1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 #include <google/protobuf/util/time_util.h>
32 
33 #include <google/protobuf/stubs/time.h>
34 #include <google/protobuf/stubs/int128.h>
35 #include <google/protobuf/stubs/strutil.h>
36 #include <google/protobuf/stubs/stringprintf.h>
37 #include <google/protobuf/duration.pb.h>
38 #include <google/protobuf/timestamp.pb.h>
39 
40 namespace google {
41 namespace protobuf {
42 namespace util {
43 
44 using google::protobuf::Timestamp;
45 using google::protobuf::Duration;
46 
47 namespace {
48 static const int kNanosPerSecond = 1000000000;
49 static const int kMicrosPerSecond = 1000000;
50 static const int kMillisPerSecond = 1000;
51 static const int kNanosPerMillisecond = 1000000;
52 static const int kMicrosPerMillisecond = 1000;
53 static const int kNanosPerMicrosecond = 1000;
54 static const int kSecondsPerMinute = 60;  // Note that we ignore leap seconds.
55 static const int kSecondsPerHour = 3600;
56 static const char kTimestampFormat[] = "%E4Y-%m-%dT%H:%M:%S";
57 
58 template <typename T>
59 T CreateNormalized(int64 seconds, int64 nanos);
60 
61 template <>
CreateNormalized(int64 seconds,int64 nanos)62 Timestamp CreateNormalized(int64 seconds, int64 nanos) {
63   // Make sure nanos is in the range.
64   if (nanos <= -kNanosPerSecond || nanos >= kNanosPerSecond) {
65     seconds += nanos / kNanosPerSecond;
66     nanos = nanos % kNanosPerSecond;
67   }
68   // For Timestamp nanos should be in the range [0, 999999999]
69   if (nanos < 0) {
70     seconds -= 1;
71     nanos += kNanosPerSecond;
72   }
73   GOOGLE_DCHECK(seconds >= TimeUtil::kTimestampMinSeconds &&
74          seconds <= TimeUtil::kTimestampMaxSeconds);
75   Timestamp result;
76   result.set_seconds(seconds);
77   result.set_nanos(static_cast<int32>(nanos));
78   return result;
79 }
80 
81 template <>
CreateNormalized(int64 seconds,int64 nanos)82 Duration CreateNormalized(int64 seconds, int64 nanos) {
83   // Make sure nanos is in the range.
84   if (nanos <= -kNanosPerSecond || nanos >= kNanosPerSecond) {
85     seconds += nanos / kNanosPerSecond;
86     nanos = nanos % kNanosPerSecond;
87   }
88   // nanos should have the same sign as seconds.
89   if (seconds < 0 && nanos > 0) {
90     seconds += 1;
91     nanos -= kNanosPerSecond;
92   } else if (seconds > 0 && nanos < 0) {
93     seconds -= 1;
94     nanos += kNanosPerSecond;
95   }
96   GOOGLE_DCHECK(seconds >= TimeUtil::kDurationMinSeconds &&
97          seconds <= TimeUtil::kDurationMaxSeconds);
98   Duration result;
99   result.set_seconds(seconds);
100   result.set_nanos(static_cast<int32>(nanos));
101   return result;
102 }
103 
104 // Format nanoseconds with either 3, 6, or 9 digits depending on the required
105 // precision to represent the exact value.
FormatNanos(int32 nanos)106 string FormatNanos(int32 nanos) {
107   if (nanos % kNanosPerMillisecond == 0) {
108     return StringPrintf("%03d", nanos / kNanosPerMillisecond);
109   } else if (nanos % kNanosPerMicrosecond == 0) {
110     return StringPrintf("%06d", nanos / kNanosPerMicrosecond);
111   } else {
112     return StringPrintf("%09d", nanos);
113   }
114 }
115 
FormatTime(int64 seconds,int32 nanos)116 string FormatTime(int64 seconds, int32 nanos) {
117   return ::google::protobuf::internal::FormatTime(seconds, nanos);
118 }
119 
ParseTime(const string & value,int64 * seconds,int32 * nanos)120 bool ParseTime(const string& value, int64* seconds, int32* nanos) {
121   return ::google::protobuf::internal::ParseTime(value, seconds, nanos);
122 }
123 
CurrentTime(int64 * seconds,int32 * nanos)124 void CurrentTime(int64* seconds, int32* nanos) {
125   return ::google::protobuf::internal::GetCurrentTime(seconds, nanos);
126 }
127 
128 // Truncates the remainder part after division.
RoundTowardZero(int64 value,int64 divider)129 int64 RoundTowardZero(int64 value, int64 divider) {
130   int64 result = value / divider;
131   int64 remainder = value % divider;
132   // Before C++11, the sign of the remainder is implementation dependent if
133   // any of the operands is negative. Here we try to enforce C++11's "rounded
134   // toward zero" semantics. For example, for (-5) / 2 an implementation may
135   // give -3 as the result with the remainder being 1. This function ensures
136   // we always return -2 (closer to zero) regardless of the implementation.
137   if (result < 0 && remainder > 0) {
138     return result + 1;
139   } else {
140     return result;
141   }
142 }
143 }  // namespace
144 
ToString(const Timestamp & timestamp)145 string TimeUtil::ToString(const Timestamp& timestamp) {
146   return FormatTime(timestamp.seconds(), timestamp.nanos());
147 }
148 
FromString(const string & value,Timestamp * timestamp)149 bool TimeUtil::FromString(const string& value, Timestamp* timestamp) {
150   int64 seconds;
151   int32 nanos;
152   if (!ParseTime(value, &seconds, &nanos)) {
153     return false;
154   }
155   *timestamp = CreateNormalized<Timestamp>(seconds, nanos);
156   return true;
157 }
158 
GetCurrentTime()159 Timestamp TimeUtil::GetCurrentTime() {
160   int64 seconds;
161   int32 nanos;
162   CurrentTime(&seconds, &nanos);
163   return CreateNormalized<Timestamp>(seconds, nanos);
164 }
165 
GetEpoch()166 Timestamp TimeUtil::GetEpoch() { return Timestamp(); }
167 
ToString(const Duration & duration)168 string TimeUtil::ToString(const Duration& duration) {
169   string result;
170   int64 seconds = duration.seconds();
171   int32 nanos = duration.nanos();
172   if (seconds < 0 || nanos < 0) {
173     result += "-";
174     seconds = -seconds;
175     nanos = -nanos;
176   }
177   result += StringPrintf("%" GOOGLE_LL_FORMAT "d", seconds);
178   if (nanos != 0) {
179     result += "." + FormatNanos(nanos);
180   }
181   result += "s";
182   return result;
183 }
184 
Pow(int64 x,int y)185 static int64 Pow(int64 x, int y) {
186   int64 result = 1;
187   for (int i = 0; i < y; ++i) {
188     result *= x;
189   }
190   return result;
191 }
192 
FromString(const string & value,Duration * duration)193 bool TimeUtil::FromString(const string& value, Duration* duration) {
194   if (value.length() <= 1 || value[value.length() - 1] != 's') {
195     return false;
196   }
197   bool negative = (value[0] == '-');
198   int sign_length = (negative ? 1 : 0);
199   // Parse the duration value as two integers rather than a float value
200   // to avoid precision loss.
201   string seconds_part, nanos_part;
202   size_t pos = value.find_last_of(".");
203   if (pos == string::npos) {
204     seconds_part = value.substr(sign_length, value.length() - 1 - sign_length);
205     nanos_part = "0";
206   } else {
207     seconds_part = value.substr(sign_length, pos - sign_length);
208     nanos_part = value.substr(pos + 1, value.length() - pos - 2);
209   }
210   char* end;
211   int64 seconds = strto64(seconds_part.c_str(), &end, 10);
212   if (end != seconds_part.c_str() + seconds_part.length()) {
213     return false;
214   }
215   int64 nanos = strto64(nanos_part.c_str(), &end, 10);
216   if (end != nanos_part.c_str() + nanos_part.length()) {
217     return false;
218   }
219   nanos = nanos * Pow(10, 9 - nanos_part.length());
220   if (negative) {
221     // If a Duration is negative, both seconds and nanos should be negative.
222     seconds = -seconds;
223     nanos = -nanos;
224   }
225   duration->set_seconds(seconds);
226   duration->set_nanos(static_cast<int32>(nanos));
227   return true;
228 }
229 
NanosecondsToDuration(int64 nanos)230 Duration TimeUtil::NanosecondsToDuration(int64 nanos) {
231   return CreateNormalized<Duration>(nanos / kNanosPerSecond,
232                                     nanos % kNanosPerSecond);
233 }
234 
MicrosecondsToDuration(int64 micros)235 Duration TimeUtil::MicrosecondsToDuration(int64 micros) {
236   return CreateNormalized<Duration>(
237       micros / kMicrosPerSecond,
238       (micros % kMicrosPerSecond) * kNanosPerMicrosecond);
239 }
240 
MillisecondsToDuration(int64 millis)241 Duration TimeUtil::MillisecondsToDuration(int64 millis) {
242   return CreateNormalized<Duration>(
243       millis / kMillisPerSecond,
244       (millis % kMillisPerSecond) * kNanosPerMillisecond);
245 }
246 
SecondsToDuration(int64 seconds)247 Duration TimeUtil::SecondsToDuration(int64 seconds) {
248   return CreateNormalized<Duration>(seconds, 0);
249 }
250 
MinutesToDuration(int64 minutes)251 Duration TimeUtil::MinutesToDuration(int64 minutes) {
252   return CreateNormalized<Duration>(minutes * kSecondsPerMinute, 0);
253 }
254 
HoursToDuration(int64 hours)255 Duration TimeUtil::HoursToDuration(int64 hours) {
256   return CreateNormalized<Duration>(hours * kSecondsPerHour, 0);
257 }
258 
DurationToNanoseconds(const Duration & duration)259 int64 TimeUtil::DurationToNanoseconds(const Duration& duration) {
260   return duration.seconds() * kNanosPerSecond + duration.nanos();
261 }
262 
DurationToMicroseconds(const Duration & duration)263 int64 TimeUtil::DurationToMicroseconds(const Duration& duration) {
264   return duration.seconds() * kMicrosPerSecond +
265          RoundTowardZero(duration.nanos(), kNanosPerMicrosecond);
266 }
267 
DurationToMilliseconds(const Duration & duration)268 int64 TimeUtil::DurationToMilliseconds(const Duration& duration) {
269   return duration.seconds() * kMillisPerSecond +
270          RoundTowardZero(duration.nanos(), kNanosPerMillisecond);
271 }
272 
DurationToSeconds(const Duration & duration)273 int64 TimeUtil::DurationToSeconds(const Duration& duration) {
274   return duration.seconds();
275 }
276 
DurationToMinutes(const Duration & duration)277 int64 TimeUtil::DurationToMinutes(const Duration& duration) {
278   return RoundTowardZero(duration.seconds(), kSecondsPerMinute);
279 }
280 
DurationToHours(const Duration & duration)281 int64 TimeUtil::DurationToHours(const Duration& duration) {
282   return RoundTowardZero(duration.seconds(), kSecondsPerHour);
283 }
284 
NanosecondsToTimestamp(int64 nanos)285 Timestamp TimeUtil::NanosecondsToTimestamp(int64 nanos) {
286   return CreateNormalized<Timestamp>(nanos / kNanosPerSecond,
287                                      nanos % kNanosPerSecond);
288 }
289 
MicrosecondsToTimestamp(int64 micros)290 Timestamp TimeUtil::MicrosecondsToTimestamp(int64 micros) {
291   return CreateNormalized<Timestamp>(
292       micros / kMicrosPerSecond,
293       micros % kMicrosPerSecond * kNanosPerMicrosecond);
294 }
295 
MillisecondsToTimestamp(int64 millis)296 Timestamp TimeUtil::MillisecondsToTimestamp(int64 millis) {
297   return CreateNormalized<Timestamp>(
298       millis / kMillisPerSecond,
299       millis % kMillisPerSecond * kNanosPerMillisecond);
300 }
301 
SecondsToTimestamp(int64 seconds)302 Timestamp TimeUtil::SecondsToTimestamp(int64 seconds) {
303   return CreateNormalized<Timestamp>(seconds, 0);
304 }
305 
TimestampToNanoseconds(const Timestamp & timestamp)306 int64 TimeUtil::TimestampToNanoseconds(const Timestamp& timestamp) {
307   return timestamp.seconds() * kNanosPerSecond + timestamp.nanos();
308 }
309 
TimestampToMicroseconds(const Timestamp & timestamp)310 int64 TimeUtil::TimestampToMicroseconds(const Timestamp& timestamp) {
311   return timestamp.seconds() * kMicrosPerSecond +
312          RoundTowardZero(timestamp.nanos(), kNanosPerMicrosecond);
313 }
314 
TimestampToMilliseconds(const Timestamp & timestamp)315 int64 TimeUtil::TimestampToMilliseconds(const Timestamp& timestamp) {
316   return timestamp.seconds() * kMillisPerSecond +
317          RoundTowardZero(timestamp.nanos(), kNanosPerMillisecond);
318 }
319 
TimestampToSeconds(const Timestamp & timestamp)320 int64 TimeUtil::TimestampToSeconds(const Timestamp& timestamp) {
321   return timestamp.seconds();
322 }
323 
TimeTToTimestamp(time_t value)324 Timestamp TimeUtil::TimeTToTimestamp(time_t value) {
325   return CreateNormalized<Timestamp>(static_cast<int64>(value), 0);
326 }
327 
TimestampToTimeT(const Timestamp & value)328 time_t TimeUtil::TimestampToTimeT(const Timestamp& value) {
329   return static_cast<time_t>(value.seconds());
330 }
331 
TimevalToTimestamp(const timeval & value)332 Timestamp TimeUtil::TimevalToTimestamp(const timeval& value) {
333   return CreateNormalized<Timestamp>(value.tv_sec,
334                                      value.tv_usec * kNanosPerMicrosecond);
335 }
336 
TimestampToTimeval(const Timestamp & value)337 timeval TimeUtil::TimestampToTimeval(const Timestamp& value) {
338   timeval result;
339   result.tv_sec = value.seconds();
340   result.tv_usec = RoundTowardZero(value.nanos(), kNanosPerMicrosecond);
341   return result;
342 }
343 
TimevalToDuration(const timeval & value)344 Duration TimeUtil::TimevalToDuration(const timeval& value) {
345   return CreateNormalized<Duration>(value.tv_sec,
346                                     value.tv_usec * kNanosPerMicrosecond);
347 }
348 
DurationToTimeval(const Duration & value)349 timeval TimeUtil::DurationToTimeval(const Duration& value) {
350   timeval result;
351   result.tv_sec = value.seconds();
352   result.tv_usec = RoundTowardZero(value.nanos(), kNanosPerMicrosecond);
353   // timeval.tv_usec's range is [0, 1000000)
354   if (result.tv_usec < 0) {
355     result.tv_sec -= 1;
356     result.tv_usec += kMicrosPerSecond;
357   }
358   return result;
359 }
360 
361 }  // namespace util
362 }  // namespace protobuf
363 
364 
365 namespace protobuf {
366 namespace {
367 using google::protobuf::util::kNanosPerSecond;
368 using google::protobuf::util::CreateNormalized;
369 
370 // Convert a Timestamp to uint128.
ToUint128(const Timestamp & value,uint128 * result,bool * negative)371 void ToUint128(const Timestamp& value, uint128* result, bool* negative) {
372   if (value.seconds() < 0) {
373     *negative = true;
374     *result = static_cast<uint64>(-value.seconds());
375     *result = *result * kNanosPerSecond - static_cast<uint32>(value.nanos());
376   } else {
377     *negative = false;
378     *result = static_cast<uint64>(value.seconds());
379     *result = *result * kNanosPerSecond + static_cast<uint32>(value.nanos());
380   }
381 }
382 
383 // Convert a Duration to uint128.
ToUint128(const Duration & value,uint128 * result,bool * negative)384 void ToUint128(const Duration& value, uint128* result, bool* negative) {
385   if (value.seconds() < 0 || value.nanos() < 0) {
386     *negative = true;
387     *result = static_cast<uint64>(-value.seconds());
388     *result = *result * kNanosPerSecond + static_cast<uint32>(-value.nanos());
389   } else {
390     *negative = false;
391     *result = static_cast<uint64>(value.seconds());
392     *result = *result * kNanosPerSecond + static_cast<uint32>(value.nanos());
393   }
394 }
395 
ToTimestamp(const uint128 & value,bool negative,Timestamp * timestamp)396 void ToTimestamp(const uint128& value, bool negative, Timestamp* timestamp) {
397   int64 seconds = static_cast<int64>(Uint128Low64(value / kNanosPerSecond));
398   int32 nanos = static_cast<int32>(Uint128Low64(value % kNanosPerSecond));
399   if (negative) {
400     seconds = -seconds;
401     nanos = -nanos;
402     if (nanos < 0) {
403       nanos += kNanosPerSecond;
404       seconds -= 1;
405     }
406   }
407   timestamp->set_seconds(seconds);
408   timestamp->set_nanos(nanos);
409 }
410 
ToDuration(const uint128 & value,bool negative,Duration * duration)411 void ToDuration(const uint128& value, bool negative, Duration* duration) {
412   int64 seconds = static_cast<int64>(Uint128Low64(value / kNanosPerSecond));
413   int32 nanos = static_cast<int32>(Uint128Low64(value % kNanosPerSecond));
414   if (negative) {
415     seconds = -seconds;
416     nanos = -nanos;
417   }
418   duration->set_seconds(seconds);
419   duration->set_nanos(nanos);
420 }
421 }  // namespace
422 
operator +=(Duration & d1,const Duration & d2)423 Duration& operator+=(Duration& d1, const Duration& d2) {
424   d1 = CreateNormalized<Duration>(d1.seconds() + d2.seconds(),
425                                   d1.nanos() + d2.nanos());
426   return d1;
427 }
428 
operator -=(Duration & d1,const Duration & d2)429 Duration& operator-=(Duration& d1, const Duration& d2) {  // NOLINT
430   d1 = CreateNormalized<Duration>(d1.seconds() - d2.seconds(),
431                                   d1.nanos() - d2.nanos());
432   return d1;
433 }
434 
operator *=(Duration & d,int64 r)435 Duration& operator*=(Duration& d, int64 r) {  // NOLINT
436   bool negative;
437   uint128 value;
438   ToUint128(d, &value, &negative);
439   if (r > 0) {
440     value *= static_cast<uint64>(r);
441   } else {
442     negative = !negative;
443     value *= static_cast<uint64>(-r);
444   }
445   ToDuration(value, negative, &d);
446   return d;
447 }
448 
operator *=(Duration & d,double r)449 Duration& operator*=(Duration& d, double r) {  // NOLINT
450   double result = (d.seconds() * 1.0 + 1.0 * d.nanos() / kNanosPerSecond) * r;
451   int64 seconds = static_cast<int64>(result);
452   int32 nanos = static_cast<int32>((result - seconds) * kNanosPerSecond);
453   // Note that we normalize here not just because nanos can have a different
454   // sign from seconds but also that nanos can be any arbitrary value when
455   // overflow happens (i.e., the result is a much larger value than what
456   // int64 can represent).
457   d = CreateNormalized<Duration>(seconds, nanos);
458   return d;
459 }
460 
operator /=(Duration & d,int64 r)461 Duration& operator/=(Duration& d, int64 r) {  // NOLINT
462   bool negative;
463   uint128 value;
464   ToUint128(d, &value, &negative);
465   if (r > 0) {
466     value /= static_cast<uint64>(r);
467   } else {
468     negative = !negative;
469     value /= static_cast<uint64>(-r);
470   }
471   ToDuration(value, negative, &d);
472   return d;
473 }
474 
operator /=(Duration & d,double r)475 Duration& operator/=(Duration& d, double r) {  // NOLINT
476   return d *= 1.0 / r;
477 }
478 
operator %=(Duration & d1,const Duration & d2)479 Duration& operator%=(Duration& d1, const Duration& d2) {  // NOLINT
480   bool negative1, negative2;
481   uint128 value1, value2;
482   ToUint128(d1, &value1, &negative1);
483   ToUint128(d2, &value2, &negative2);
484   uint128 result = value1 % value2;
485   // When negative values are involved in division, we round the division
486   // result towards zero. With this semantics, sign of the remainder is the
487   // same as the dividend. For example:
488   //     -5 / 10    = 0, -5 % 10    = -5
489   //     -5 / (-10) = 0, -5 % (-10) = -5
490   //      5 / (-10) = 0,  5 % (-10) = 5
491   ToDuration(result, negative1, &d1);
492   return d1;
493 }
494 
operator /(const Duration & d1,const Duration & d2)495 int64 operator/(const Duration& d1, const Duration& d2) {
496   bool negative1, negative2;
497   uint128 value1, value2;
498   ToUint128(d1, &value1, &negative1);
499   ToUint128(d2, &value2, &negative2);
500   int64 result = Uint128Low64(value1 / value2);
501   if (negative1 != negative2) {
502     result = -result;
503   }
504   return result;
505 }
506 
operator +=(Timestamp & t,const Duration & d)507 Timestamp& operator+=(Timestamp& t, const Duration& d) {  // NOLINT
508   t = CreateNormalized<Timestamp>(t.seconds() + d.seconds(),
509                                   t.nanos() + d.nanos());
510   return t;
511 }
512 
operator -=(Timestamp & t,const Duration & d)513 Timestamp& operator-=(Timestamp& t, const Duration& d) {  // NOLINT
514   t = CreateNormalized<Timestamp>(t.seconds() - d.seconds(),
515                                   t.nanos() - d.nanos());
516   return t;
517 }
518 
operator -(const Timestamp & t1,const Timestamp & t2)519 Duration operator-(const Timestamp& t1, const Timestamp& t2) {
520   return CreateNormalized<Duration>(t1.seconds() - t2.seconds(),
521                                     t1.nanos() - t2.nanos());
522 }
523 }  // namespace protobuf
524 
525 }  // namespace google
526