1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LoopPredication pass tries to convert loop variant range checks to loop
11 // invariant by widening checks across loop iterations. For example, it will
12 // convert
13 //
14 //   for (i = 0; i < n; i++) {
15 //     guard(i < len);
16 //     ...
17 //   }
18 //
19 // to
20 //
21 //   for (i = 0; i < n; i++) {
22 //     guard(n - 1 < len);
23 //     ...
24 //   }
25 //
26 // After this transformation the condition of the guard is loop invariant, so
27 // loop-unswitch can later unswitch the loop by this condition which basically
28 // predicates the loop by the widened condition:
29 //
30 //   if (n - 1 < len)
31 //     for (i = 0; i < n; i++) {
32 //       ...
33 //     }
34 //   else
35 //     deoptimize
36 //
37 // It's tempting to rely on SCEV here, but it has proven to be problematic.
38 // Generally the facts SCEV provides about the increment step of add
39 // recurrences are true if the backedge of the loop is taken, which implicitly
40 // assumes that the guard doesn't fail. Using these facts to optimize the
41 // guard results in a circular logic where the guard is optimized under the
42 // assumption that it never fails.
43 //
44 // For example, in the loop below the induction variable will be marked as nuw
45 // basing on the guard. Basing on nuw the guard predicate will be considered
46 // monotonic. Given a monotonic condition it's tempting to replace the induction
47 // variable in the condition with its value on the last iteration. But this
48 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49 //
50 //   for (int i = b; i != e; i++)
51 //     guard(i u< len)
52 //
53 // One of the ways to reason about this problem is to use an inductive proof
54 // approach. Given the loop:
55 //
56 //   if (B(0)) {
57 //     do {
58 //       I = PHI(0, I.INC)
59 //       I.INC = I + Step
60 //       guard(G(I));
61 //     } while (B(I));
62 //   }
63 //
64 // where B(x) and G(x) are predicates that map integers to booleans, we want a
65 // loop invariant expression M such the following program has the same semantics
66 // as the above:
67 //
68 //   if (B(0)) {
69 //     do {
70 //       I = PHI(0, I.INC)
71 //       I.INC = I + Step
72 //       guard(G(0) && M);
73 //     } while (B(I));
74 //   }
75 //
76 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
77 //
78 // Informal proof that the transformation above is correct:
79 //
80 //   By the definition of guards we can rewrite the guard condition to:
81 //     G(I) && G(0) && M
82 //
83 //   Let's prove that for each iteration of the loop:
84 //     G(0) && M => G(I)
85 //   And the condition above can be simplified to G(Start) && M.
86 //
87 //   Induction base.
88 //     G(0) && M => G(0)
89 //
90 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
91 //   iteration:
92 //
93 //     B(I) is true because it's the backedge condition.
94 //     G(I) is true because the backedge is guarded by this condition.
95 //
96 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
97 //
98 // Note that we can use anything stronger than M, i.e. any condition which
99 // implies M.
100 //
101 // When S = 1 (i.e. forward iterating loop), the transformation is supported
102 // when:
103 //   * The loop has a single latch with the condition of the form:
104 //     B(X) = latchStart + X <pred> latchLimit,
105 //     where <pred> is u<, u<=, s<, or s<=.
106 //   * The guard condition is of the form
107 //     G(X) = guardStart + X u< guardLimit
108 //
109 //   For the ult latch comparison case M is:
110 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
111 //        guardStart + X + 1 u< guardLimit
112 //
113 //   The only way the antecedent can be true and the consequent can be false is
114 //   if
115 //     X == guardLimit - 1 - guardStart
116 //   (and guardLimit is non-zero, but we won't use this latter fact).
117 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
118 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
119 //   and its negation is
120 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
121 //
122 //   In other words, if
123 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
124 //   then:
125 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
126 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
127 //
128 //      forall X . guardStart + X u< guardLimit &&
129 //                 latchStart + X u< latchLimit =>
130 //        guardStart + X + 1 u< guardLimit
131 //   == forall X . guardStart + X u< guardLimit &&
132 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
133 //        guardStart + X + 1 u< guardLimit
134 //   == forall X . (guardStart + X) in [0, guardLimit) &&
135 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
136 //        (guardStart + X + 1) in [0, guardLimit)
137 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
138 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
139 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
140 //   == true
141 //
142 //   So the widened condition is:
143 //     guardStart u< guardLimit &&
144 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
145 //   Similarly for ule condition the widened condition is:
146 //     guardStart u< guardLimit &&
147 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
148 //   For slt condition the widened condition is:
149 //     guardStart u< guardLimit &&
150 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
151 //   For sle condition the widened condition is:
152 //     guardStart u< guardLimit &&
153 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
154 //
155 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
156 // when:
157 //   * The loop has a single latch with the condition of the form:
158 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
159 //   * The guard condition is of the form
160 //     G(X) = X - 1 u< guardLimit
161 //
162 //   For the ugt latch comparison case M is:
163 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164 //
165 //   The only way the antecedent can be true and the consequent can be false is if
166 //     X == 1.
167 //   If X == 1 then the second half of the antecedent is
168 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
169 //
170 //   So the widened condition is:
171 //     guardStart u< guardLimit && latchLimit u>= 1.
172 //   Similarly for sgt condition the widened condition is:
173 //     guardStart u< guardLimit && latchLimit s>= 1.
174 //   For uge condition the widened condition is:
175 //     guardStart u< guardLimit && latchLimit u> 1.
176 //   For sge condition the widened condition is:
177 //     guardStart u< guardLimit && latchLimit s> 1.
178 //===----------------------------------------------------------------------===//
179 
180 #include "llvm/Transforms/Scalar/LoopPredication.h"
181 #include "llvm/Analysis/BranchProbabilityInfo.h"
182 #include "llvm/Analysis/LoopInfo.h"
183 #include "llvm/Analysis/LoopPass.h"
184 #include "llvm/Analysis/ScalarEvolution.h"
185 #include "llvm/Analysis/ScalarEvolutionExpander.h"
186 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
187 #include "llvm/IR/Function.h"
188 #include "llvm/IR/GlobalValue.h"
189 #include "llvm/IR/IntrinsicInst.h"
190 #include "llvm/IR/Module.h"
191 #include "llvm/IR/PatternMatch.h"
192 #include "llvm/Pass.h"
193 #include "llvm/Support/Debug.h"
194 #include "llvm/Transforms/Scalar.h"
195 #include "llvm/Transforms/Utils/LoopUtils.h"
196 
197 #define DEBUG_TYPE "loop-predication"
198 
199 using namespace llvm;
200 
201 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
202                                         cl::Hidden, cl::init(true));
203 
204 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
205                                         cl::Hidden, cl::init(true));
206 
207 static cl::opt<bool>
208     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
209                             cl::Hidden, cl::init(false));
210 
211 // This is the scale factor for the latch probability. We use this during
212 // profitability analysis to find other exiting blocks that have a much higher
213 // probability of exiting the loop instead of loop exiting via latch.
214 // This value should be greater than 1 for a sane profitability check.
215 static cl::opt<float> LatchExitProbabilityScale(
216     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
217     cl::desc("scale factor for the latch probability. Value should be greater "
218              "than 1. Lower values are ignored"));
219 
220 namespace {
221 class LoopPredication {
222   /// Represents an induction variable check:
223   ///   icmp Pred, <induction variable>, <loop invariant limit>
224   struct LoopICmp {
225     ICmpInst::Predicate Pred;
226     const SCEVAddRecExpr *IV;
227     const SCEV *Limit;
LoopICmp__anon55fdd7d90111::LoopPredication::LoopICmp228     LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
229              const SCEV *Limit)
230         : Pred(Pred), IV(IV), Limit(Limit) {}
LoopICmp__anon55fdd7d90111::LoopPredication::LoopICmp231     LoopICmp() {}
dump__anon55fdd7d90111::LoopPredication::LoopICmp232     void dump() {
233       dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
234              << ", Limit = " << *Limit << "\n";
235     }
236   };
237 
238   ScalarEvolution *SE;
239   BranchProbabilityInfo *BPI;
240 
241   Loop *L;
242   const DataLayout *DL;
243   BasicBlock *Preheader;
244   LoopICmp LatchCheck;
245 
246   bool isSupportedStep(const SCEV* Step);
parseLoopICmp(ICmpInst * ICI)247   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
248     return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
249                          ICI->getOperand(1));
250   }
251   Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
252                                    Value *RHS);
253 
254   Optional<LoopICmp> parseLoopLatchICmp();
255 
256   bool CanExpand(const SCEV* S);
257   Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
258                      ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
259                      Instruction *InsertAt);
260 
261   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
262                                         IRBuilder<> &Builder);
263   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
264                                                         LoopICmp RangeCheck,
265                                                         SCEVExpander &Expander,
266                                                         IRBuilder<> &Builder);
267   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
268                                                         LoopICmp RangeCheck,
269                                                         SCEVExpander &Expander,
270                                                         IRBuilder<> &Builder);
271   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
272 
273   // If the loop always exits through another block in the loop, we should not
274   // predicate based on the latch check. For example, the latch check can be a
275   // very coarse grained check and there can be more fine grained exit checks
276   // within the loop. We identify such unprofitable loops through BPI.
277   bool isLoopProfitableToPredicate();
278 
279   // When the IV type is wider than the range operand type, we can still do loop
280   // predication, by generating SCEVs for the range and latch that are of the
281   // same type. We achieve this by generating a SCEV truncate expression for the
282   // latch IV. This is done iff truncation of the IV is a safe operation,
283   // without loss of information.
284   // Another way to achieve this is by generating a wider type SCEV for the
285   // range check operand, however, this needs a more involved check that
286   // operands do not overflow. This can lead to loss of information when the
287   // range operand is of the form: add i32 %offset, %iv. We need to prove that
288   // sext(x + y) is same as sext(x) + sext(y).
289   // This function returns true if we can safely represent the IV type in
290   // the RangeCheckType without loss of information.
291   bool isSafeToTruncateWideIVType(Type *RangeCheckType);
292   // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
293   // so.
294   Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
295 
296 public:
LoopPredication(ScalarEvolution * SE,BranchProbabilityInfo * BPI)297   LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
298       : SE(SE), BPI(BPI){};
299   bool runOnLoop(Loop *L);
300 };
301 
302 class LoopPredicationLegacyPass : public LoopPass {
303 public:
304   static char ID;
LoopPredicationLegacyPass()305   LoopPredicationLegacyPass() : LoopPass(ID) {
306     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
307   }
308 
getAnalysisUsage(AnalysisUsage & AU) const309   void getAnalysisUsage(AnalysisUsage &AU) const override {
310     AU.addRequired<BranchProbabilityInfoWrapperPass>();
311     getLoopAnalysisUsage(AU);
312   }
313 
runOnLoop(Loop * L,LPPassManager & LPM)314   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
315     if (skipLoop(L))
316       return false;
317     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
318     BranchProbabilityInfo &BPI =
319         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
320     LoopPredication LP(SE, &BPI);
321     return LP.runOnLoop(L);
322   }
323 };
324 
325 char LoopPredicationLegacyPass::ID = 0;
326 } // end namespace llvm
327 
328 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
329                       "Loop predication", false, false)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)330 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
331 INITIALIZE_PASS_DEPENDENCY(LoopPass)
332 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
333                     "Loop predication", false, false)
334 
335 Pass *llvm::createLoopPredicationPass() {
336   return new LoopPredicationLegacyPass();
337 }
338 
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)339 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
340                                            LoopStandardAnalysisResults &AR,
341                                            LPMUpdater &U) {
342   const auto &FAM =
343       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
344   Function *F = L.getHeader()->getParent();
345   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
346   LoopPredication LP(&AR.SE, BPI);
347   if (!LP.runOnLoop(&L))
348     return PreservedAnalyses::all();
349 
350   return getLoopPassPreservedAnalyses();
351 }
352 
353 Optional<LoopPredication::LoopICmp>
parseLoopICmp(ICmpInst::Predicate Pred,Value * LHS,Value * RHS)354 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
355                                Value *RHS) {
356   const SCEV *LHSS = SE->getSCEV(LHS);
357   if (isa<SCEVCouldNotCompute>(LHSS))
358     return None;
359   const SCEV *RHSS = SE->getSCEV(RHS);
360   if (isa<SCEVCouldNotCompute>(RHSS))
361     return None;
362 
363   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
364   if (SE->isLoopInvariant(LHSS, L)) {
365     std::swap(LHS, RHS);
366     std::swap(LHSS, RHSS);
367     Pred = ICmpInst::getSwappedPredicate(Pred);
368   }
369 
370   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
371   if (!AR || AR->getLoop() != L)
372     return None;
373 
374   return LoopICmp(Pred, AR, RHSS);
375 }
376 
expandCheck(SCEVExpander & Expander,IRBuilder<> & Builder,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,Instruction * InsertAt)377 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
378                                     IRBuilder<> &Builder,
379                                     ICmpInst::Predicate Pred, const SCEV *LHS,
380                                     const SCEV *RHS, Instruction *InsertAt) {
381   // TODO: we can check isLoopEntryGuardedByCond before emitting the check
382 
383   Type *Ty = LHS->getType();
384   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
385 
386   if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
387     return Builder.getTrue();
388 
389   Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
390   Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
391   return Builder.CreateICmp(Pred, LHSV, RHSV);
392 }
393 
394 Optional<LoopPredication::LoopICmp>
generateLoopLatchCheck(Type * RangeCheckType)395 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
396 
397   auto *LatchType = LatchCheck.IV->getType();
398   if (RangeCheckType == LatchType)
399     return LatchCheck;
400   // For now, bail out if latch type is narrower than range type.
401   if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
402     return None;
403   if (!isSafeToTruncateWideIVType(RangeCheckType))
404     return None;
405   // We can now safely identify the truncated version of the IV and limit for
406   // RangeCheckType.
407   LoopICmp NewLatchCheck;
408   NewLatchCheck.Pred = LatchCheck.Pred;
409   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
410       SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
411   if (!NewLatchCheck.IV)
412     return None;
413   NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
414   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
415                     << "can be represented as range check type:"
416                     << *RangeCheckType << "\n");
417   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
418   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
419   return NewLatchCheck;
420 }
421 
isSupportedStep(const SCEV * Step)422 bool LoopPredication::isSupportedStep(const SCEV* Step) {
423   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
424 }
425 
CanExpand(const SCEV * S)426 bool LoopPredication::CanExpand(const SCEV* S) {
427   return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
428 }
429 
widenICmpRangeCheckIncrementingLoop(LoopPredication::LoopICmp LatchCheck,LoopPredication::LoopICmp RangeCheck,SCEVExpander & Expander,IRBuilder<> & Builder)430 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
431     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
432     SCEVExpander &Expander, IRBuilder<> &Builder) {
433   auto *Ty = RangeCheck.IV->getType();
434   // Generate the widened condition for the forward loop:
435   //   guardStart u< guardLimit &&
436   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
437   // where <pred> depends on the latch condition predicate. See the file
438   // header comment for the reasoning.
439   // guardLimit - guardStart + latchStart - 1
440   const SCEV *GuardStart = RangeCheck.IV->getStart();
441   const SCEV *GuardLimit = RangeCheck.Limit;
442   const SCEV *LatchStart = LatchCheck.IV->getStart();
443   const SCEV *LatchLimit = LatchCheck.Limit;
444 
445   // guardLimit - guardStart + latchStart - 1
446   const SCEV *RHS =
447       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
448                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
449   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
450       !CanExpand(LatchLimit) || !CanExpand(RHS)) {
451     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
452     return None;
453   }
454   auto LimitCheckPred =
455       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
456 
457   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
458   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
459   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
460 
461   Instruction *InsertAt = Preheader->getTerminator();
462   auto *LimitCheck =
463       expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
464   auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
465                                           GuardStart, GuardLimit, InsertAt);
466   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
467 }
468 
widenICmpRangeCheckDecrementingLoop(LoopPredication::LoopICmp LatchCheck,LoopPredication::LoopICmp RangeCheck,SCEVExpander & Expander,IRBuilder<> & Builder)469 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
470     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
471     SCEVExpander &Expander, IRBuilder<> &Builder) {
472   auto *Ty = RangeCheck.IV->getType();
473   const SCEV *GuardStart = RangeCheck.IV->getStart();
474   const SCEV *GuardLimit = RangeCheck.Limit;
475   const SCEV *LatchLimit = LatchCheck.Limit;
476   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
477       !CanExpand(LatchLimit)) {
478     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
479     return None;
480   }
481   // The decrement of the latch check IV should be the same as the
482   // rangeCheckIV.
483   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
484   if (RangeCheck.IV != PostDecLatchCheckIV) {
485     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
486                       << *PostDecLatchCheckIV
487                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
488     return None;
489   }
490 
491   // Generate the widened condition for CountDownLoop:
492   // guardStart u< guardLimit &&
493   // latchLimit <pred> 1.
494   // See the header comment for reasoning of the checks.
495   Instruction *InsertAt = Preheader->getTerminator();
496   auto LimitCheckPred =
497       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
498   auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
499                                           GuardStart, GuardLimit, InsertAt);
500   auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
501                                  SE->getOne(Ty), InsertAt);
502   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
503 }
504 
505 /// If ICI can be widened to a loop invariant condition emits the loop
506 /// invariant condition in the loop preheader and return it, otherwise
507 /// returns None.
widenICmpRangeCheck(ICmpInst * ICI,SCEVExpander & Expander,IRBuilder<> & Builder)508 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
509                                                        SCEVExpander &Expander,
510                                                        IRBuilder<> &Builder) {
511   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
512   LLVM_DEBUG(ICI->dump());
513 
514   // parseLoopStructure guarantees that the latch condition is:
515   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
516   // We are looking for the range checks of the form:
517   //   i u< guardLimit
518   auto RangeCheck = parseLoopICmp(ICI);
519   if (!RangeCheck) {
520     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
521     return None;
522   }
523   LLVM_DEBUG(dbgs() << "Guard check:\n");
524   LLVM_DEBUG(RangeCheck->dump());
525   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
526     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
527                       << RangeCheck->Pred << ")!\n");
528     return None;
529   }
530   auto *RangeCheckIV = RangeCheck->IV;
531   if (!RangeCheckIV->isAffine()) {
532     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
533     return None;
534   }
535   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
536   // We cannot just compare with latch IV step because the latch and range IVs
537   // may have different types.
538   if (!isSupportedStep(Step)) {
539     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
540     return None;
541   }
542   auto *Ty = RangeCheckIV->getType();
543   auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
544   if (!CurrLatchCheckOpt) {
545     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
546                          "corresponding to range type: "
547                       << *Ty << "\n");
548     return None;
549   }
550 
551   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
552   // At this point, the range and latch step should have the same type, but need
553   // not have the same value (we support both 1 and -1 steps).
554   assert(Step->getType() ==
555              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
556          "Range and latch steps should be of same type!");
557   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
558     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
559     return None;
560   }
561 
562   if (Step->isOne())
563     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
564                                                Expander, Builder);
565   else {
566     assert(Step->isAllOnesValue() && "Step should be -1!");
567     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
568                                                Expander, Builder);
569   }
570 }
571 
widenGuardConditions(IntrinsicInst * Guard,SCEVExpander & Expander)572 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
573                                            SCEVExpander &Expander) {
574   LLVM_DEBUG(dbgs() << "Processing guard:\n");
575   LLVM_DEBUG(Guard->dump());
576 
577   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
578 
579   // The guard condition is expected to be in form of:
580   //   cond1 && cond2 && cond3 ...
581   // Iterate over subconditions looking for icmp conditions which can be
582   // widened across loop iterations. Widening these conditions remember the
583   // resulting list of subconditions in Checks vector.
584   SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
585   SmallPtrSet<Value *, 4> Visited;
586 
587   SmallVector<Value *, 4> Checks;
588 
589   unsigned NumWidened = 0;
590   do {
591     Value *Condition = Worklist.pop_back_val();
592     if (!Visited.insert(Condition).second)
593       continue;
594 
595     Value *LHS, *RHS;
596     using namespace llvm::PatternMatch;
597     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
598       Worklist.push_back(LHS);
599       Worklist.push_back(RHS);
600       continue;
601     }
602 
603     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
604       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
605         Checks.push_back(NewRangeCheck.getValue());
606         NumWidened++;
607         continue;
608       }
609     }
610 
611     // Save the condition as is if we can't widen it
612     Checks.push_back(Condition);
613   } while (Worklist.size() != 0);
614 
615   if (NumWidened == 0)
616     return false;
617 
618   // Emit the new guard condition
619   Builder.SetInsertPoint(Guard);
620   Value *LastCheck = nullptr;
621   for (auto *Check : Checks)
622     if (!LastCheck)
623       LastCheck = Check;
624     else
625       LastCheck = Builder.CreateAnd(LastCheck, Check);
626   Guard->setOperand(0, LastCheck);
627 
628   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
629   return true;
630 }
631 
parseLoopLatchICmp()632 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
633   using namespace PatternMatch;
634 
635   BasicBlock *LoopLatch = L->getLoopLatch();
636   if (!LoopLatch) {
637     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
638     return None;
639   }
640 
641   ICmpInst::Predicate Pred;
642   Value *LHS, *RHS;
643   BasicBlock *TrueDest, *FalseDest;
644 
645   if (!match(LoopLatch->getTerminator(),
646              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
647                   FalseDest))) {
648     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
649     return None;
650   }
651   assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
652          "One of the latch's destinations must be the header");
653   if (TrueDest != L->getHeader())
654     Pred = ICmpInst::getInversePredicate(Pred);
655 
656   auto Result = parseLoopICmp(Pred, LHS, RHS);
657   if (!Result) {
658     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
659     return None;
660   }
661 
662   // Check affine first, so if it's not we don't try to compute the step
663   // recurrence.
664   if (!Result->IV->isAffine()) {
665     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
666     return None;
667   }
668 
669   auto *Step = Result->IV->getStepRecurrence(*SE);
670   if (!isSupportedStep(Step)) {
671     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
672     return None;
673   }
674 
675   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
676     if (Step->isOne()) {
677       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
678              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
679     } else {
680       assert(Step->isAllOnesValue() && "Step should be -1!");
681       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
682              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
683     }
684   };
685 
686   if (IsUnsupportedPredicate(Step, Result->Pred)) {
687     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
688                       << ")!\n");
689     return None;
690   }
691   return Result;
692 }
693 
694 // Returns true if its safe to truncate the IV to RangeCheckType.
isSafeToTruncateWideIVType(Type * RangeCheckType)695 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
696   if (!EnableIVTruncation)
697     return false;
698   assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
699              DL->getTypeSizeInBits(RangeCheckType) &&
700          "Expected latch check IV type to be larger than range check operand "
701          "type!");
702   // The start and end values of the IV should be known. This is to guarantee
703   // that truncating the wide type will not lose information.
704   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
705   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
706   if (!Limit || !Start)
707     return false;
708   // This check makes sure that the IV does not change sign during loop
709   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
710   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
711   // IV wraps around, and the truncation of the IV would lose the range of
712   // iterations between 2^32 and 2^64.
713   bool Increasing;
714   if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
715     return false;
716   // The active bits should be less than the bits in the RangeCheckType. This
717   // guarantees that truncating the latch check to RangeCheckType is a safe
718   // operation.
719   auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
720   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
721          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
722 }
723 
isLoopProfitableToPredicate()724 bool LoopPredication::isLoopProfitableToPredicate() {
725   if (SkipProfitabilityChecks || !BPI)
726     return true;
727 
728   SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
729   L->getExitEdges(ExitEdges);
730   // If there is only one exiting edge in the loop, it is always profitable to
731   // predicate the loop.
732   if (ExitEdges.size() == 1)
733     return true;
734 
735   // Calculate the exiting probabilities of all exiting edges from the loop,
736   // starting with the LatchExitProbability.
737   // Heuristic for profitability: If any of the exiting blocks' probability of
738   // exiting the loop is larger than exiting through the latch block, it's not
739   // profitable to predicate the loop.
740   auto *LatchBlock = L->getLoopLatch();
741   assert(LatchBlock && "Should have a single latch at this point!");
742   auto *LatchTerm = LatchBlock->getTerminator();
743   assert(LatchTerm->getNumSuccessors() == 2 &&
744          "expected to be an exiting block with 2 succs!");
745   unsigned LatchBrExitIdx =
746       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
747   BranchProbability LatchExitProbability =
748       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
749 
750   // Protect against degenerate inputs provided by the user. Providing a value
751   // less than one, can invert the definition of profitable loop predication.
752   float ScaleFactor = LatchExitProbabilityScale;
753   if (ScaleFactor < 1) {
754     LLVM_DEBUG(
755         dbgs()
756         << "Ignored user setting for loop-predication-latch-probability-scale: "
757         << LatchExitProbabilityScale << "\n");
758     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
759     ScaleFactor = 1.0;
760   }
761   const auto LatchProbabilityThreshold =
762       LatchExitProbability * ScaleFactor;
763 
764   for (const auto &ExitEdge : ExitEdges) {
765     BranchProbability ExitingBlockProbability =
766         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
767     // Some exiting edge has higher probability than the latch exiting edge.
768     // No longer profitable to predicate.
769     if (ExitingBlockProbability > LatchProbabilityThreshold)
770       return false;
771   }
772   // Using BPI, we have concluded that the most probable way to exit from the
773   // loop is through the latch (or there's no profile information and all
774   // exits are equally likely).
775   return true;
776 }
777 
runOnLoop(Loop * Loop)778 bool LoopPredication::runOnLoop(Loop *Loop) {
779   L = Loop;
780 
781   LLVM_DEBUG(dbgs() << "Analyzing ");
782   LLVM_DEBUG(L->dump());
783 
784   Module *M = L->getHeader()->getModule();
785 
786   // There is nothing to do if the module doesn't use guards
787   auto *GuardDecl =
788       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
789   if (!GuardDecl || GuardDecl->use_empty())
790     return false;
791 
792   DL = &M->getDataLayout();
793 
794   Preheader = L->getLoopPreheader();
795   if (!Preheader)
796     return false;
797 
798   auto LatchCheckOpt = parseLoopLatchICmp();
799   if (!LatchCheckOpt)
800     return false;
801   LatchCheck = *LatchCheckOpt;
802 
803   LLVM_DEBUG(dbgs() << "Latch check:\n");
804   LLVM_DEBUG(LatchCheck.dump());
805 
806   if (!isLoopProfitableToPredicate()) {
807     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
808     return false;
809   }
810   // Collect all the guards into a vector and process later, so as not
811   // to invalidate the instruction iterator.
812   SmallVector<IntrinsicInst *, 4> Guards;
813   for (const auto BB : L->blocks())
814     for (auto &I : *BB)
815       if (auto *II = dyn_cast<IntrinsicInst>(&I))
816         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
817           Guards.push_back(II);
818 
819   if (Guards.empty())
820     return false;
821 
822   SCEVExpander Expander(*SE, *DL, "loop-predication");
823 
824   bool Changed = false;
825   for (auto *Guard : Guards)
826     Changed |= widenGuardConditions(Guard, Expander);
827 
828   return Changed;
829 }
830