr_) {
150       shared_ptr<T> me(ptr);   // will hold our previous state to be destroyed.
151       swap(me);
152     }
153     return *this;
154   }
155 
156   // TODO(austern): Consider providing this constructor. The draft C++ standard
157   // (20.8.10.2.1) includes it. However, it says that this constructor throws
158   // a bad_weak_ptr exception when ptr is expired. Is it better to provide this
159   // constructor and make it do something else, like fail with a CHECK, or to
160   // leave this constructor out entirely?
161   //
162   // template <typename U>
163   // shared_ptr(const weak_ptr<U>& ptr);
164 
165   ~shared_ptr() {
166     if (ptr_ != NULL) {
167       if (!RefCountDec(&control_block_->refcount_)) {
168         delete ptr_;
169 
170         // weak_count_ is defined as the number of weak_ptrs that observe
171         // ptr_, plus 1 if refcount_ is nonzero.
172         if (!RefCountDec(&control_block_->weak_count_)) {
173           delete control_block_;
174         }
175       }
176     }
177   }
178 
179   // Replaces underlying raw pointer with the one passed in.  The reference
180   // count is set to one (or zero if the pointer is NULL) for the pointer
181   // being passed in and decremented for the one being replaced.
182   //
183   // If you have a compilation error with this code, make sure you aren't
184   // passing NULL, nullptr, or 0 to this function.  Call reset without an
185   // argument to reset to a null ptr.
186   template <typename Y>
187   void reset(Y* p) {
188     if (p != ptr_) {
189       shared_ptr<T> tmp(p);
190       tmp.swap(*this);
191     }
192   }
193 
194   void reset() {
195     reset(static_cast<T*>(NULL));
196   }
197 
198   // Exchanges the contents of this with the contents of r.  This function
199   // supports more efficient swapping since it eliminates the need for a
200   // temporary shared_ptr object.
201   void swap(shared_ptr<T>& r) {
202     using std::swap;  // http://go/using-std-swap
203     swap(ptr_, r.ptr_);
204     swap(control_block_, r.control_block_);
205   }
206 
207   // The following function is useful for gaining access to the underlying
208   // pointer when a shared_ptr remains in scope so the reference-count is
209   // known to be > 0 (e.g. for parameter passing).
210   T* get() const {
211     return ptr_;
212   }
213 
214   T& operator*() const {
215     return *ptr_;
216   }
217 
218   T* operator->() const {
219     return ptr_;
220   }
221 
222   long use_count() const {
223     return control_block_ ? control_block_->refcount_ : 1;
224   }
225 
226   bool unique() const {
227     return use_count() == 1;
228   }
229 
230  private:
231   // If r is non-empty, initialize *this to share ownership with r,
232   // increasing the underlying reference count.
233   // If r is empty, *this remains empty.
234   // Requires: this is empty, namely this->ptr_ == NULL.
235   template <typename U>
236   void Initialize(const shared_ptr<U>& r) {
237     // This performs a static_cast on r.ptr_ to U*, which is a no-op since it
238     // is already a U*. So initialization here requires that r.ptr_ is
239     // implicitly convertible to T*.
240     InitializeWithStaticCast<U>(r);
241   }
242 
243   // Initializes *this as described in Initialize, but additionally performs a
244   // static_cast from r.ptr_ (V*) to U*.
245   // NOTE(gfc): We'd need a more general form to support const_pointer_cast and
246   // dynamic_pointer_cast, but those operations are sufficiently discouraged
247   // that supporting static_pointer_cast is sufficient.
248   template <typename U, typename V>
249   void InitializeWithStaticCast(const shared_ptr<V>& r) {
250     if (r.control_block_ != NULL) {
251       RefCountInc(&r.control_block_->refcount_);
252 
253       ptr_ = static_cast<U*>(r.ptr_);
254       control_block_ = r.control_block_;
255     }
256   }
257 
258   // Helper function for the constructor that takes a raw pointer. If T
259   // doesn't inherit from enable_shared_from_this<T> then we have nothing to
260   // do, so this function is trivial and inline. The other version is declared
261   // out of line, after the class definition of enable_shared_from_this.
262   void MaybeSetupWeakThis(enable_shared_from_this<T>* ptr);
263   void MaybeSetupWeakThis(...) { }
264 
265   T* ptr_;
266   SharedPtrControlBlock* control_block_;
267 
268 #ifndef SWIG
269   template <typename U>
270   friend class shared_ptr;
271 
272   template <typename U, typename V>
273   friend shared_ptr<U> static_pointer_cast(const shared_ptr<V>& rhs);
274 #endif
275 };
276 
277 // Matches the interface of std::swap as an aid to generic programming.
278 template <typename T> void swap(shared_ptr<T>& r, shared_ptr<T>& s) {
279   r.swap(s);
280 }
281 
282 template <typename T, typename U>
283 shared_ptr<T> static_pointer_cast(const shared_ptr<U>& rhs) {
284   shared_ptr<T> lhs;
285   lhs.template InitializeWithStaticCast<T>(rhs);
286   return lhs;
287 }
288 
289 // See comments at the top of the file for a description of why this
290 // class exists, and the draft C++ standard (as of July 2009 the
291 // latest draft is N2914) for the detailed specification.
292 template <typename T>
293 class weak_ptr {
294   template <typename U> friend class weak_ptr;
295  public:
296   typedef T element_type;
297 
298   // Create an empty (i.e. already expired) weak_ptr.
299   weak_ptr() : ptr_(NULL), control_block_(NULL) { }
300 
301   // Create a weak_ptr that observes the same object that ptr points
302   // to.  Note that there is no race condition here: we know that the
303   // control block can't disappear while we're looking at it because
304   // it is owned by at least one shared_ptr, ptr.
305   template <typename U> weak_ptr(const shared_ptr<U>& ptr) {
306     CopyFrom(ptr.ptr_, ptr.control_block_);
307   }
308 
309   // Copy a weak_ptr. The object it points to might disappear, but we
310   // don't care: we're only working with the control block, and it can't
311   // disappear while we're looking at because it's owned by at least one
312   // weak_ptr, ptr.
313   template <typename U> weak_ptr(const weak_ptr<U>& ptr) {
314     CopyFrom(ptr.ptr_, ptr.control_block_);
315   }
316 
317   // Need non-templated version to prevent default copy constructor
318   weak_ptr(const weak_ptr& ptr) {
319     CopyFrom(ptr.ptr_, ptr.control_block_);
320   }
321 
322   // Destroy the weak_ptr. If no shared_ptr owns the control block, and if
323   // we are the last weak_ptr to own it, then it can be deleted. Note that
324   // weak_count_ is defined as the number of weak_ptrs sharing this control
325   // block, plus 1 if there are any shared_ptrs. We therefore know that it's
326   // safe to delete the control block when weak_count_ reaches 0, without
327   // having to perform any additional tests.
328   ~weak_ptr() {
329     if (control_block_ != NULL &&
330         !RefCountDec(&control_block_->weak_count_)) {
331       delete control_block_;
332     }
333   }
334 
335   weak_ptr& operator=(const weak_ptr& ptr) {
336     if (&ptr != this) {
337       weak_ptr tmp(ptr);
338       tmp.swap(*this);
339     }
340     return *this;
341   }
342   template <typename U> weak_ptr& operator=(const weak_ptr<U>& ptr) {
343     weak_ptr tmp(ptr);
344     tmp.swap(*this);
345     return *this;
346   }
347   template <typename U> weak_ptr& operator=(const shared_ptr<U>& ptr) {
348     weak_ptr tmp(ptr);
349     tmp.swap(*this);
350     return *this;
351   }
352 
353   void swap(weak_ptr& ptr) {
354     using std::swap;  // http://go/using-std-swap
355     swap(ptr_, ptr.ptr_);
356     swap(control_block_, ptr.control_block_);
357   }
358 
359   void reset() {
360     weak_ptr tmp;
361     tmp.swap(*this);
362   }
363 
364   // Return the number of shared_ptrs that own the object we are observing.
365   // Note that this number can be 0 (if this pointer has expired).
366   long use_count() const {
367     return control_block_ != NULL ? control_block_->refcount_ : 0;
368   }
369 
370   bool expired() const { return use_count() == 0; }
371 
372   // Return a shared_ptr that owns the object we are observing. If we
373   // have expired, the shared_ptr will be empty. We have to be careful
374   // about concurrency, though, since some other thread might be
375   // destroying the last owning shared_ptr while we're in this
376   // function.  We want to increment the refcount only if it's nonzero
377   // and get the new value, and we want that whole operation to be
378   // atomic.
379   shared_ptr<T> lock() const {
380     shared_ptr<T> result;
381     if (control_block_ != NULL) {
382       Atomic32 old_refcount;
383       do {
384         old_refcount = control_block_->refcount_;
385         if (old_refcount == 0)
386           break;
387       } while (old_refcount !=
388                NoBarrier_CompareAndSwap(
389                    &control_block_->refcount_, old_refcount,
390                    old_refcount + 1));
391       if (old_refcount > 0) {
392         result.ptr_ = ptr_;
393         result.control_block_ = control_block_;
394       }
395     }
396 
397     return result;
398   }
399 
400  private:
401   void CopyFrom(T* ptr, SharedPtrControlBlock* control_block) {
402     ptr_ = ptr;
403     control_block_ = control_block;
404     if (control_block_ != NULL)
405       RefCountInc(&control_block_->weak_count_);
406   }
407 
408  private:
409   element_type* ptr_;
410   SharedPtrControlBlock* control_block_;
411 };
412 
413 template <typename T> void swap(weak_ptr<T>& r, weak_ptr<T>& s) {
414   r.swap(s);
415 }
416 
417 // See comments at the top of the file for a description of why this class
418 // exists, and section 20.8.10.5 of the draft C++ standard (as of July 2009
419 // the latest draft is N2914) for the detailed specification.
420 template <typename T>
421 class enable_shared_from_this {
422   friend class shared_ptr<T>;
423  public:
424   // Precondition: there must be a shared_ptr that owns *this and that was
425   // created, directly or indirectly, from a raw pointer of type T*. (The
426   // latter part of the condition is technical but not quite redundant; it
427   // rules out some complicated uses involving inheritance hierarchies.)
428   shared_ptr<T> shared_from_this() {
429     // Behavior is undefined if the precondition isn't satisfied; we choose
430     // to die with a CHECK failure.
431     CHECK(!weak_this_.expired()) << "No shared_ptr owns this object";
432     return weak_this_.lock();
433   }
434   shared_ptr<const T> shared_from_this() const {
435     CHECK(!weak_this_.expired()) << "No shared_ptr owns this object";
436     return weak_this_.lock();
437   }
438 
439  protected:
440   enable_shared_from_this() { }
441   enable_shared_from_this(const enable_shared_from_this& other) { }
442   enable_shared_from_this& operator=(const enable_shared_from_this& other) {
443     return *this;
444   }
445   ~enable_shared_from_this() { }
446 
447  private:
448   weak_ptr<T> weak_this_;
449 };
450 
451 // This is a helper function called by shared_ptr's constructor from a raw
452 // pointer. If T inherits from enable_shared_from_this<T>, it sets up
453 // weak_this_ so that shared_from_this works correctly. If T does not inherit
454 // from weak_this we get a different overload, defined inline, which does
455 // nothing.
456 template<typename T>
457 void shared_ptr<T>::MaybeSetupWeakThis(enable_shared_from_this<T>* ptr) {
458   if (ptr) {
459     CHECK(ptr->weak_this_.expired()) << "Object already owned by a shared_ptr";
460     ptr->weak_this_ = *this;
461   }
462 }
463 
464 #endif  // UTIL_GTL_USE_STD_SHARED_PTR
465 
466 }  // internal
467 }  // namespace protobuf
468 }  // namespace google
469 
470 #endif  // GOOGLE_PROTOBUF_STUBS_SHARED_PTR_H__
471