1 /*
2  * jidctfst.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1994-1998, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2015, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README.ijg
9  * file.
10  *
11  * This file contains a fast, not so accurate integer implementation of the
12  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
13  * must also perform dequantization of the input coefficients.
14  *
15  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
16  * on each row (or vice versa, but it's more convenient to emit a row at
17  * a time).  Direct algorithms are also available, but they are much more
18  * complex and seem not to be any faster when reduced to code.
19  *
20  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
21  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
22  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
23  * JPEG textbook (see REFERENCES section in file README.ijg).  The following
24  * code is based directly on figure 4-8 in P&M.
25  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
26  * possible to arrange the computation so that many of the multiplies are
27  * simple scalings of the final outputs.  These multiplies can then be
28  * folded into the multiplications or divisions by the JPEG quantization
29  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
30  * to be done in the DCT itself.
31  * The primary disadvantage of this method is that with fixed-point math,
32  * accuracy is lost due to imprecise representation of the scaled
33  * quantization values.  The smaller the quantization table entry, the less
34  * precise the scaled value, so this implementation does worse with high-
35  * quality-setting files than with low-quality ones.
36  */
37 
38 #define JPEG_INTERNALS
39 #include "jinclude.h"
40 #include "jpeglib.h"
41 #include "jdct.h"               /* Private declarations for DCT subsystem */
42 
43 #ifdef DCT_IFAST_SUPPORTED
44 
45 
46 /*
47  * This module is specialized to the case DCTSIZE = 8.
48  */
49 
50 #if DCTSIZE != 8
51   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
52 #endif
53 
54 
55 /* Scaling decisions are generally the same as in the LL&M algorithm;
56  * see jidctint.c for more details.  However, we choose to descale
57  * (right shift) multiplication products as soon as they are formed,
58  * rather than carrying additional fractional bits into subsequent additions.
59  * This compromises accuracy slightly, but it lets us save a few shifts.
60  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
61  * everywhere except in the multiplications proper; this saves a good deal
62  * of work on 16-bit-int machines.
63  *
64  * The dequantized coefficients are not integers because the AA&N scaling
65  * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
66  * so that the first and second IDCT rounds have the same input scaling.
67  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
68  * avoid a descaling shift; this compromises accuracy rather drastically
69  * for small quantization table entries, but it saves a lot of shifts.
70  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
71  * so we use a much larger scaling factor to preserve accuracy.
72  *
73  * A final compromise is to represent the multiplicative constants to only
74  * 8 fractional bits, rather than 13.  This saves some shifting work on some
75  * machines, and may also reduce the cost of multiplication (since there
76  * are fewer one-bits in the constants).
77  */
78 
79 #if BITS_IN_JSAMPLE == 8
80 #define CONST_BITS  8
81 #define PASS1_BITS  2
82 #else
83 #define CONST_BITS  8
84 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
85 #endif
86 
87 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
88  * causing a lot of useless floating-point operations at run time.
89  * To get around this we use the following pre-calculated constants.
90  * If you change CONST_BITS you may want to add appropriate values.
91  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
92  */
93 
94 #if CONST_BITS == 8
95 #define FIX_1_082392200  ((JLONG)277)           /* FIX(1.082392200) */
96 #define FIX_1_414213562  ((JLONG)362)           /* FIX(1.414213562) */
97 #define FIX_1_847759065  ((JLONG)473)           /* FIX(1.847759065) */
98 #define FIX_2_613125930  ((JLONG)669)           /* FIX(2.613125930) */
99 #else
100 #define FIX_1_082392200  FIX(1.082392200)
101 #define FIX_1_414213562  FIX(1.414213562)
102 #define FIX_1_847759065  FIX(1.847759065)
103 #define FIX_2_613125930  FIX(2.613125930)
104 #endif
105 
106 
107 /* We can gain a little more speed, with a further compromise in accuracy,
108  * by omitting the addition in a descaling shift.  This yields an incorrectly
109  * rounded result half the time...
110  */
111 
112 #ifndef USE_ACCURATE_ROUNDING
113 #undef DESCALE
114 #define DESCALE(x, n)  RIGHT_SHIFT(x, n)
115 #endif
116 
117 
118 /* Multiply a DCTELEM variable by an JLONG constant, and immediately
119  * descale to yield a DCTELEM result.
120  */
121 
122 #define MULTIPLY(var, const)  ((DCTELEM)DESCALE((var) * (const), CONST_BITS))
123 
124 
125 /* Dequantize a coefficient by multiplying it by the multiplier-table
126  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
127  * multiplication will do.  For 12-bit data, the multiplier table is
128  * declared JLONG, so a 32-bit multiply will be used.
129  */
130 
131 #if BITS_IN_JSAMPLE == 8
132 #define DEQUANTIZE(coef, quantval)  (((IFAST_MULT_TYPE)(coef)) * (quantval))
133 #else
134 #define DEQUANTIZE(coef, quantval) \
135   DESCALE((coef) * (quantval), IFAST_SCALE_BITS - PASS1_BITS)
136 #endif
137 
138 
139 /* Like DESCALE, but applies to a DCTELEM and produces an int.
140  * We assume that int right shift is unsigned if JLONG right shift is.
141  */
142 
143 #ifdef RIGHT_SHIFT_IS_UNSIGNED
144 #define ISHIFT_TEMPS    DCTELEM ishift_temp;
145 #if BITS_IN_JSAMPLE == 8
146 #define DCTELEMBITS  16         /* DCTELEM may be 16 or 32 bits */
147 #else
148 #define DCTELEMBITS  32         /* DCTELEM must be 32 bits */
149 #endif
150 #define IRIGHT_SHIFT(x, shft) \
151   ((ishift_temp = (x)) < 0 ? \
152    (ishift_temp >> (shft)) | ((~((DCTELEM)0)) << (DCTELEMBITS - (shft))) : \
153    (ishift_temp >> (shft)))
154 #else
155 #define ISHIFT_TEMPS
156 #define IRIGHT_SHIFT(x, shft)   ((x) >> (shft))
157 #endif
158 
159 #ifdef USE_ACCURATE_ROUNDING
160 #define IDESCALE(x, n)  ((int)IRIGHT_SHIFT((x) + (1 << ((n) - 1)), n))
161 #else
162 #define IDESCALE(x, n)  ((int)IRIGHT_SHIFT(x, n))
163 #endif
164 
165 
166 /*
167  * Perform dequantization and inverse DCT on one block of coefficients.
168  */
169 
170 GLOBAL(void)
171 jpeg_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr,
172                 JCOEFPTR coef_block, JSAMPARRAY output_buf,
173                 JDIMENSION output_col)
174 {
175   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
176   DCTELEM tmp10, tmp11, tmp12, tmp13;
177   DCTELEM z5, z10, z11, z12, z13;
178   JCOEFPTR inptr;
179   IFAST_MULT_TYPE *quantptr;
180   int *wsptr;
181   JSAMPROW outptr;
182   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
183   int ctr;
184   int workspace[DCTSIZE2];      /* buffers data between passes */
185   SHIFT_TEMPS                   /* for DESCALE */
186   ISHIFT_TEMPS                  /* for IDESCALE */
187 
188   /* Pass 1: process columns from input, store into work array. */
189 
190   inptr = coef_block;
191   quantptr = (IFAST_MULT_TYPE *)compptr->dct_table;
192   wsptr = workspace;
193   for (ctr = DCTSIZE; ctr > 0; ctr--) {
194     /* Due to quantization, we will usually find that many of the input
195      * coefficients are zero, especially the AC terms.  We can exploit this
196      * by short-circuiting the IDCT calculation for any column in which all
197      * the AC terms are zero.  In that case each output is equal to the
198      * DC coefficient (with scale factor as needed).
199      * With typical images and quantization tables, half or more of the
200      * column DCT calculations can be simplified this way.
201      */
202 
203     if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
204         inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 &&
205         inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 &&
206         inptr[DCTSIZE * 7] == 0) {
207       /* AC terms all zero */
208       int dcval = (int)DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
209 
210       wsptr[DCTSIZE * 0] = dcval;
211       wsptr[DCTSIZE * 1] = dcval;
212       wsptr[DCTSIZE * 2] = dcval;
213       wsptr[DCTSIZE * 3] = dcval;
214       wsptr[DCTSIZE * 4] = dcval;
215       wsptr[DCTSIZE * 5] = dcval;
216       wsptr[DCTSIZE * 6] = dcval;
217       wsptr[DCTSIZE * 7] = dcval;
218 
219       inptr++;                  /* advance pointers to next column */
220       quantptr++;
221       wsptr++;
222       continue;
223     }
224 
225     /* Even part */
226 
227     tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
228     tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
229     tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
230     tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
231 
232     tmp10 = tmp0 + tmp2;        /* phase 3 */
233     tmp11 = tmp0 - tmp2;
234 
235     tmp13 = tmp1 + tmp3;        /* phases 5-3 */
236     tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
237 
238     tmp0 = tmp10 + tmp13;       /* phase 2 */
239     tmp3 = tmp10 - tmp13;
240     tmp1 = tmp11 + tmp12;
241     tmp2 = tmp11 - tmp12;
242 
243     /* Odd part */
244 
245     tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
246     tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
247     tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
248     tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
249 
250     z13 = tmp6 + tmp5;          /* phase 6 */
251     z10 = tmp6 - tmp5;
252     z11 = tmp4 + tmp7;
253     z12 = tmp4 - tmp7;
254 
255     tmp7 = z11 + z13;           /* phase 5 */
256     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
257 
258     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
259     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
260     tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
261 
262     tmp6 = tmp12 - tmp7;        /* phase 2 */
263     tmp5 = tmp11 - tmp6;
264     tmp4 = tmp10 + tmp5;
265 
266     wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7);
267     wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7);
268     wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6);
269     wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6);
270     wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5);
271     wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5);
272     wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4);
273     wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4);
274 
275     inptr++;                    /* advance pointers to next column */
276     quantptr++;
277     wsptr++;
278   }
279 
280   /* Pass 2: process rows from work array, store into output array. */
281   /* Note that we must descale the results by a factor of 8 == 2**3, */
282   /* and also undo the PASS1_BITS scaling. */
283 
284   wsptr = workspace;
285   for (ctr = 0; ctr < DCTSIZE; ctr++) {
286     outptr = output_buf[ctr] + output_col;
287     /* Rows of zeroes can be exploited in the same way as we did with columns.
288      * However, the column calculation has created many nonzero AC terms, so
289      * the simplification applies less often (typically 5% to 10% of the time).
290      * On machines with very fast multiplication, it's possible that the
291      * test takes more time than it's worth.  In that case this section
292      * may be commented out.
293      */
294 
295 #ifndef NO_ZERO_ROW_TEST
296     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
297         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
298       /* AC terms all zero */
299       JSAMPLE dcval =
300         range_limit[IDESCALE(wsptr[0], PASS1_BITS + 3) & RANGE_MASK];
301 
302       outptr[0] = dcval;
303       outptr[1] = dcval;
304       outptr[2] = dcval;
305       outptr[3] = dcval;
306       outptr[4] = dcval;
307       outptr[5] = dcval;
308       outptr[6] = dcval;
309       outptr[7] = dcval;
310 
311       wsptr += DCTSIZE;         /* advance pointer to next row */
312       continue;
313     }
314 #endif
315 
316     /* Even part */
317 
318     tmp10 = ((DCTELEM)wsptr[0] + (DCTELEM)wsptr[4]);
319     tmp11 = ((DCTELEM)wsptr[0] - (DCTELEM)wsptr[4]);
320 
321     tmp13 = ((DCTELEM)wsptr[2] + (DCTELEM)wsptr[6]);
322     tmp12 =
323       MULTIPLY((DCTELEM)wsptr[2] - (DCTELEM)wsptr[6], FIX_1_414213562) - tmp13;
324 
325     tmp0 = tmp10 + tmp13;
326     tmp3 = tmp10 - tmp13;
327     tmp1 = tmp11 + tmp12;
328     tmp2 = tmp11 - tmp12;
329 
330     /* Odd part */
331 
332     z13 = (DCTELEM)wsptr[5] + (DCTELEM)wsptr[3];
333     z10 = (DCTELEM)wsptr[5] - (DCTELEM)wsptr[3];
334     z11 = (DCTELEM)wsptr[1] + (DCTELEM)wsptr[7];
335     z12 = (DCTELEM)wsptr[1] - (DCTELEM)wsptr[7];
336 
337     tmp7 = z11 + z13;           /* phase 5 */
338     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
339 
340     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
341     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
342     tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
343 
344     tmp6 = tmp12 - tmp7;        /* phase 2 */
345     tmp5 = tmp11 - tmp6;
346     tmp4 = tmp10 + tmp5;
347 
348     /* Final output stage: scale down by a factor of 8 and range-limit */
349 
350     outptr[0] =
351       range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS + 3) & RANGE_MASK];
352     outptr[7] =
353       range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS + 3) & RANGE_MASK];
354     outptr[1] =
355       range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS + 3) & RANGE_MASK];
356     outptr[6] =
357       range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS + 3) & RANGE_MASK];
358     outptr[2] =
359       range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS + 3) & RANGE_MASK];
360     outptr[5] =
361       range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS + 3) & RANGE_MASK];
362     outptr[4] =
363       range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS + 3) & RANGE_MASK];
364     outptr[3] =
365       range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS + 3) & RANGE_MASK];
366 
367     wsptr += DCTSIZE;           /* advance pointer to next row */
368   }
369 }
370 
371 #endif /* DCT_IFAST_SUPPORTED */
372