1 //===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements lowering for the llvm.gc* intrinsics for targets that do
11 // not natively support them (which includes the C backend). Note that the code
12 // generated is not quite as efficient as algorithms which generate stack maps
13 // to identify roots.
14 //
15 // This pass implements the code transformation described in this paper:
16 //   "Accurate Garbage Collection in an Uncooperative Environment"
17 //   Fergus Henderson, ISMM, 2002
18 //
19 // In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with
20 // ShadowStackGC.
21 //
22 // In order to support this particular transformation, all stack roots are
23 // coallocated in the stack. This allows a fully target-independent stack map
24 // while introducing only minor runtime overhead.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #define DEBUG_TYPE "shadowstackgc"
29 #include "llvm/CodeGen/GCs.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/IntrinsicInst.h"
33 #include "llvm/Module.h"
34 #include "llvm/Support/CallSite.h"
35 #include "llvm/Support/IRBuilder.h"
36 
37 using namespace llvm;
38 
39 namespace {
40 
41   class ShadowStackGC : public GCStrategy {
42     /// RootChain - This is the global linked-list that contains the chain of GC
43     /// roots.
44     GlobalVariable *Head;
45 
46     /// StackEntryTy - Abstract type of a link in the shadow stack.
47     ///
48     StructType *StackEntryTy;
49     StructType *FrameMapTy;
50 
51     /// Roots - GC roots in the current function. Each is a pair of the
52     /// intrinsic call and its corresponding alloca.
53     std::vector<std::pair<CallInst*,AllocaInst*> > Roots;
54 
55   public:
56     ShadowStackGC();
57 
58     bool initializeCustomLowering(Module &M);
59     bool performCustomLowering(Function &F);
60 
61   private:
62     bool IsNullValue(Value *V);
63     Constant *GetFrameMap(Function &F);
64     Type* GetConcreteStackEntryType(Function &F);
65     void CollectRoots(Function &F);
66     static GetElementPtrInst *CreateGEP(LLVMContext &Context,
67                                         IRBuilder<> &B, Value *BasePtr,
68                                         int Idx1, const char *Name);
69     static GetElementPtrInst *CreateGEP(LLVMContext &Context,
70                                         IRBuilder<> &B, Value *BasePtr,
71                                         int Idx1, int Idx2, const char *Name);
72   };
73 
74 }
75 
76 static GCRegistry::Add<ShadowStackGC>
77 X("shadow-stack", "Very portable GC for uncooperative code generators");
78 
79 namespace {
80   /// EscapeEnumerator - This is a little algorithm to find all escape points
81   /// from a function so that "finally"-style code can be inserted. In addition
82   /// to finding the existing return and unwind instructions, it also (if
83   /// necessary) transforms any call instructions into invokes and sends them to
84   /// a landing pad.
85   ///
86   /// It's wrapped up in a state machine using the same transform C# uses for
87   /// 'yield return' enumerators, This transform allows it to be non-allocating.
88   class EscapeEnumerator {
89     Function &F;
90     const char *CleanupBBName;
91 
92     // State.
93     int State;
94     Function::iterator StateBB, StateE;
95     IRBuilder<> Builder;
96 
97   public:
EscapeEnumerator(Function & F,const char * N="cleanup")98     EscapeEnumerator(Function &F, const char *N = "cleanup")
99       : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
100 
Next()101     IRBuilder<> *Next() {
102       switch (State) {
103       default:
104         return 0;
105 
106       case 0:
107         StateBB = F.begin();
108         StateE = F.end();
109         State = 1;
110 
111       case 1:
112         // Find all 'return', 'resume', and 'unwind' instructions.
113         while (StateBB != StateE) {
114           BasicBlock *CurBB = StateBB++;
115 
116           // Branches and invokes do not escape, only unwind, resume, and return
117           // do.
118           TerminatorInst *TI = CurBB->getTerminator();
119           if (!isa<UnwindInst>(TI) && !isa<ReturnInst>(TI) &&
120               !isa<ResumeInst>(TI))
121             continue;
122 
123           Builder.SetInsertPoint(TI->getParent(), TI);
124           return &Builder;
125         }
126 
127         State = 2;
128 
129         // Find all 'call' instructions.
130         SmallVector<Instruction*,16> Calls;
131         for (Function::iterator BB = F.begin(),
132                                 E = F.end(); BB != E; ++BB)
133           for (BasicBlock::iterator II = BB->begin(),
134                                     EE = BB->end(); II != EE; ++II)
135             if (CallInst *CI = dyn_cast<CallInst>(II))
136               if (!CI->getCalledFunction() ||
137                   !CI->getCalledFunction()->getIntrinsicID())
138                 Calls.push_back(CI);
139 
140         if (Calls.empty())
141           return 0;
142 
143         // Create a cleanup block.
144         LLVMContext &C = F.getContext();
145         BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F);
146         Type *ExnTy = StructType::get(Type::getInt8PtrTy(C),
147                                       Type::getInt32Ty(C), NULL);
148         Constant *PersFn =
149           F.getParent()->
150           getOrInsertFunction("__gcc_personality_v0",
151                               FunctionType::get(Type::getInt32Ty(C), true));
152         LandingPadInst *LPad = LandingPadInst::Create(ExnTy, PersFn, 1,
153                                                       "cleanup.lpad",
154                                                       CleanupBB);
155         LPad->setCleanup(true);
156         ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB);
157 
158         // Transform the 'call' instructions into 'invoke's branching to the
159         // cleanup block. Go in reverse order to make prettier BB names.
160         SmallVector<Value*,16> Args;
161         for (unsigned I = Calls.size(); I != 0; ) {
162           CallInst *CI = cast<CallInst>(Calls[--I]);
163 
164           // Split the basic block containing the function call.
165           BasicBlock *CallBB = CI->getParent();
166           BasicBlock *NewBB =
167             CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont");
168 
169           // Remove the unconditional branch inserted at the end of CallBB.
170           CallBB->getInstList().pop_back();
171           NewBB->getInstList().remove(CI);
172 
173           // Create a new invoke instruction.
174           Args.clear();
175           CallSite CS(CI);
176           Args.append(CS.arg_begin(), CS.arg_end());
177 
178           InvokeInst *II = InvokeInst::Create(CI->getCalledValue(),
179                                               NewBB, CleanupBB,
180                                               Args, CI->getName(), CallBB);
181           II->setCallingConv(CI->getCallingConv());
182           II->setAttributes(CI->getAttributes());
183           CI->replaceAllUsesWith(II);
184           delete CI;
185         }
186 
187         Builder.SetInsertPoint(RI->getParent(), RI);
188         return &Builder;
189       }
190     }
191   };
192 }
193 
194 // -----------------------------------------------------------------------------
195 
linkShadowStackGC()196 void llvm::linkShadowStackGC() { }
197 
ShadowStackGC()198 ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) {
199   InitRoots = true;
200   CustomRoots = true;
201 }
202 
GetFrameMap(Function & F)203 Constant *ShadowStackGC::GetFrameMap(Function &F) {
204   // doInitialization creates the abstract type of this value.
205   Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
206 
207   // Truncate the ShadowStackDescriptor if some metadata is null.
208   unsigned NumMeta = 0;
209   SmallVector<Constant*, 16> Metadata;
210   for (unsigned I = 0; I != Roots.size(); ++I) {
211     Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
212     if (!C->isNullValue())
213       NumMeta = I + 1;
214     Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
215   }
216   Metadata.resize(NumMeta);
217 
218   Type *Int32Ty = Type::getInt32Ty(F.getContext());
219 
220   Constant *BaseElts[] = {
221     ConstantInt::get(Int32Ty, Roots.size(), false),
222     ConstantInt::get(Int32Ty, NumMeta, false),
223   };
224 
225   Constant *DescriptorElts[] = {
226     ConstantStruct::get(FrameMapTy, BaseElts),
227     ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)
228   };
229 
230   Type *EltTys[] = { DescriptorElts[0]->getType(),DescriptorElts[1]->getType()};
231   StructType *STy = StructType::create(EltTys, "gc_map."+utostr(NumMeta));
232 
233   Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
234 
235   // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
236   //        that, short of multithreaded LLVM, it should be safe; all that is
237   //        necessary is that a simple Module::iterator loop not be invalidated.
238   //        Appending to the GlobalVariable list is safe in that sense.
239   //
240   //        All of the output passes emit globals last. The ExecutionEngine
241   //        explicitly supports adding globals to the module after
242   //        initialization.
243   //
244   //        Still, if it isn't deemed acceptable, then this transformation needs
245   //        to be a ModulePass (which means it cannot be in the 'llc' pipeline
246   //        (which uses a FunctionPassManager (which segfaults (not asserts) if
247   //        provided a ModulePass))).
248   Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
249                                     GlobalVariable::InternalLinkage,
250                                     FrameMap, "__gc_" + F.getName());
251 
252   Constant *GEPIndices[2] = {
253                           ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
254                           ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)
255                           };
256   return ConstantExpr::getGetElementPtr(GV, GEPIndices);
257 }
258 
GetConcreteStackEntryType(Function & F)259 Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) {
260   // doInitialization creates the generic version of this type.
261   std::vector<Type*> EltTys;
262   EltTys.push_back(StackEntryTy);
263   for (size_t I = 0; I != Roots.size(); I++)
264     EltTys.push_back(Roots[I].second->getAllocatedType());
265 
266   return StructType::create(EltTys, "gc_stackentry."+F.getName().str());
267 }
268 
269 /// doInitialization - If this module uses the GC intrinsics, find them now. If
270 /// not, exit fast.
initializeCustomLowering(Module & M)271 bool ShadowStackGC::initializeCustomLowering(Module &M) {
272   // struct FrameMap {
273   //   int32_t NumRoots; // Number of roots in stack frame.
274   //   int32_t NumMeta;  // Number of metadata descriptors. May be < NumRoots.
275   //   void *Meta[];     // May be absent for roots without metadata.
276   // };
277   std::vector<Type*> EltTys;
278   // 32 bits is ok up to a 32GB stack frame. :)
279   EltTys.push_back(Type::getInt32Ty(M.getContext()));
280   // Specifies length of variable length array.
281   EltTys.push_back(Type::getInt32Ty(M.getContext()));
282   FrameMapTy = StructType::create(EltTys, "gc_map");
283   PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
284 
285   // struct StackEntry {
286   //   ShadowStackEntry *Next; // Caller's stack entry.
287   //   FrameMap *Map;          // Pointer to constant FrameMap.
288   //   void *Roots[];          // Stack roots (in-place array, so we pretend).
289   // };
290 
291   StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
292 
293   EltTys.clear();
294   EltTys.push_back(PointerType::getUnqual(StackEntryTy));
295   EltTys.push_back(FrameMapPtrTy);
296   StackEntryTy->setBody(EltTys);
297   PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
298 
299   // Get the root chain if it already exists.
300   Head = M.getGlobalVariable("llvm_gc_root_chain");
301   if (!Head) {
302     // If the root chain does not exist, insert a new one with linkonce
303     // linkage!
304     Head = new GlobalVariable(M, StackEntryPtrTy, false,
305                               GlobalValue::LinkOnceAnyLinkage,
306                               Constant::getNullValue(StackEntryPtrTy),
307                               "llvm_gc_root_chain");
308   } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
309     Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
310     Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
311   }
312 
313   return true;
314 }
315 
IsNullValue(Value * V)316 bool ShadowStackGC::IsNullValue(Value *V) {
317   if (Constant *C = dyn_cast<Constant>(V))
318     return C->isNullValue();
319   return false;
320 }
321 
CollectRoots(Function & F)322 void ShadowStackGC::CollectRoots(Function &F) {
323   // FIXME: Account for original alignment. Could fragment the root array.
324   //   Approach 1: Null initialize empty slots at runtime. Yuck.
325   //   Approach 2: Emit a map of the array instead of just a count.
326 
327   assert(Roots.empty() && "Not cleaned up?");
328 
329   SmallVector<std::pair<CallInst*, AllocaInst*>, 16> MetaRoots;
330 
331   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
332     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
333       if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
334         if (Function *F = CI->getCalledFunction())
335           if (F->getIntrinsicID() == Intrinsic::gcroot) {
336             std::pair<CallInst*, AllocaInst*> Pair = std::make_pair(
337               CI, cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
338             if (IsNullValue(CI->getArgOperand(1)))
339               Roots.push_back(Pair);
340             else
341               MetaRoots.push_back(Pair);
342           }
343 
344   // Number roots with metadata (usually empty) at the beginning, so that the
345   // FrameMap::Meta array can be elided.
346   Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
347 }
348 
349 GetElementPtrInst *
CreateGEP(LLVMContext & Context,IRBuilder<> & B,Value * BasePtr,int Idx,int Idx2,const char * Name)350 ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
351                          int Idx, int Idx2, const char *Name) {
352   Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
353                        ConstantInt::get(Type::getInt32Ty(Context), Idx),
354                        ConstantInt::get(Type::getInt32Ty(Context), Idx2) };
355   Value* Val = B.CreateGEP(BasePtr, Indices, Name);
356 
357   assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
358 
359   return dyn_cast<GetElementPtrInst>(Val);
360 }
361 
362 GetElementPtrInst *
CreateGEP(LLVMContext & Context,IRBuilder<> & B,Value * BasePtr,int Idx,const char * Name)363 ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
364                          int Idx, const char *Name) {
365   Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
366                        ConstantInt::get(Type::getInt32Ty(Context), Idx) };
367   Value *Val = B.CreateGEP(BasePtr, Indices, Name);
368 
369   assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
370 
371   return dyn_cast<GetElementPtrInst>(Val);
372 }
373 
374 /// runOnFunction - Insert code to maintain the shadow stack.
performCustomLowering(Function & F)375 bool ShadowStackGC::performCustomLowering(Function &F) {
376   LLVMContext &Context = F.getContext();
377 
378   // Find calls to llvm.gcroot.
379   CollectRoots(F);
380 
381   // If there are no roots in this function, then there is no need to add a
382   // stack map entry for it.
383   if (Roots.empty())
384     return false;
385 
386   // Build the constant map and figure the type of the shadow stack entry.
387   Value *FrameMap = GetFrameMap(F);
388   Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
389 
390   // Build the shadow stack entry at the very start of the function.
391   BasicBlock::iterator IP = F.getEntryBlock().begin();
392   IRBuilder<> AtEntry(IP->getParent(), IP);
393 
394   Instruction *StackEntry   = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0,
395                                                    "gc_frame");
396 
397   while (isa<AllocaInst>(IP)) ++IP;
398   AtEntry.SetInsertPoint(IP->getParent(), IP);
399 
400   // Initialize the map pointer and load the current head of the shadow stack.
401   Instruction *CurrentHead  = AtEntry.CreateLoad(Head, "gc_currhead");
402   Instruction *EntryMapPtr  = CreateGEP(Context, AtEntry, StackEntry,
403                                         0,1,"gc_frame.map");
404   AtEntry.CreateStore(FrameMap, EntryMapPtr);
405 
406   // After all the allocas...
407   for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
408     // For each root, find the corresponding slot in the aggregate...
409     Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root");
410 
411     // And use it in lieu of the alloca.
412     AllocaInst *OriginalAlloca = Roots[I].second;
413     SlotPtr->takeName(OriginalAlloca);
414     OriginalAlloca->replaceAllUsesWith(SlotPtr);
415   }
416 
417   // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
418   // really necessary (the collector would never see the intermediate state at
419   // runtime), but it's nicer not to push the half-initialized entry onto the
420   // shadow stack.
421   while (isa<StoreInst>(IP)) ++IP;
422   AtEntry.SetInsertPoint(IP->getParent(), IP);
423 
424   // Push the entry onto the shadow stack.
425   Instruction *EntryNextPtr = CreateGEP(Context, AtEntry,
426                                         StackEntry,0,0,"gc_frame.next");
427   Instruction *NewHeadVal   = CreateGEP(Context, AtEntry,
428                                         StackEntry, 0, "gc_newhead");
429   AtEntry.CreateStore(CurrentHead, EntryNextPtr);
430   AtEntry.CreateStore(NewHeadVal, Head);
431 
432   // For each instruction that escapes...
433   EscapeEnumerator EE(F, "gc_cleanup");
434   while (IRBuilder<> *AtExit = EE.Next()) {
435     // Pop the entry from the shadow stack. Don't reuse CurrentHead from
436     // AtEntry, since that would make the value live for the entire function.
437     Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0,
438                                            "gc_frame.next");
439     Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
440                        AtExit->CreateStore(SavedHead, Head);
441   }
442 
443   // Delete the original allocas (which are no longer used) and the intrinsic
444   // calls (which are no longer valid). Doing this last avoids invalidating
445   // iterators.
446   for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
447     Roots[I].first->eraseFromParent();
448     Roots[I].second->eraseFromParent();
449   }
450 
451   Roots.clear();
452   return true;
453 }
454