1; 2; jidctflt.asm - floating-point IDCT (SSE & MMX) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; Copyright (C) 2016, D. R. Commander. 6; 7; Based on the x86 SIMD extension for IJG JPEG library 8; Copyright (C) 1999-2006, MIYASAKA Masaru. 9; For conditions of distribution and use, see copyright notice in jsimdext.inc 10; 11; This file should be assembled with NASM (Netwide Assembler), 12; can *not* be assembled with Microsoft's MASM or any compatible 13; assembler (including Borland's Turbo Assembler). 14; NASM is available from http://nasm.sourceforge.net/ or 15; http://sourceforge.net/project/showfiles.php?group_id=6208 16; 17; This file contains a floating-point implementation of the inverse DCT 18; (Discrete Cosine Transform). The following code is based directly on 19; the IJG's original jidctflt.c; see the jidctflt.c for more details. 20; 21; [TAB8] 22 23%include "jsimdext.inc" 24%include "jdct.inc" 25 26; -------------------------------------------------------------------------- 27 28%macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) 29 shufps %1, %2, 0x44 30%endmacro 31 32%macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) 33 shufps %1, %2, 0xEE 34%endmacro 35 36; -------------------------------------------------------------------------- 37 SECTION SEG_CONST 38 39 alignz 32 40 GLOBAL_DATA(jconst_idct_float_sse) 41 42EXTN(jconst_idct_float_sse): 43 44PD_1_414 times 4 dd 1.414213562373095048801689 45PD_1_847 times 4 dd 1.847759065022573512256366 46PD_1_082 times 4 dd 1.082392200292393968799446 47PD_M2_613 times 4 dd -2.613125929752753055713286 48PD_0_125 times 4 dd 0.125 ; 1/8 49PB_CENTERJSAMP times 8 db CENTERJSAMPLE 50 51 alignz 32 52 53; -------------------------------------------------------------------------- 54 SECTION SEG_TEXT 55 BITS 32 56; 57; Perform dequantization and inverse DCT on one block of coefficients. 58; 59; GLOBAL(void) 60; jsimd_idct_float_sse(void *dct_table, JCOEFPTR coef_block, 61; JSAMPARRAY output_buf, JDIMENSION output_col) 62; 63 64%define dct_table(b) (b) + 8 ; void *dct_table 65%define coef_block(b) (b) + 12 ; JCOEFPTR coef_block 66%define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf 67%define output_col(b) (b) + 20 ; JDIMENSION output_col 68 69%define original_ebp ebp + 0 70%define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD 71 ; xmmword wk[WK_NUM] 72%define WK_NUM 2 73%define workspace wk(0) - DCTSIZE2 * SIZEOF_FAST_FLOAT 74 ; FAST_FLOAT workspace[DCTSIZE2] 75 76 align 32 77 GLOBAL_FUNCTION(jsimd_idct_float_sse) 78 79EXTN(jsimd_idct_float_sse): 80 push ebp 81 mov eax, esp ; eax = original ebp 82 sub esp, byte 4 83 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits 84 mov [esp], eax 85 mov ebp, esp ; ebp = aligned ebp 86 lea esp, [workspace] 87 push ebx 88; push ecx ; need not be preserved 89; push edx ; need not be preserved 90 push esi 91 push edi 92 93 get_GOT ebx ; get GOT address 94 95 ; ---- Pass 1: process columns from input, store into work array. 96 97; mov eax, [original_ebp] 98 mov edx, POINTER [dct_table(eax)] ; quantptr 99 mov esi, JCOEFPTR [coef_block(eax)] ; inptr 100 lea edi, [workspace] ; FAST_FLOAT *wsptr 101 mov ecx, DCTSIZE/4 ; ctr 102 alignx 16, 7 103.columnloop: 104%ifndef NO_ZERO_COLUMN_TEST_FLOAT_SSE 105 mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] 106 or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] 107 jnz near .columnDCT 108 109 movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] 110 movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] 111 por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] 112 por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] 113 por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] 114 por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] 115 por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] 116 por mm1, mm0 117 packsswb mm1, mm1 118 movd eax, mm1 119 test eax, eax 120 jnz short .columnDCT 121 122 ; -- AC terms all zero 123 124 movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] 125 126 punpckhwd mm1, mm0 ; mm1=(** 02 ** 03) 127 punpcklwd mm0, mm0 ; mm0=(00 00 01 01) 128 psrad mm1, (DWORD_BIT-WORD_BIT) ; mm1=in0H=(02 03) 129 psrad mm0, (DWORD_BIT-WORD_BIT) ; mm0=in0L=(00 01) 130 cvtpi2ps xmm3, mm1 ; xmm3=(02 03 ** **) 131 cvtpi2ps xmm0, mm0 ; xmm0=(00 01 ** **) 132 movlhps xmm0, xmm3 ; xmm0=in0=(00 01 02 03) 133 134 mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 135 136 movaps xmm1, xmm0 137 movaps xmm2, xmm0 138 movaps xmm3, xmm0 139 140 shufps xmm0, xmm0, 0x00 ; xmm0=(00 00 00 00) 141 shufps xmm1, xmm1, 0x55 ; xmm1=(01 01 01 01) 142 shufps xmm2, xmm2, 0xAA ; xmm2=(02 02 02 02) 143 shufps xmm3, xmm3, 0xFF ; xmm3=(03 03 03 03) 144 145 movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm0 146 movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm0 147 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm1 148 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm1 149 movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm2 150 movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm2 151 movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm3 152 movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3 153 jmp near .nextcolumn 154 alignx 16, 7 155%endif 156.columnDCT: 157 158 ; -- Even part 159 160 movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] 161 movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] 162 movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] 163 movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] 164 165 punpckhwd mm4, mm0 ; mm4=(** 02 ** 03) 166 punpcklwd mm0, mm0 ; mm0=(00 00 01 01) 167 punpckhwd mm5, mm1 ; mm5=(** 22 ** 23) 168 punpcklwd mm1, mm1 ; mm1=(20 20 21 21) 169 170 psrad mm4, (DWORD_BIT-WORD_BIT) ; mm4=in0H=(02 03) 171 psrad mm0, (DWORD_BIT-WORD_BIT) ; mm0=in0L=(00 01) 172 cvtpi2ps xmm4, mm4 ; xmm4=(02 03 ** **) 173 cvtpi2ps xmm0, mm0 ; xmm0=(00 01 ** **) 174 psrad mm5, (DWORD_BIT-WORD_BIT) ; mm5=in2H=(22 23) 175 psrad mm1, (DWORD_BIT-WORD_BIT) ; mm1=in2L=(20 21) 176 cvtpi2ps xmm5, mm5 ; xmm5=(22 23 ** **) 177 cvtpi2ps xmm1, mm1 ; xmm1=(20 21 ** **) 178 179 punpckhwd mm6, mm2 ; mm6=(** 42 ** 43) 180 punpcklwd mm2, mm2 ; mm2=(40 40 41 41) 181 punpckhwd mm7, mm3 ; mm7=(** 62 ** 63) 182 punpcklwd mm3, mm3 ; mm3=(60 60 61 61) 183 184 psrad mm6, (DWORD_BIT-WORD_BIT) ; mm6=in4H=(42 43) 185 psrad mm2, (DWORD_BIT-WORD_BIT) ; mm2=in4L=(40 41) 186 cvtpi2ps xmm6, mm6 ; xmm6=(42 43 ** **) 187 cvtpi2ps xmm2, mm2 ; xmm2=(40 41 ** **) 188 psrad mm7, (DWORD_BIT-WORD_BIT) ; mm7=in6H=(62 63) 189 psrad mm3, (DWORD_BIT-WORD_BIT) ; mm3=in6L=(60 61) 190 cvtpi2ps xmm7, mm7 ; xmm7=(62 63 ** **) 191 cvtpi2ps xmm3, mm3 ; xmm3=(60 61 ** **) 192 193 movlhps xmm0, xmm4 ; xmm0=in0=(00 01 02 03) 194 movlhps xmm1, xmm5 ; xmm1=in2=(20 21 22 23) 195 mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 196 mulps xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 197 198 movlhps xmm2, xmm6 ; xmm2=in4=(40 41 42 43) 199 movlhps xmm3, xmm7 ; xmm3=in6=(60 61 62 63) 200 mulps xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 201 mulps xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 202 203 movaps xmm4, xmm0 204 movaps xmm5, xmm1 205 subps xmm0, xmm2 ; xmm0=tmp11 206 subps xmm1, xmm3 207 addps xmm4, xmm2 ; xmm4=tmp10 208 addps xmm5, xmm3 ; xmm5=tmp13 209 210 mulps xmm1, [GOTOFF(ebx,PD_1_414)] 211 subps xmm1, xmm5 ; xmm1=tmp12 212 213 movaps xmm6, xmm4 214 movaps xmm7, xmm0 215 subps xmm4, xmm5 ; xmm4=tmp3 216 subps xmm0, xmm1 ; xmm0=tmp2 217 addps xmm6, xmm5 ; xmm6=tmp0 218 addps xmm7, xmm1 ; xmm7=tmp1 219 220 movaps XMMWORD [wk(1)], xmm4 ; tmp3 221 movaps XMMWORD [wk(0)], xmm0 ; tmp2 222 223 ; -- Odd part 224 225 movq mm4, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] 226 movq mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] 227 movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] 228 movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] 229 230 punpckhwd mm6, mm4 ; mm6=(** 12 ** 13) 231 punpcklwd mm4, mm4 ; mm4=(10 10 11 11) 232 punpckhwd mm2, mm0 ; mm2=(** 32 ** 33) 233 punpcklwd mm0, mm0 ; mm0=(30 30 31 31) 234 235 psrad mm6, (DWORD_BIT-WORD_BIT) ; mm6=in1H=(12 13) 236 psrad mm4, (DWORD_BIT-WORD_BIT) ; mm4=in1L=(10 11) 237 cvtpi2ps xmm4, mm6 ; xmm4=(12 13 ** **) 238 cvtpi2ps xmm2, mm4 ; xmm2=(10 11 ** **) 239 psrad mm2, (DWORD_BIT-WORD_BIT) ; mm2=in3H=(32 33) 240 psrad mm0, (DWORD_BIT-WORD_BIT) ; mm0=in3L=(30 31) 241 cvtpi2ps xmm0, mm2 ; xmm0=(32 33 ** **) 242 cvtpi2ps xmm3, mm0 ; xmm3=(30 31 ** **) 243 244 punpckhwd mm7, mm5 ; mm7=(** 52 ** 53) 245 punpcklwd mm5, mm5 ; mm5=(50 50 51 51) 246 punpckhwd mm3, mm1 ; mm3=(** 72 ** 73) 247 punpcklwd mm1, mm1 ; mm1=(70 70 71 71) 248 249 movlhps xmm2, xmm4 ; xmm2=in1=(10 11 12 13) 250 movlhps xmm3, xmm0 ; xmm3=in3=(30 31 32 33) 251 252 psrad mm7, (DWORD_BIT-WORD_BIT) ; mm7=in5H=(52 53) 253 psrad mm5, (DWORD_BIT-WORD_BIT) ; mm5=in5L=(50 51) 254 cvtpi2ps xmm4, mm7 ; xmm4=(52 53 ** **) 255 cvtpi2ps xmm5, mm5 ; xmm5=(50 51 ** **) 256 psrad mm3, (DWORD_BIT-WORD_BIT) ; mm3=in7H=(72 73) 257 psrad mm1, (DWORD_BIT-WORD_BIT) ; mm1=in7L=(70 71) 258 cvtpi2ps xmm0, mm3 ; xmm0=(72 73 ** **) 259 cvtpi2ps xmm1, mm1 ; xmm1=(70 71 ** **) 260 261 mulps xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 262 mulps xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 263 264 movlhps xmm5, xmm4 ; xmm5=in5=(50 51 52 53) 265 movlhps xmm1, xmm0 ; xmm1=in7=(70 71 72 73) 266 mulps xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 267 mulps xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 268 269 movaps xmm4, xmm2 270 movaps xmm0, xmm5 271 addps xmm2, xmm1 ; xmm2=z11 272 addps xmm5, xmm3 ; xmm5=z13 273 subps xmm4, xmm1 ; xmm4=z12 274 subps xmm0, xmm3 ; xmm0=z10 275 276 movaps xmm1, xmm2 277 subps xmm2, xmm5 278 addps xmm1, xmm5 ; xmm1=tmp7 279 280 mulps xmm2, [GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11 281 282 movaps xmm3, xmm0 283 addps xmm0, xmm4 284 mulps xmm0, [GOTOFF(ebx,PD_1_847)] ; xmm0=z5 285 mulps xmm3, [GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930) 286 mulps xmm4, [GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200) 287 addps xmm3, xmm0 ; xmm3=tmp12 288 subps xmm4, xmm0 ; xmm4=tmp10 289 290 ; -- Final output stage 291 292 subps xmm3, xmm1 ; xmm3=tmp6 293 movaps xmm5, xmm6 294 movaps xmm0, xmm7 295 addps xmm6, xmm1 ; xmm6=data0=(00 01 02 03) 296 addps xmm7, xmm3 ; xmm7=data1=(10 11 12 13) 297 subps xmm5, xmm1 ; xmm5=data7=(70 71 72 73) 298 subps xmm0, xmm3 ; xmm0=data6=(60 61 62 63) 299 subps xmm2, xmm3 ; xmm2=tmp5 300 301 movaps xmm1, xmm6 ; transpose coefficients(phase 1) 302 unpcklps xmm6, xmm7 ; xmm6=(00 10 01 11) 303 unpckhps xmm1, xmm7 ; xmm1=(02 12 03 13) 304 movaps xmm3, xmm0 ; transpose coefficients(phase 1) 305 unpcklps xmm0, xmm5 ; xmm0=(60 70 61 71) 306 unpckhps xmm3, xmm5 ; xmm3=(62 72 63 73) 307 308 movaps xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 309 movaps xmm5, XMMWORD [wk(1)] ; xmm5=tmp3 310 311 movaps XMMWORD [wk(0)], xmm0 ; wk(0)=(60 70 61 71) 312 movaps XMMWORD [wk(1)], xmm3 ; wk(1)=(62 72 63 73) 313 314 addps xmm4, xmm2 ; xmm4=tmp4 315 movaps xmm0, xmm7 316 movaps xmm3, xmm5 317 addps xmm7, xmm2 ; xmm7=data2=(20 21 22 23) 318 addps xmm5, xmm4 ; xmm5=data4=(40 41 42 43) 319 subps xmm0, xmm2 ; xmm0=data5=(50 51 52 53) 320 subps xmm3, xmm4 ; xmm3=data3=(30 31 32 33) 321 322 movaps xmm2, xmm7 ; transpose coefficients(phase 1) 323 unpcklps xmm7, xmm3 ; xmm7=(20 30 21 31) 324 unpckhps xmm2, xmm3 ; xmm2=(22 32 23 33) 325 movaps xmm4, xmm5 ; transpose coefficients(phase 1) 326 unpcklps xmm5, xmm0 ; xmm5=(40 50 41 51) 327 unpckhps xmm4, xmm0 ; xmm4=(42 52 43 53) 328 329 movaps xmm3, xmm6 ; transpose coefficients(phase 2) 330 unpcklps2 xmm6, xmm7 ; xmm6=(00 10 20 30) 331 unpckhps2 xmm3, xmm7 ; xmm3=(01 11 21 31) 332 movaps xmm0, xmm1 ; transpose coefficients(phase 2) 333 unpcklps2 xmm1, xmm2 ; xmm1=(02 12 22 32) 334 unpckhps2 xmm0, xmm2 ; xmm0=(03 13 23 33) 335 336 movaps xmm7, XMMWORD [wk(0)] ; xmm7=(60 70 61 71) 337 movaps xmm2, XMMWORD [wk(1)] ; xmm2=(62 72 63 73) 338 339 movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm6 340 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm3 341 movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm1 342 movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm0 343 344 movaps xmm6, xmm5 ; transpose coefficients(phase 2) 345 unpcklps2 xmm5, xmm7 ; xmm5=(40 50 60 70) 346 unpckhps2 xmm6, xmm7 ; xmm6=(41 51 61 71) 347 movaps xmm3, xmm4 ; transpose coefficients(phase 2) 348 unpcklps2 xmm4, xmm2 ; xmm4=(42 52 62 72) 349 unpckhps2 xmm3, xmm2 ; xmm3=(43 53 63 73) 350 351 movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm5 352 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm6 353 movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm4 354 movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3 355 356.nextcolumn: 357 add esi, byte 4*SIZEOF_JCOEF ; coef_block 358 add edx, byte 4*SIZEOF_FLOAT_MULT_TYPE ; quantptr 359 add edi, 4*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr 360 dec ecx ; ctr 361 jnz near .columnloop 362 363 ; -- Prefetch the next coefficient block 364 365 prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32] 366 prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32] 367 prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32] 368 prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32] 369 370 ; ---- Pass 2: process rows from work array, store into output array. 371 372 mov eax, [original_ebp] 373 lea esi, [workspace] ; FAST_FLOAT *wsptr 374 mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) 375 mov eax, JDIMENSION [output_col(eax)] 376 mov ecx, DCTSIZE/4 ; ctr 377 alignx 16, 7 378.rowloop: 379 380 ; -- Even part 381 382 movaps xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] 383 movaps xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_FAST_FLOAT)] 384 movaps xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_FAST_FLOAT)] 385 movaps xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_FAST_FLOAT)] 386 387 movaps xmm4, xmm0 388 movaps xmm5, xmm1 389 subps xmm0, xmm2 ; xmm0=tmp11 390 subps xmm1, xmm3 391 addps xmm4, xmm2 ; xmm4=tmp10 392 addps xmm5, xmm3 ; xmm5=tmp13 393 394 mulps xmm1, [GOTOFF(ebx,PD_1_414)] 395 subps xmm1, xmm5 ; xmm1=tmp12 396 397 movaps xmm6, xmm4 398 movaps xmm7, xmm0 399 subps xmm4, xmm5 ; xmm4=tmp3 400 subps xmm0, xmm1 ; xmm0=tmp2 401 addps xmm6, xmm5 ; xmm6=tmp0 402 addps xmm7, xmm1 ; xmm7=tmp1 403 404 movaps XMMWORD [wk(1)], xmm4 ; tmp3 405 movaps XMMWORD [wk(0)], xmm0 ; tmp2 406 407 ; -- Odd part 408 409 movaps xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] 410 movaps xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_FAST_FLOAT)] 411 movaps xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_FAST_FLOAT)] 412 movaps xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_FAST_FLOAT)] 413 414 movaps xmm4, xmm2 415 movaps xmm0, xmm5 416 addps xmm2, xmm1 ; xmm2=z11 417 addps xmm5, xmm3 ; xmm5=z13 418 subps xmm4, xmm1 ; xmm4=z12 419 subps xmm0, xmm3 ; xmm0=z10 420 421 movaps xmm1, xmm2 422 subps xmm2, xmm5 423 addps xmm1, xmm5 ; xmm1=tmp7 424 425 mulps xmm2, [GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11 426 427 movaps xmm3, xmm0 428 addps xmm0, xmm4 429 mulps xmm0, [GOTOFF(ebx,PD_1_847)] ; xmm0=z5 430 mulps xmm3, [GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930) 431 mulps xmm4, [GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200) 432 addps xmm3, xmm0 ; xmm3=tmp12 433 subps xmm4, xmm0 ; xmm4=tmp10 434 435 ; -- Final output stage 436 437 subps xmm3, xmm1 ; xmm3=tmp6 438 movaps xmm5, xmm6 439 movaps xmm0, xmm7 440 addps xmm6, xmm1 ; xmm6=data0=(00 10 20 30) 441 addps xmm7, xmm3 ; xmm7=data1=(01 11 21 31) 442 subps xmm5, xmm1 ; xmm5=data7=(07 17 27 37) 443 subps xmm0, xmm3 ; xmm0=data6=(06 16 26 36) 444 subps xmm2, xmm3 ; xmm2=tmp5 445 446 movaps xmm1, [GOTOFF(ebx,PD_0_125)] ; xmm1=[PD_0_125] 447 448 mulps xmm6, xmm1 ; descale(1/8) 449 mulps xmm7, xmm1 ; descale(1/8) 450 mulps xmm5, xmm1 ; descale(1/8) 451 mulps xmm0, xmm1 ; descale(1/8) 452 453 movhlps xmm3, xmm6 454 movhlps xmm1, xmm7 455 cvtps2pi mm0, xmm6 ; round to int32, mm0=data0L=(00 10) 456 cvtps2pi mm1, xmm7 ; round to int32, mm1=data1L=(01 11) 457 cvtps2pi mm2, xmm3 ; round to int32, mm2=data0H=(20 30) 458 cvtps2pi mm3, xmm1 ; round to int32, mm3=data1H=(21 31) 459 packssdw mm0, mm2 ; mm0=data0=(00 10 20 30) 460 packssdw mm1, mm3 ; mm1=data1=(01 11 21 31) 461 462 movhlps xmm6, xmm5 463 movhlps xmm7, xmm0 464 cvtps2pi mm4, xmm5 ; round to int32, mm4=data7L=(07 17) 465 cvtps2pi mm5, xmm0 ; round to int32, mm5=data6L=(06 16) 466 cvtps2pi mm6, xmm6 ; round to int32, mm6=data7H=(27 37) 467 cvtps2pi mm7, xmm7 ; round to int32, mm7=data6H=(26 36) 468 packssdw mm4, mm6 ; mm4=data7=(07 17 27 37) 469 packssdw mm5, mm7 ; mm5=data6=(06 16 26 36) 470 471 packsswb mm0, mm5 ; mm0=(00 10 20 30 06 16 26 36) 472 packsswb mm1, mm4 ; mm1=(01 11 21 31 07 17 27 37) 473 474 movaps xmm3, XMMWORD [wk(0)] ; xmm3=tmp2 475 movaps xmm1, XMMWORD [wk(1)] ; xmm1=tmp3 476 477 movaps xmm6, [GOTOFF(ebx,PD_0_125)] ; xmm6=[PD_0_125] 478 479 addps xmm4, xmm2 ; xmm4=tmp4 480 movaps xmm5, xmm3 481 movaps xmm0, xmm1 482 addps xmm3, xmm2 ; xmm3=data2=(02 12 22 32) 483 addps xmm1, xmm4 ; xmm1=data4=(04 14 24 34) 484 subps xmm5, xmm2 ; xmm5=data5=(05 15 25 35) 485 subps xmm0, xmm4 ; xmm0=data3=(03 13 23 33) 486 487 mulps xmm3, xmm6 ; descale(1/8) 488 mulps xmm1, xmm6 ; descale(1/8) 489 mulps xmm5, xmm6 ; descale(1/8) 490 mulps xmm0, xmm6 ; descale(1/8) 491 492 movhlps xmm7, xmm3 493 movhlps xmm2, xmm1 494 cvtps2pi mm2, xmm3 ; round to int32, mm2=data2L=(02 12) 495 cvtps2pi mm3, xmm1 ; round to int32, mm3=data4L=(04 14) 496 cvtps2pi mm6, xmm7 ; round to int32, mm6=data2H=(22 32) 497 cvtps2pi mm7, xmm2 ; round to int32, mm7=data4H=(24 34) 498 packssdw mm2, mm6 ; mm2=data2=(02 12 22 32) 499 packssdw mm3, mm7 ; mm3=data4=(04 14 24 34) 500 501 movhlps xmm4, xmm5 502 movhlps xmm6, xmm0 503 cvtps2pi mm5, xmm5 ; round to int32, mm5=data5L=(05 15) 504 cvtps2pi mm4, xmm0 ; round to int32, mm4=data3L=(03 13) 505 cvtps2pi mm6, xmm4 ; round to int32, mm6=data5H=(25 35) 506 cvtps2pi mm7, xmm6 ; round to int32, mm7=data3H=(23 33) 507 packssdw mm5, mm6 ; mm5=data5=(05 15 25 35) 508 packssdw mm4, mm7 ; mm4=data3=(03 13 23 33) 509 510 movq mm6, [GOTOFF(ebx,PB_CENTERJSAMP)] ; mm6=[PB_CENTERJSAMP] 511 512 packsswb mm2, mm3 ; mm2=(02 12 22 32 04 14 24 34) 513 packsswb mm4, mm5 ; mm4=(03 13 23 33 05 15 25 35) 514 515 paddb mm0, mm6 516 paddb mm1, mm6 517 paddb mm2, mm6 518 paddb mm4, mm6 519 520 movq mm7, mm0 ; transpose coefficients(phase 1) 521 punpcklbw mm0, mm1 ; mm0=(00 01 10 11 20 21 30 31) 522 punpckhbw mm7, mm1 ; mm7=(06 07 16 17 26 27 36 37) 523 movq mm3, mm2 ; transpose coefficients(phase 1) 524 punpcklbw mm2, mm4 ; mm2=(02 03 12 13 22 23 32 33) 525 punpckhbw mm3, mm4 ; mm3=(04 05 14 15 24 25 34 35) 526 527 movq mm5, mm0 ; transpose coefficients(phase 2) 528 punpcklwd mm0, mm2 ; mm0=(00 01 02 03 10 11 12 13) 529 punpckhwd mm5, mm2 ; mm5=(20 21 22 23 30 31 32 33) 530 movq mm6, mm3 ; transpose coefficients(phase 2) 531 punpcklwd mm3, mm7 ; mm3=(04 05 06 07 14 15 16 17) 532 punpckhwd mm6, mm7 ; mm6=(24 25 26 27 34 35 36 37) 533 534 movq mm1, mm0 ; transpose coefficients(phase 3) 535 punpckldq mm0, mm3 ; mm0=(00 01 02 03 04 05 06 07) 536 punpckhdq mm1, mm3 ; mm1=(10 11 12 13 14 15 16 17) 537 movq mm4, mm5 ; transpose coefficients(phase 3) 538 punpckldq mm5, mm6 ; mm5=(20 21 22 23 24 25 26 27) 539 punpckhdq mm4, mm6 ; mm4=(30 31 32 33 34 35 36 37) 540 541 pushpic ebx ; save GOT address 542 543 mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] 544 mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] 545 movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm0 546 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1 547 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] 548 mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW] 549 movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5 550 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm4 551 552 poppic ebx ; restore GOT address 553 554 add esi, byte 4*SIZEOF_FAST_FLOAT ; wsptr 555 add edi, byte 4*SIZEOF_JSAMPROW 556 dec ecx ; ctr 557 jnz near .rowloop 558 559 emms ; empty MMX state 560 561 pop edi 562 pop esi 563; pop edx ; need not be preserved 564; pop ecx ; need not be preserved 565 pop ebx 566 mov esp, ebp ; esp <- aligned ebp 567 pop esp ; esp <- original ebp 568 pop ebp 569 ret 570 571; For some reason, the OS X linker does not honor the request to align the 572; segment unless we do this. 573 align 32 574