1 //===-- llvm/Support/CFG.h - Process LLVM structures as graphs --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines specializations of GraphTraits that allow Function and
11 // BasicBlock graphs to be treated as proper graphs for generic algorithms.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_SUPPORT_CFG_H
16 #define LLVM_SUPPORT_CFG_H
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/Function.h"
20 #include "llvm/InstrTypes.h"
21 
22 namespace llvm {
23 
24 //===----------------------------------------------------------------------===//
25 // BasicBlock pred_iterator definition
26 //===----------------------------------------------------------------------===//
27 
28 template <class Ptr, class USE_iterator> // Predecessor Iterator
29 class PredIterator : public std::iterator<std::forward_iterator_tag,
30                                           Ptr, ptrdiff_t> {
31   typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t> super;
32   typedef PredIterator<Ptr, USE_iterator> Self;
33   USE_iterator It;
34 
advancePastNonTerminators()35   inline void advancePastNonTerminators() {
36     // Loop to ignore non terminator uses (for example BlockAddresses).
37     while (!It.atEnd() && !isa<TerminatorInst>(*It))
38       ++It;
39   }
40 
41 public:
42   typedef typename super::pointer pointer;
43 
PredIterator()44   PredIterator() {}
PredIterator(Ptr * bb)45   explicit inline PredIterator(Ptr *bb) : It(bb->use_begin()) {
46     advancePastNonTerminators();
47   }
PredIterator(Ptr * bb,bool)48   inline PredIterator(Ptr *bb, bool) : It(bb->use_end()) {}
49 
50   inline bool operator==(const Self& x) const { return It == x.It; }
51   inline bool operator!=(const Self& x) const { return !operator==(x); }
52 
53   inline pointer operator*() const {
54     assert(!It.atEnd() && "pred_iterator out of range!");
55     return cast<TerminatorInst>(*It)->getParent();
56   }
57   inline pointer *operator->() const { return &operator*(); }
58 
59   inline Self& operator++() {   // Preincrement
60     assert(!It.atEnd() && "pred_iterator out of range!");
61     ++It; advancePastNonTerminators();
62     return *this;
63   }
64 
65   inline Self operator++(int) { // Postincrement
66     Self tmp = *this; ++*this; return tmp;
67   }
68 
69   /// getOperandNo - Return the operand number in the predecessor's
70   /// terminator of the successor.
getOperandNo()71   unsigned getOperandNo() const {
72     return It.getOperandNo();
73   }
74 };
75 
76 typedef PredIterator<BasicBlock, Value::use_iterator> pred_iterator;
77 typedef PredIterator<const BasicBlock,
78                      Value::const_use_iterator> const_pred_iterator;
79 
pred_begin(BasicBlock * BB)80 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
pred_begin(const BasicBlock * BB)81 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
82   return const_pred_iterator(BB);
83 }
pred_end(BasicBlock * BB)84 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
pred_end(const BasicBlock * BB)85 inline const_pred_iterator pred_end(const BasicBlock *BB) {
86   return const_pred_iterator(BB, true);
87 }
88 
89 
90 
91 //===----------------------------------------------------------------------===//
92 // BasicBlock succ_iterator definition
93 //===----------------------------------------------------------------------===//
94 
95 template <class Term_, class BB_>           // Successor Iterator
96 class SuccIterator : public std::iterator<std::bidirectional_iterator_tag,
97                                           BB_, ptrdiff_t> {
98   const Term_ Term;
99   unsigned idx;
100   typedef std::iterator<std::bidirectional_iterator_tag, BB_, ptrdiff_t> super;
101   typedef SuccIterator<Term_, BB_> Self;
102 
index_is_valid(int idx)103   inline bool index_is_valid(int idx) {
104     return idx >= 0 && (unsigned) idx < Term->getNumSuccessors();
105   }
106 
107 public:
108   typedef typename super::pointer pointer;
109   // TODO: This can be random access iterator, only operator[] missing.
110 
SuccIterator(Term_ T)111   explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator
112   }
SuccIterator(Term_ T,bool)113   inline SuccIterator(Term_ T, bool)                       // end iterator
114     : Term(T) {
115     if (Term)
116       idx = Term->getNumSuccessors();
117     else
118       // Term == NULL happens, if a basic block is not fully constructed and
119       // consequently getTerminator() returns NULL. In this case we construct a
120       // SuccIterator which describes a basic block that has zero successors.
121       // Defining SuccIterator for incomplete and malformed CFGs is especially
122       // useful for debugging.
123       idx = 0;
124   }
125 
126   inline const Self &operator=(const Self &I) {
127     assert(Term == I.Term &&"Cannot assign iterators to two different blocks!");
128     idx = I.idx;
129     return *this;
130   }
131 
132   /// getSuccessorIndex - This is used to interface between code that wants to
133   /// operate on terminator instructions directly.
getSuccessorIndex()134   unsigned getSuccessorIndex() const { return idx; }
135 
136   inline bool operator==(const Self& x) const { return idx == x.idx; }
137   inline bool operator!=(const Self& x) const { return !operator==(x); }
138 
139   inline pointer operator*() const { return Term->getSuccessor(idx); }
140   inline pointer operator->() const { return operator*(); }
141 
142   inline Self& operator++() { ++idx; return *this; } // Preincrement
143 
144   inline Self operator++(int) { // Postincrement
145     Self tmp = *this; ++*this; return tmp;
146   }
147 
148   inline Self& operator--() { --idx; return *this; }  // Predecrement
149   inline Self operator--(int) { // Postdecrement
150     Self tmp = *this; --*this; return tmp;
151   }
152 
153   inline bool operator<(const Self& x) const {
154     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
155     return idx < x.idx;
156   }
157 
158   inline bool operator<=(const Self& x) const {
159     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
160     return idx <= x.idx;
161   }
162   inline bool operator>=(const Self& x) const {
163     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
164     return idx >= x.idx;
165   }
166 
167   inline bool operator>(const Self& x) const {
168     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
169     return idx > x.idx;
170   }
171 
172   inline Self& operator+=(int Right) {
173     unsigned new_idx = idx + Right;
174     assert(index_is_valid(new_idx) && "Iterator index out of bound");
175     idx = new_idx;
176     return *this;
177   }
178 
179   inline Self operator+(int Right) {
180     Self tmp = *this;
181     tmp += Right;
182     return tmp;
183   }
184 
185   inline Self& operator-=(int Right) {
186     return operator+=(-Right);
187   }
188 
189   inline Self operator-(int Right) {
190     return operator+(-Right);
191   }
192 
193   inline int operator-(const Self& x) {
194     assert(Term == x.Term && "Cannot work on iterators of different blocks!");
195     int distance = idx - x.idx;
196     return distance;
197   }
198 
199   // This works for read access, however write access is difficult as changes
200   // to Term are only possible with Term->setSuccessor(idx). Pointers that can
201   // be modified are not available.
202   //
203   // inline pointer operator[](int offset) {
204   //  Self tmp = *this;
205   //  tmp += offset;
206   //  return tmp.operator*();
207   // }
208 
209   /// Get the source BB of this iterator.
getSource()210   inline BB_ *getSource() {
211     assert(Term && "Source not available, if basic block was malformed");
212     return Term->getParent();
213   }
214 };
215 
216 typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator;
217 typedef SuccIterator<const TerminatorInst*,
218                      const BasicBlock> succ_const_iterator;
219 
succ_begin(BasicBlock * BB)220 inline succ_iterator succ_begin(BasicBlock *BB) {
221   return succ_iterator(BB->getTerminator());
222 }
succ_begin(const BasicBlock * BB)223 inline succ_const_iterator succ_begin(const BasicBlock *BB) {
224   return succ_const_iterator(BB->getTerminator());
225 }
succ_end(BasicBlock * BB)226 inline succ_iterator succ_end(BasicBlock *BB) {
227   return succ_iterator(BB->getTerminator(), true);
228 }
succ_end(const BasicBlock * BB)229 inline succ_const_iterator succ_end(const BasicBlock *BB) {
230   return succ_const_iterator(BB->getTerminator(), true);
231 }
232 
233 
234 
235 //===--------------------------------------------------------------------===//
236 // GraphTraits specializations for basic block graphs (CFGs)
237 //===--------------------------------------------------------------------===//
238 
239 // Provide specializations of GraphTraits to be able to treat a function as a
240 // graph of basic blocks...
241 
242 template <> struct GraphTraits<BasicBlock*> {
243   typedef BasicBlock NodeType;
244   typedef succ_iterator ChildIteratorType;
245 
246   static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
247   static inline ChildIteratorType child_begin(NodeType *N) {
248     return succ_begin(N);
249   }
250   static inline ChildIteratorType child_end(NodeType *N) {
251     return succ_end(N);
252   }
253 };
254 
255 template <> struct GraphTraits<const BasicBlock*> {
256   typedef const BasicBlock NodeType;
257   typedef succ_const_iterator ChildIteratorType;
258 
259   static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
260 
261   static inline ChildIteratorType child_begin(NodeType *N) {
262     return succ_begin(N);
263   }
264   static inline ChildIteratorType child_end(NodeType *N) {
265     return succ_end(N);
266   }
267 };
268 
269 // Provide specializations of GraphTraits to be able to treat a function as a
270 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
271 // a function is considered to be when traversing the predecessor edges of a BB
272 // instead of the successor edges.
273 //
274 template <> struct GraphTraits<Inverse<BasicBlock*> > {
275   typedef BasicBlock NodeType;
276   typedef pred_iterator ChildIteratorType;
277   static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
278   static inline ChildIteratorType child_begin(NodeType *N) {
279     return pred_begin(N);
280   }
281   static inline ChildIteratorType child_end(NodeType *N) {
282     return pred_end(N);
283   }
284 };
285 
286 template <> struct GraphTraits<Inverse<const BasicBlock*> > {
287   typedef const BasicBlock NodeType;
288   typedef const_pred_iterator ChildIteratorType;
289   static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
290     return G.Graph;
291   }
292   static inline ChildIteratorType child_begin(NodeType *N) {
293     return pred_begin(N);
294   }
295   static inline ChildIteratorType child_end(NodeType *N) {
296     return pred_end(N);
297   }
298 };
299 
300 
301 
302 //===--------------------------------------------------------------------===//
303 // GraphTraits specializations for function basic block graphs (CFGs)
304 //===--------------------------------------------------------------------===//
305 
306 // Provide specializations of GraphTraits to be able to treat a function as a
307 // graph of basic blocks... these are the same as the basic block iterators,
308 // except that the root node is implicitly the first node of the function.
309 //
310 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
311   static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
312 
313   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
314   typedef Function::iterator nodes_iterator;
315   static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
316   static nodes_iterator nodes_end  (Function *F) { return F->end(); }
317 };
318 template <> struct GraphTraits<const Function*> :
319   public GraphTraits<const BasicBlock*> {
320   static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
321 
322   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
323   typedef Function::const_iterator nodes_iterator;
324   static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
325   static nodes_iterator nodes_end  (const Function *F) { return F->end(); }
326 };
327 
328 
329 // Provide specializations of GraphTraits to be able to treat a function as a
330 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
331 // a function is considered to be when traversing the predecessor edges of a BB
332 // instead of the successor edges.
333 //
334 template <> struct GraphTraits<Inverse<Function*> > :
335   public GraphTraits<Inverse<BasicBlock*> > {
336   static NodeType *getEntryNode(Inverse<Function*> G) {
337     return &G.Graph->getEntryBlock();
338   }
339 };
340 template <> struct GraphTraits<Inverse<const Function*> > :
341   public GraphTraits<Inverse<const BasicBlock*> > {
342   static NodeType *getEntryNode(Inverse<const Function *> G) {
343     return &G.Graph->getEntryBlock();
344   }
345 };
346 
347 } // End llvm namespace
348 
349 #endif
350