1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include "tensorflow/lite/delegates/flex/delegate.h"
16 
17 #include <vector>
18 
19 #include "absl/strings/str_cat.h"
20 #include "tensorflow/core/lib/core/status.h"
21 #include "tensorflow/lite/context_util.h"
22 #include "tensorflow/lite/delegates/flex/buffer_map.h"
23 #include "tensorflow/lite/delegates/flex/kernel.h"
24 #include "tensorflow/lite/delegates/flex/util.h"
25 #include "tensorflow/lite/string_util.h"
26 #include "tensorflow/lite/util.h"
27 
28 namespace tflite {
29 namespace flex {
30 namespace delegate {
31 
Prepare(TfLiteContext * context,TfLiteDelegate * delegate)32 TfLiteStatus Prepare(TfLiteContext* context, TfLiteDelegate* delegate) {
33   // If the TensorFlow Lite thread count is explicitly configured, use it,
34   // otherwise rely on the default TensorFlow threading behavior.
35   tensorflow::SessionOptions session_options;
36   if (context->recommended_num_threads > 0) {
37     session_options.config.set_intra_op_parallelism_threads(
38         context->recommended_num_threads);
39   }
40 
41   if (!reinterpret_cast<DelegateData*>(delegate->data_)
42            ->Prepare(session_options)
43            .ok()) {
44     context->ReportError(context, "Failed to initialize TensorFlow context.");
45     return kTfLiteError;
46   }
47 
48   // Get the nodes in the current execution plan. Interpreter owns this array.
49   TfLiteIntArray* plan;
50   TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &plan));
51 
52   // Add all custom ops starting with "Flex" to list of supported nodes.
53   std::vector<int> supported_nodes;
54   for (int node_index : TfLiteIntArrayView(plan)) {
55     TfLiteNode* node;
56     TfLiteRegistration* registration;
57     TF_LITE_ENSURE_STATUS(context->GetNodeAndRegistration(
58         context, node_index, &node, &registration));
59 
60     if (IsFlexOp(registration->custom_name)) {
61       supported_nodes.push_back(node_index);
62     }
63   }
64 
65   // Request TFLite to partition the graph and make kernels for each independent
66   // node sub set.
67   TfLiteIntArray* size_and_nodes =
68       ConvertVectorToTfLiteIntArray(supported_nodes);
69   context->ReplaceNodeSubsetsWithDelegateKernels(context, GetKernel(),
70                                                  size_and_nodes, delegate);
71   TfLiteIntArrayFree(size_and_nodes);
72   return kTfLiteOk;
73 }
74 
CopyFromBufferHandle(TfLiteContext * context,TfLiteDelegate * delegate,TfLiteBufferHandle buffer_handle,TfLiteTensor * output)75 TfLiteStatus CopyFromBufferHandle(TfLiteContext* context,
76                                   TfLiteDelegate* delegate,
77                                   TfLiteBufferHandle buffer_handle,
78                                   TfLiteTensor* output) {
79   BufferMap* buffer_map =
80       reinterpret_cast<DelegateData*>(delegate->data_)->GetBufferMap(context);
81 
82   if (!buffer_map->HasTensor(buffer_handle)) {
83     context->ReportError(context, "Invalid tensor index %d.", buffer_handle);
84     return kTfLiteError;
85   }
86 
87   tensorflow::Tensor t = buffer_map->GetTensor(buffer_handle);
88 
89   if (output->type == kTfLiteString) {
90     if (t.dtype() != tensorflow::DT_STRING) {
91       context->ReportError(context,
92                            "Inconsistent type for TF string tensor index %d.",
93                            buffer_handle);
94       return kTfLiteError;
95     }
96     DynamicBuffer dynamic_buffer;
97 
98     auto tf_data = t.flat<string>();
99     for (int i = 0; i < t.NumElements(); ++i) {
100       dynamic_buffer.AddString(tf_data(i).data(), tf_data(i).size());
101     }
102 
103     dynamic_buffer.WriteToTensor(output, /*new_shape=*/nullptr);
104     return kTfLiteOk;
105   }
106 
107   tensorflow::StringPiece t_data = t.tensor_data();
108 
109   if (output->bytes != t_data.size()) {
110     context->ReportError(context,
111                          absl::StrCat("The given ", output->bytes,
112                                       " bytes are not enough to store "
113                                       "TensorFlow's aligned buffer of size ",
114                                       t_data.size(), " bytes.")
115                              .c_str());
116     return kTfLiteError;
117   }
118 
119   memcpy(output->data.raw, t_data.data(), t_data.size());
120   return kTfLiteOk;
121 }
122 
123 }  // namespace delegate
124 }  // namespace flex
125 
126 // Corresponding weak declaration found in lite/model.cc.
127 std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)>
AcquireFlexDelegate()128 AcquireFlexDelegate() {
129   return std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)>(
130       tflite::FlexDelegate::Create().release(), [](TfLiteDelegate* delegate) {
131         delete reinterpret_cast<tflite::FlexDelegate*>(delegate);
132       });
133 }
134 
Create()135 std::unique_ptr<FlexDelegate> FlexDelegate::Create() {
136   return std::unique_ptr<FlexDelegate>(new FlexDelegate());
137 }
138 
FlexDelegate()139 FlexDelegate::FlexDelegate() : TfLiteDelegate(TfLiteDelegateCreate()) {
140   data_ = &delegate_data_;
141   Prepare = &flex::delegate::Prepare;
142   CopyFromBufferHandle = &flex::delegate::CopyFromBufferHandle;
143   flags = kTfLiteDelegateFlagsAllowDynamicTensors;
144 }
145 
~FlexDelegate()146 FlexDelegate::~FlexDelegate() {}
147 
148 }  // namespace tflite
149