1// Protocol Buffers - Google's data interchange format
2// Copyright 2008 Google Inc.  All rights reserved.
3// https://developers.google.com/protocol-buffers/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31/**
32 * @fileoverview This file contains helper code used by jspb.utils to
33 * handle 64-bit integer conversion to/from strings.
34 *
35 * @author cfallin@google.com (Chris Fallin)
36 *
37 * TODO(haberman): move this to javascript/closure/math?
38 */
39
40goog.provide('jspb.arith.Int64');
41goog.provide('jspb.arith.UInt64');
42
43/**
44 * UInt64 implements some 64-bit arithmetic routines necessary for properly
45 * handling 64-bit integer fields. It implements lossless integer arithmetic on
46 * top of JavaScript's number type, which has only 53 bits of precision, by
47 * representing 64-bit integers as two 32-bit halves.
48 *
49 * @param {number} lo The low 32 bits.
50 * @param {number} hi The high 32 bits.
51 * @constructor
52 */
53jspb.arith.UInt64 = function(lo, hi) {
54  /**
55   * The low 32 bits.
56   * @public {number}
57   */
58  this.lo = lo;
59  /**
60   * The high 32 bits.
61   * @public {number}
62   */
63  this.hi = hi;
64};
65
66
67/**
68 * Compare two 64-bit numbers. Returns -1 if the first is
69 * less, +1 if the first is greater, or 0 if both are equal.
70 * @param {!jspb.arith.UInt64} other
71 * @return {number}
72 */
73jspb.arith.UInt64.prototype.cmp = function(other) {
74  if (this.hi < other.hi || (this.hi == other.hi && this.lo < other.lo)) {
75    return -1;
76  } else if (this.hi == other.hi && this.lo == other.lo) {
77    return 0;
78  } else {
79    return 1;
80  }
81};
82
83
84/**
85 * Right-shift this number by one bit.
86 * @return {!jspb.arith.UInt64}
87 */
88jspb.arith.UInt64.prototype.rightShift = function() {
89  var hi = this.hi >>> 1;
90  var lo = (this.lo >>> 1) | ((this.hi & 1) << 31);
91  return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);
92};
93
94
95/**
96 * Left-shift this number by one bit.
97 * @return {!jspb.arith.UInt64}
98 */
99jspb.arith.UInt64.prototype.leftShift = function() {
100  var lo = this.lo << 1;
101  var hi = (this.hi << 1) | (this.lo >>> 31);
102  return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);
103};
104
105
106/**
107 * Test the MSB.
108 * @return {boolean}
109 */
110jspb.arith.UInt64.prototype.msb = function() {
111  return !!(this.hi & 0x80000000);
112};
113
114
115/**
116 * Test the LSB.
117 * @return {boolean}
118 */
119jspb.arith.UInt64.prototype.lsb = function() {
120  return !!(this.lo & 1);
121};
122
123
124/**
125 * Test whether this number is zero.
126 * @return {boolean}
127 */
128jspb.arith.UInt64.prototype.zero = function() {
129  return this.lo == 0 && this.hi == 0;
130};
131
132
133/**
134 * Add two 64-bit numbers to produce a 64-bit number.
135 * @param {!jspb.arith.UInt64} other
136 * @return {!jspb.arith.UInt64}
137 */
138jspb.arith.UInt64.prototype.add = function(other) {
139  var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0;
140  var hi =
141      (((this.hi + other.hi) & 0xffffffff) >>> 0) +
142      (((this.lo + other.lo) >= 0x100000000) ? 1 : 0);
143  return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);
144};
145
146
147/**
148 * Subtract two 64-bit numbers to produce a 64-bit number.
149 * @param {!jspb.arith.UInt64} other
150 * @return {!jspb.arith.UInt64}
151 */
152jspb.arith.UInt64.prototype.sub = function(other) {
153  var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0;
154  var hi =
155      (((this.hi - other.hi) & 0xffffffff) >>> 0) -
156      (((this.lo - other.lo) < 0) ? 1 : 0);
157  return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);
158};
159
160
161/**
162 * Multiply two 32-bit numbers to produce a 64-bit number.
163 * @param {number} a The first integer:  must be in [0, 2^32-1).
164 * @param {number} b The second integer: must be in [0, 2^32-1).
165 * @return {!jspb.arith.UInt64}
166 */
167jspb.arith.UInt64.mul32x32 = function(a, b) {
168  // Directly multiplying two 32-bit numbers may produce up to 64 bits of
169  // precision, thus losing precision because of the 53-bit mantissa of
170  // JavaScript numbers. So we multiply with 16-bit digits (radix 65536)
171  // instead.
172  var aLow = (a & 0xffff);
173  var aHigh = (a >>> 16);
174  var bLow = (b & 0xffff);
175  var bHigh = (b >>> 16);
176  var productLow =
177      // 32-bit result, result bits 0-31, take all 32 bits
178      (aLow * bLow) +
179      // 32-bit result, result bits 16-47, take bottom 16 as our top 16
180      ((aLow * bHigh) & 0xffff) * 0x10000 +
181      // 32-bit result, result bits 16-47, take bottom 16 as our top 16
182      ((aHigh * bLow) & 0xffff) * 0x10000;
183  var productHigh =
184      // 32-bit result, result bits 32-63, take all 32 bits
185      (aHigh * bHigh) +
186      // 32-bit result, result bits 16-47, take top 16 as our bottom 16
187      ((aLow * bHigh) >>> 16) +
188      // 32-bit result, result bits 16-47, take top 16 as our bottom 16
189      ((aHigh * bLow) >>> 16);
190
191  // Carry. Note that we actually have up to *two* carries due to addition of
192  // three terms.
193  while (productLow >= 0x100000000) {
194    productLow -= 0x100000000;
195    productHigh += 1;
196  }
197
198  return new jspb.arith.UInt64(productLow >>> 0, productHigh >>> 0);
199};
200
201
202/**
203 * Multiply this number by a 32-bit number, producing a 96-bit number, then
204 * truncate the top 32 bits.
205 * @param {number} a The multiplier.
206 * @return {!jspb.arith.UInt64}
207 */
208jspb.arith.UInt64.prototype.mul = function(a) {
209  // Produce two parts: at bits 0-63, and 32-95.
210  var lo = jspb.arith.UInt64.mul32x32(this.lo, a);
211  var hi = jspb.arith.UInt64.mul32x32(this.hi, a);
212  // Left-shift hi by 32 bits, truncating its top bits. The parts will then be
213  // aligned for addition.
214  hi.hi = hi.lo;
215  hi.lo = 0;
216  return lo.add(hi);
217};
218
219
220/**
221 * Divide a 64-bit number by a 32-bit number to produce a
222 * 64-bit quotient and a 32-bit remainder.
223 * @param {number} _divisor
224 * @return {Array.<jspb.arith.UInt64>} array of [quotient, remainder],
225 * unless divisor is 0, in which case an empty array is returned.
226 */
227jspb.arith.UInt64.prototype.div = function(_divisor) {
228  if (_divisor == 0) {
229    return [];
230  }
231
232  // We perform long division using a radix-2 algorithm, for simplicity (i.e.,
233  // one bit at a time). TODO: optimize to a radix-2^32 algorithm, taking care
234  // to get the variable shifts right.
235  var quotient = new jspb.arith.UInt64(0, 0);
236  var remainder = new jspb.arith.UInt64(this.lo, this.hi);
237  var divisor = new jspb.arith.UInt64(_divisor, 0);
238  var unit = new jspb.arith.UInt64(1, 0);
239
240  // Left-shift the divisor and unit until the high bit of divisor is set.
241  while (!divisor.msb()) {
242    divisor = divisor.leftShift();
243    unit = unit.leftShift();
244  }
245
246  // Perform long division one bit at a time.
247  while (!unit.zero()) {
248    // If divisor < remainder, add unit to quotient and subtract divisor from
249    // remainder.
250    if (divisor.cmp(remainder) <= 0) {
251      quotient = quotient.add(unit);
252      remainder = remainder.sub(divisor);
253    }
254    // Right-shift the divisor and unit.
255    divisor = divisor.rightShift();
256    unit = unit.rightShift();
257  }
258
259  return [quotient, remainder];
260};
261
262
263/**
264 * Convert a 64-bit number to a string.
265 * @return {string}
266 * @override
267 */
268jspb.arith.UInt64.prototype.toString = function() {
269  var result = '';
270  var num = this;
271  while (!num.zero()) {
272    var divResult = num.div(10);
273    var quotient = divResult[0], remainder = divResult[1];
274    result = remainder.lo + result;
275    num = quotient;
276  }
277  if (result == '') {
278    result = '0';
279  }
280  return result;
281};
282
283
284/**
285 * Parse a string into a 64-bit number. Returns `null` on a parse error.
286 * @param {string} s
287 * @return {?jspb.arith.UInt64}
288 */
289jspb.arith.UInt64.fromString = function(s) {
290  var result = new jspb.arith.UInt64(0, 0);
291  // optimization: reuse this instance for each digit.
292  var digit64 = new jspb.arith.UInt64(0, 0);
293  for (var i = 0; i < s.length; i++) {
294    if (s[i] < '0' || s[i] > '9') {
295      return null;
296    }
297    var digit = parseInt(s[i], 10);
298    digit64.lo = digit;
299    result = result.mul(10).add(digit64);
300  }
301  return result;
302};
303
304
305/**
306 * Make a copy of the uint64.
307 * @return {!jspb.arith.UInt64}
308 */
309jspb.arith.UInt64.prototype.clone = function() {
310  return new jspb.arith.UInt64(this.lo, this.hi);
311};
312
313
314/**
315 * Int64 is like UInt64, but modifies string conversions to interpret the stored
316 * 64-bit value as a twos-complement-signed integer. It does *not* support the
317 * full range of operations that UInt64 does: only add, subtract, and string
318 * conversions.
319 *
320 * N.B. that multiply and divide routines are *NOT* supported. They will throw
321 * exceptions. (They are not necessary to implement string conversions, which
322 * are the only operations we really need in jspb.)
323 *
324 * @param {number} lo The low 32 bits.
325 * @param {number} hi The high 32 bits.
326 * @constructor
327 */
328jspb.arith.Int64 = function(lo, hi) {
329  /**
330   * The low 32 bits.
331   * @public {number}
332   */
333  this.lo = lo;
334  /**
335   * The high 32 bits.
336   * @public {number}
337   */
338  this.hi = hi;
339};
340
341
342/**
343 * Add two 64-bit numbers to produce a 64-bit number.
344 * @param {!jspb.arith.Int64} other
345 * @return {!jspb.arith.Int64}
346 */
347jspb.arith.Int64.prototype.add = function(other) {
348  var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0;
349  var hi =
350      (((this.hi + other.hi) & 0xffffffff) >>> 0) +
351      (((this.lo + other.lo) >= 0x100000000) ? 1 : 0);
352  return new jspb.arith.Int64(lo >>> 0, hi >>> 0);
353};
354
355
356/**
357 * Subtract two 64-bit numbers to produce a 64-bit number.
358 * @param {!jspb.arith.Int64} other
359 * @return {!jspb.arith.Int64}
360 */
361jspb.arith.Int64.prototype.sub = function(other) {
362  var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0;
363  var hi =
364      (((this.hi - other.hi) & 0xffffffff) >>> 0) -
365      (((this.lo - other.lo) < 0) ? 1 : 0);
366  return new jspb.arith.Int64(lo >>> 0, hi >>> 0);
367};
368
369
370/**
371 * Make a copy of the int64.
372 * @return {!jspb.arith.Int64}
373 */
374jspb.arith.Int64.prototype.clone = function() {
375  return new jspb.arith.Int64(this.lo, this.hi);
376};
377
378
379/**
380 * Convert a 64-bit number to a string.
381 * @return {string}
382 * @override
383 */
384jspb.arith.Int64.prototype.toString = function() {
385  // If the number is negative, find its twos-complement inverse.
386  var sign = (this.hi & 0x80000000) != 0;
387  var num = new jspb.arith.UInt64(this.lo, this.hi);
388  if (sign) {
389    num = new jspb.arith.UInt64(0, 0).sub(num);
390  }
391  return (sign ? '-' : '') + num.toString();
392};
393
394
395/**
396 * Parse a string into a 64-bit number. Returns `null` on a parse error.
397 * @param {string} s
398 * @return {?jspb.arith.Int64}
399 */
400jspb.arith.Int64.fromString = function(s) {
401  var hasNegative = (s.length > 0 && s[0] == '-');
402  if (hasNegative) {
403    s = s.substring(1);
404  }
405  var num = jspb.arith.UInt64.fromString(s);
406  if (num === null) {
407    return null;
408  }
409  if (hasNegative) {
410    num = new jspb.arith.UInt64(0, 0).sub(num);
411  }
412  return new jspb.arith.Int64(num.lo, num.hi);
413};
414