1 /*
2  * The copyright in this software is being made available under the 2-clauses
3  * BSD License, included below. This software may be subject to other third
4  * party and contributor rights, including patent rights, and no such rights
5  * are granted under this license.
6  *
7  * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
8  * Copyright (c) 2002-2014, Professor Benoit Macq
9  * Copyright (c) 2001-2003, David Janssens
10  * Copyright (c) 2002-2003, Yannick Verschueren
11  * Copyright (c) 2003-2007, Francois-Olivier Devaux
12  * Copyright (c) 2003-2014, Antonin Descampe
13  * Copyright (c) 2005, Herve Drolon, FreeImage Team
14  * All rights reserved.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
26  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
29  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 #ifndef OPJ_INTMATH_H
38 #define OPJ_INTMATH_H
39 /**
40 @file opj_intmath.h
41 @brief Implementation of operations on integers (INT)
42 
43 The functions in OPJ_INTMATH.H have for goal to realize operations on integers.
44 */
45 
46 /** @defgroup OPJ_INTMATH OPJ_INTMATH - Implementation of operations on integers */
47 /*@{*/
48 
49 /** @name Exported functions (see also openjpeg.h) */
50 /*@{*/
51 /* ----------------------------------------------------------------------- */
52 /**
53 Get the minimum of two integers
54 @return Returns a if a < b else b
55 */
opj_int_min(OPJ_INT32 a,OPJ_INT32 b)56 static INLINE OPJ_INT32 opj_int_min(OPJ_INT32 a, OPJ_INT32 b)
57 {
58     return a < b ? a : b;
59 }
60 
61 /**
62 Get the minimum of two integers
63 @return Returns a if a < b else b
64 */
opj_uint_min(OPJ_UINT32 a,OPJ_UINT32 b)65 static INLINE OPJ_UINT32 opj_uint_min(OPJ_UINT32 a, OPJ_UINT32 b)
66 {
67     return a < b ? a : b;
68 }
69 
70 /**
71 Get the maximum of two integers
72 @return Returns a if a > b else b
73 */
opj_int_max(OPJ_INT32 a,OPJ_INT32 b)74 static INLINE OPJ_INT32 opj_int_max(OPJ_INT32 a, OPJ_INT32 b)
75 {
76     return (a > b) ? a : b;
77 }
78 
79 /**
80 Get the maximum of two integers
81 @return Returns a if a > b else b
82 */
opj_uint_max(OPJ_UINT32 a,OPJ_UINT32 b)83 static INLINE OPJ_UINT32 opj_uint_max(OPJ_UINT32  a, OPJ_UINT32  b)
84 {
85     return (a > b) ? a : b;
86 }
87 
88 /**
89  Get the saturated sum of two unsigned integers
90  @return Returns saturated sum of a+b
91  */
opj_uint_adds(OPJ_UINT32 a,OPJ_UINT32 b)92 static INLINE OPJ_UINT32 opj_uint_adds(OPJ_UINT32 a, OPJ_UINT32 b)
93 {
94     OPJ_UINT64 sum = (OPJ_UINT64)a + (OPJ_UINT64)b;
95     return (OPJ_UINT32)(-(OPJ_INT32)(sum >> 32)) | (OPJ_UINT32)sum;
96 }
97 
98 /**
99  Get the saturated difference of two unsigned integers
100  @return Returns saturated sum of a-b
101  */
opj_uint_subs(OPJ_UINT32 a,OPJ_UINT32 b)102 static INLINE OPJ_UINT32 opj_uint_subs(OPJ_UINT32 a, OPJ_UINT32 b)
103 {
104     return (a >= b) ? a - b : 0;
105 }
106 
107 /**
108 Clamp an integer inside an interval
109 @return
110 <ul>
111 <li>Returns a if (min < a < max)
112 <li>Returns max if (a > max)
113 <li>Returns min if (a < min)
114 </ul>
115 */
opj_int_clamp(OPJ_INT32 a,OPJ_INT32 min,OPJ_INT32 max)116 static INLINE OPJ_INT32 opj_int_clamp(OPJ_INT32 a, OPJ_INT32 min,
117                                       OPJ_INT32 max)
118 {
119     if (a < min) {
120         return min;
121     }
122     if (a > max) {
123         return max;
124     }
125     return a;
126 }
127 
128 /**
129 Clamp an integer inside an interval
130 @return
131 <ul>
132 <li>Returns a if (min < a < max)
133 <li>Returns max if (a > max)
134 <li>Returns min if (a < min)
135 </ul>
136 */
opj_int64_clamp(OPJ_INT64 a,OPJ_INT64 min,OPJ_INT64 max)137 static INLINE OPJ_INT64 opj_int64_clamp(OPJ_INT64 a, OPJ_INT64 min,
138                                         OPJ_INT64 max)
139 {
140     if (a < min) {
141         return min;
142     }
143     if (a > max) {
144         return max;
145     }
146     return a;
147 }
148 
149 /**
150 @return Get absolute value of integer
151 */
opj_int_abs(OPJ_INT32 a)152 static INLINE OPJ_INT32 opj_int_abs(OPJ_INT32 a)
153 {
154     return a < 0 ? -a : a;
155 }
156 /**
157 Divide an integer and round upwards
158 @return Returns a divided by b
159 */
opj_int_ceildiv(OPJ_INT32 a,OPJ_INT32 b)160 static INLINE OPJ_INT32 opj_int_ceildiv(OPJ_INT32 a, OPJ_INT32 b)
161 {
162     assert(b);
163     return (OPJ_INT32)(((OPJ_INT64)a + b - 1) / b);
164 }
165 
166 /**
167 Divide an integer and round upwards
168 @return Returns a divided by b
169 */
opj_uint_ceildiv(OPJ_UINT32 a,OPJ_UINT32 b)170 static INLINE OPJ_UINT32  opj_uint_ceildiv(OPJ_UINT32  a, OPJ_UINT32  b)
171 {
172     assert(b);
173     return (a + b - 1) / b;
174 }
175 
176 /**
177 Divide an integer by a power of 2 and round upwards
178 @return Returns a divided by 2^b
179 */
opj_int_ceildivpow2(OPJ_INT32 a,OPJ_INT32 b)180 static INLINE OPJ_INT32 opj_int_ceildivpow2(OPJ_INT32 a, OPJ_INT32 b)
181 {
182     return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b);
183 }
184 
185 /**
186  Divide a 64bits integer by a power of 2 and round upwards
187  @return Returns a divided by 2^b
188  */
opj_int64_ceildivpow2(OPJ_INT64 a,OPJ_INT32 b)189 static INLINE OPJ_INT32 opj_int64_ceildivpow2(OPJ_INT64 a, OPJ_INT32 b)
190 {
191     return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b);
192 }
193 
194 /**
195  Divide an integer by a power of 2 and round upwards
196  @return Returns a divided by 2^b
197  */
opj_uint_ceildivpow2(OPJ_UINT32 a,OPJ_UINT32 b)198 static INLINE OPJ_UINT32 opj_uint_ceildivpow2(OPJ_UINT32 a, OPJ_UINT32 b)
199 {
200     return (OPJ_UINT32)((a + ((OPJ_UINT64)1U << b) - 1U) >> b);
201 }
202 
203 /**
204 Divide an integer by a power of 2 and round downwards
205 @return Returns a divided by 2^b
206 */
opj_int_floordivpow2(OPJ_INT32 a,OPJ_INT32 b)207 static INLINE OPJ_INT32 opj_int_floordivpow2(OPJ_INT32 a, OPJ_INT32 b)
208 {
209     return a >> b;
210 }
211 /**
212 Get logarithm of an integer and round downwards
213 @return Returns log2(a)
214 */
opj_int_floorlog2(OPJ_INT32 a)215 static INLINE OPJ_INT32 opj_int_floorlog2(OPJ_INT32 a)
216 {
217     OPJ_INT32 l;
218     for (l = 0; a > 1; l++) {
219         a >>= 1;
220     }
221     return l;
222 }
223 /**
224 Get logarithm of an integer and round downwards
225 @return Returns log2(a)
226 */
opj_uint_floorlog2(OPJ_UINT32 a)227 static INLINE OPJ_UINT32  opj_uint_floorlog2(OPJ_UINT32  a)
228 {
229     OPJ_UINT32  l;
230     for (l = 0; a > 1; ++l) {
231         a >>= 1;
232     }
233     return l;
234 }
235 
236 /**
237 Multiply two fixed-precision rational numbers.
238 @param a
239 @param b
240 @return Returns a * b
241 */
opj_int_fix_mul(OPJ_INT32 a,OPJ_INT32 b)242 static INLINE OPJ_INT32 opj_int_fix_mul(OPJ_INT32 a, OPJ_INT32 b)
243 {
244 #if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86)
245     OPJ_INT64 temp = __emul(a, b);
246 #else
247     OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ;
248 #endif
249     temp += 4096;
250     assert((temp >> 13) <= (OPJ_INT64)0x7FFFFFFF);
251     assert((temp >> 13) >= (-(OPJ_INT64)0x7FFFFFFF - (OPJ_INT64)1));
252     return (OPJ_INT32)(temp >> 13);
253 }
254 
opj_int_fix_mul_t1(OPJ_INT32 a,OPJ_INT32 b)255 static INLINE OPJ_INT32 opj_int_fix_mul_t1(OPJ_INT32 a, OPJ_INT32 b)
256 {
257 #if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86)
258     OPJ_INT64 temp = __emul(a, b);
259 #else
260     OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ;
261 #endif
262     temp += 4096;
263     assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) <= (OPJ_INT64)0x7FFFFFFF);
264     assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) >= (-(OPJ_INT64)0x7FFFFFFF -
265             (OPJ_INT64)1));
266     return (OPJ_INT32)(temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) ;
267 }
268 
269 /* ----------------------------------------------------------------------- */
270 /*@}*/
271 
272 /*@}*/
273 
274 #endif /* OPJ_INTMATH_H */
275