1 //===-- llvm/Support/CFG.h - Process LLVM structures as graphs --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines specializations of GraphTraits that allow Function and
11 // BasicBlock graphs to be treated as proper graphs for generic algorithms.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_SUPPORT_CFG_H
16 #define LLVM_SUPPORT_CFG_H
17
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/Function.h"
20 #include "llvm/InstrTypes.h"
21
22 namespace llvm {
23
24 //===----------------------------------------------------------------------===//
25 // BasicBlock pred_iterator definition
26 //===----------------------------------------------------------------------===//
27
28 template <class Ptr, class USE_iterator> // Predecessor Iterator
29 class PredIterator : public std::iterator<std::forward_iterator_tag,
30 Ptr, ptrdiff_t> {
31 typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t> super;
32 typedef PredIterator<Ptr, USE_iterator> Self;
33 USE_iterator It;
34
advancePastNonTerminators()35 inline void advancePastNonTerminators() {
36 // Loop to ignore non terminator uses (for example BlockAddresses).
37 while (!It.atEnd() && !isa<TerminatorInst>(*It))
38 ++It;
39 }
40
41 public:
42 typedef typename super::pointer pointer;
43
PredIterator()44 PredIterator() {}
PredIterator(Ptr * bb)45 explicit inline PredIterator(Ptr *bb) : It(bb->use_begin()) {
46 advancePastNonTerminators();
47 }
PredIterator(Ptr * bb,bool)48 inline PredIterator(Ptr *bb, bool) : It(bb->use_end()) {}
49
50 inline bool operator==(const Self& x) const { return It == x.It; }
51 inline bool operator!=(const Self& x) const { return !operator==(x); }
52
53 inline pointer operator*() const {
54 assert(!It.atEnd() && "pred_iterator out of range!");
55 return cast<TerminatorInst>(*It)->getParent();
56 }
57 inline pointer *operator->() const { return &operator*(); }
58
59 inline Self& operator++() { // Preincrement
60 assert(!It.atEnd() && "pred_iterator out of range!");
61 ++It; advancePastNonTerminators();
62 return *this;
63 }
64
65 inline Self operator++(int) { // Postincrement
66 Self tmp = *this; ++*this; return tmp;
67 }
68
69 /// getOperandNo - Return the operand number in the predecessor's
70 /// terminator of the successor.
getOperandNo()71 unsigned getOperandNo() const {
72 return It.getOperandNo();
73 }
74 };
75
76 typedef PredIterator<BasicBlock, Value::use_iterator> pred_iterator;
77 typedef PredIterator<const BasicBlock,
78 Value::const_use_iterator> const_pred_iterator;
79
pred_begin(BasicBlock * BB)80 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
pred_begin(const BasicBlock * BB)81 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
82 return const_pred_iterator(BB);
83 }
pred_end(BasicBlock * BB)84 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
pred_end(const BasicBlock * BB)85 inline const_pred_iterator pred_end(const BasicBlock *BB) {
86 return const_pred_iterator(BB, true);
87 }
88
89
90
91 //===----------------------------------------------------------------------===//
92 // BasicBlock succ_iterator definition
93 //===----------------------------------------------------------------------===//
94
95 template <class Term_, class BB_> // Successor Iterator
96 class SuccIterator : public std::iterator<std::bidirectional_iterator_tag,
97 BB_, ptrdiff_t> {
98 const Term_ Term;
99 unsigned idx;
100 typedef std::iterator<std::bidirectional_iterator_tag, BB_, ptrdiff_t> super;
101 typedef SuccIterator<Term_, BB_> Self;
102
index_is_valid(int idx)103 inline bool index_is_valid(int idx) {
104 return idx >= 0 && (unsigned) idx < Term->getNumSuccessors();
105 }
106
107 public:
108 typedef typename super::pointer pointer;
109 // TODO: This can be random access iterator, only operator[] missing.
110
SuccIterator(Term_ T)111 explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator
112 }
SuccIterator(Term_ T,bool)113 inline SuccIterator(Term_ T, bool) // end iterator
114 : Term(T) {
115 if (Term)
116 idx = Term->getNumSuccessors();
117 else
118 // Term == NULL happens, if a basic block is not fully constructed and
119 // consequently getTerminator() returns NULL. In this case we construct a
120 // SuccIterator which describes a basic block that has zero successors.
121 // Defining SuccIterator for incomplete and malformed CFGs is especially
122 // useful for debugging.
123 idx = 0;
124 }
125
126 inline const Self &operator=(const Self &I) {
127 assert(Term == I.Term &&"Cannot assign iterators to two different blocks!");
128 idx = I.idx;
129 return *this;
130 }
131
132 /// getSuccessorIndex - This is used to interface between code that wants to
133 /// operate on terminator instructions directly.
getSuccessorIndex()134 unsigned getSuccessorIndex() const { return idx; }
135
136 inline bool operator==(const Self& x) const { return idx == x.idx; }
137 inline bool operator!=(const Self& x) const { return !operator==(x); }
138
139 inline pointer operator*() const { return Term->getSuccessor(idx); }
140 inline pointer operator->() const { return operator*(); }
141
142 inline Self& operator++() { ++idx; return *this; } // Preincrement
143
144 inline Self operator++(int) { // Postincrement
145 Self tmp = *this; ++*this; return tmp;
146 }
147
148 inline Self& operator--() { --idx; return *this; } // Predecrement
149 inline Self operator--(int) { // Postdecrement
150 Self tmp = *this; --*this; return tmp;
151 }
152
153 inline bool operator<(const Self& x) const {
154 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
155 return idx < x.idx;
156 }
157
158 inline bool operator<=(const Self& x) const {
159 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
160 return idx <= x.idx;
161 }
162 inline bool operator>=(const Self& x) const {
163 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
164 return idx >= x.idx;
165 }
166
167 inline bool operator>(const Self& x) const {
168 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
169 return idx > x.idx;
170 }
171
172 inline Self& operator+=(int Right) {
173 unsigned new_idx = idx + Right;
174 assert(index_is_valid(new_idx) && "Iterator index out of bound");
175 idx = new_idx;
176 return *this;
177 }
178
179 inline Self operator+(int Right) {
180 Self tmp = *this;
181 tmp += Right;
182 return tmp;
183 }
184
185 inline Self& operator-=(int Right) {
186 return operator+=(-Right);
187 }
188
189 inline Self operator-(int Right) {
190 return operator+(-Right);
191 }
192
193 inline int operator-(const Self& x) {
194 assert(Term == x.Term && "Cannot work on iterators of different blocks!");
195 int distance = idx - x.idx;
196 return distance;
197 }
198
199 // This works for read access, however write access is difficult as changes
200 // to Term are only possible with Term->setSuccessor(idx). Pointers that can
201 // be modified are not available.
202 //
203 // inline pointer operator[](int offset) {
204 // Self tmp = *this;
205 // tmp += offset;
206 // return tmp.operator*();
207 // }
208
209 /// Get the source BB of this iterator.
getSource()210 inline BB_ *getSource() {
211 assert(Term && "Source not available, if basic block was malformed");
212 return Term->getParent();
213 }
214 };
215
216 typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator;
217 typedef SuccIterator<const TerminatorInst*,
218 const BasicBlock> succ_const_iterator;
219
succ_begin(BasicBlock * BB)220 inline succ_iterator succ_begin(BasicBlock *BB) {
221 return succ_iterator(BB->getTerminator());
222 }
succ_begin(const BasicBlock * BB)223 inline succ_const_iterator succ_begin(const BasicBlock *BB) {
224 return succ_const_iterator(BB->getTerminator());
225 }
succ_end(BasicBlock * BB)226 inline succ_iterator succ_end(BasicBlock *BB) {
227 return succ_iterator(BB->getTerminator(), true);
228 }
succ_end(const BasicBlock * BB)229 inline succ_const_iterator succ_end(const BasicBlock *BB) {
230 return succ_const_iterator(BB->getTerminator(), true);
231 }
232
233
234
235 //===--------------------------------------------------------------------===//
236 // GraphTraits specializations for basic block graphs (CFGs)
237 //===--------------------------------------------------------------------===//
238
239 // Provide specializations of GraphTraits to be able to treat a function as a
240 // graph of basic blocks...
241
242 template <> struct GraphTraits<BasicBlock*> {
243 typedef BasicBlock NodeType;
244 typedef succ_iterator ChildIteratorType;
245
246 static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
247 static inline ChildIteratorType child_begin(NodeType *N) {
248 return succ_begin(N);
249 }
250 static inline ChildIteratorType child_end(NodeType *N) {
251 return succ_end(N);
252 }
253 };
254
255 template <> struct GraphTraits<const BasicBlock*> {
256 typedef const BasicBlock NodeType;
257 typedef succ_const_iterator ChildIteratorType;
258
259 static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
260
261 static inline ChildIteratorType child_begin(NodeType *N) {
262 return succ_begin(N);
263 }
264 static inline ChildIteratorType child_end(NodeType *N) {
265 return succ_end(N);
266 }
267 };
268
269 // Provide specializations of GraphTraits to be able to treat a function as a
270 // graph of basic blocks... and to walk it in inverse order. Inverse order for
271 // a function is considered to be when traversing the predecessor edges of a BB
272 // instead of the successor edges.
273 //
274 template <> struct GraphTraits<Inverse<BasicBlock*> > {
275 typedef BasicBlock NodeType;
276 typedef pred_iterator ChildIteratorType;
277 static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
278 static inline ChildIteratorType child_begin(NodeType *N) {
279 return pred_begin(N);
280 }
281 static inline ChildIteratorType child_end(NodeType *N) {
282 return pred_end(N);
283 }
284 };
285
286 template <> struct GraphTraits<Inverse<const BasicBlock*> > {
287 typedef const BasicBlock NodeType;
288 typedef const_pred_iterator ChildIteratorType;
289 static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
290 return G.Graph;
291 }
292 static inline ChildIteratorType child_begin(NodeType *N) {
293 return pred_begin(N);
294 }
295 static inline ChildIteratorType child_end(NodeType *N) {
296 return pred_end(N);
297 }
298 };
299
300
301
302 //===--------------------------------------------------------------------===//
303 // GraphTraits specializations for function basic block graphs (CFGs)
304 //===--------------------------------------------------------------------===//
305
306 // Provide specializations of GraphTraits to be able to treat a function as a
307 // graph of basic blocks... these are the same as the basic block iterators,
308 // except that the root node is implicitly the first node of the function.
309 //
310 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
311 static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
312
313 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
314 typedef Function::iterator nodes_iterator;
315 static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
316 static nodes_iterator nodes_end (Function *F) { return F->end(); }
317 };
318 template <> struct GraphTraits<const Function*> :
319 public GraphTraits<const BasicBlock*> {
320 static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
321
322 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
323 typedef Function::const_iterator nodes_iterator;
324 static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
325 static nodes_iterator nodes_end (const Function *F) { return F->end(); }
326 };
327
328
329 // Provide specializations of GraphTraits to be able to treat a function as a
330 // graph of basic blocks... and to walk it in inverse order. Inverse order for
331 // a function is considered to be when traversing the predecessor edges of a BB
332 // instead of the successor edges.
333 //
334 template <> struct GraphTraits<Inverse<Function*> > :
335 public GraphTraits<Inverse<BasicBlock*> > {
336 static NodeType *getEntryNode(Inverse<Function*> G) {
337 return &G.Graph->getEntryBlock();
338 }
339 };
340 template <> struct GraphTraits<Inverse<const Function*> > :
341 public GraphTraits<Inverse<const BasicBlock*> > {
342 static NodeType *getEntryNode(Inverse<const Function *> G) {
343 return &G.Graph->getEntryBlock();
344 }
345 };
346
347 } // End llvm namespace
348
349 #endif
350