1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: anuraag@google.com (Anuraag Agrawal)
32 // Author: tibell@google.com (Johan Tibell)
33 
34 #include <google/protobuf/pyext/message.h>
35 
36 #include <map>
37 #include <memory>
38 #ifndef _SHARED_PTR_H
39 #include <google/protobuf/stubs/shared_ptr.h>
40 #endif
41 #include <string>
42 #include <vector>
43 #include <structmember.h>  // A Python header file.
44 
45 #ifndef PyVarObject_HEAD_INIT
46 #define PyVarObject_HEAD_INIT(type, size) PyObject_HEAD_INIT(type) size,
47 #endif
48 #ifndef Py_TYPE
49 #define Py_TYPE(ob) (((PyObject*)(ob))->ob_type)
50 #endif
51 #include <google/protobuf/descriptor.pb.h>
52 #include <google/protobuf/stubs/common.h>
53 #include <google/protobuf/stubs/logging.h>
54 #include <google/protobuf/io/coded_stream.h>
55 #include <google/protobuf/util/message_differencer.h>
56 #include <google/protobuf/descriptor.h>
57 #include <google/protobuf/message.h>
58 #include <google/protobuf/text_format.h>
59 #include <google/protobuf/unknown_field_set.h>
60 #include <google/protobuf/pyext/descriptor.h>
61 #include <google/protobuf/pyext/descriptor_pool.h>
62 #include <google/protobuf/pyext/extension_dict.h>
63 #include <google/protobuf/pyext/repeated_composite_container.h>
64 #include <google/protobuf/pyext/repeated_scalar_container.h>
65 #include <google/protobuf/pyext/map_container.h>
66 #include <google/protobuf/pyext/scoped_pyobject_ptr.h>
67 #include <google/protobuf/stubs/strutil.h>
68 
69 #if PY_MAJOR_VERSION >= 3
70   #define PyInt_Check PyLong_Check
71   #define PyInt_AsLong PyLong_AsLong
72   #define PyInt_FromLong PyLong_FromLong
73   #define PyInt_FromSize_t PyLong_FromSize_t
74   #define PyString_Check PyUnicode_Check
75   #define PyString_FromString PyUnicode_FromString
76   #define PyString_FromStringAndSize PyUnicode_FromStringAndSize
77   #if PY_VERSION_HEX < 0x03030000
78     #error "Python 3.0 - 3.2 are not supported."
79   #else
80   #define PyString_AsString(ob) \
81     (PyUnicode_Check(ob)? PyUnicode_AsUTF8(ob): PyBytes_AsString(ob))
82   #define PyString_AsStringAndSize(ob, charpp, sizep) \
83     (PyUnicode_Check(ob)? \
84        ((*(charpp) = PyUnicode_AsUTF8AndSize(ob, (sizep))) == NULL? -1: 0): \
85        PyBytes_AsStringAndSize(ob, (charpp), (sizep)))
86   #endif
87 #endif
88 
89 namespace google {
90 namespace protobuf {
91 namespace python {
92 
93 static PyObject* kDESCRIPTOR;
94 static PyObject* k_extensions_by_name;
95 static PyObject* k_extensions_by_number;
96 PyObject* EnumTypeWrapper_class;
97 static PyObject* PythonMessage_class;
98 static PyObject* kEmptyWeakref;
99 static PyObject* WKT_classes = NULL;
100 
101 namespace message_meta {
102 
103 static int InsertEmptyWeakref(PyTypeObject* base);
104 
105 // Add the number of a field descriptor to the containing message class.
106 // Equivalent to:
107 //   _cls.<field>_FIELD_NUMBER = <number>
AddFieldNumberToClass(PyObject * cls,const FieldDescriptor * field_descriptor)108 static bool AddFieldNumberToClass(
109     PyObject* cls, const FieldDescriptor* field_descriptor) {
110   string constant_name = field_descriptor->name() + "_FIELD_NUMBER";
111   UpperString(&constant_name);
112   ScopedPyObjectPtr attr_name(PyString_FromStringAndSize(
113       constant_name.c_str(), constant_name.size()));
114   if (attr_name == NULL) {
115     return false;
116   }
117   ScopedPyObjectPtr number(PyInt_FromLong(field_descriptor->number()));
118   if (number == NULL) {
119     return false;
120   }
121   if (PyObject_SetAttr(cls, attr_name.get(), number.get()) == -1) {
122     return false;
123   }
124   return true;
125 }
126 
127 
128 // Finalize the creation of the Message class.
AddDescriptors(PyObject * cls,const Descriptor * descriptor)129 static int AddDescriptors(PyObject* cls, const Descriptor* descriptor) {
130   // If there are extension_ranges, the message is "extendable", and extension
131   // classes will register themselves in this class.
132   if (descriptor->extension_range_count() > 0) {
133     ScopedPyObjectPtr by_name(PyDict_New());
134     if (PyObject_SetAttr(cls, k_extensions_by_name, by_name.get()) < 0) {
135       return -1;
136     }
137     ScopedPyObjectPtr by_number(PyDict_New());
138     if (PyObject_SetAttr(cls, k_extensions_by_number, by_number.get()) < 0) {
139       return -1;
140     }
141   }
142 
143   // For each field set: cls.<field>_FIELD_NUMBER = <number>
144   for (int i = 0; i < descriptor->field_count(); ++i) {
145     if (!AddFieldNumberToClass(cls, descriptor->field(i))) {
146       return -1;
147     }
148   }
149 
150   // For each enum set cls.<enum name> = EnumTypeWrapper(<enum descriptor>).
151   for (int i = 0; i < descriptor->enum_type_count(); ++i) {
152     const EnumDescriptor* enum_descriptor = descriptor->enum_type(i);
153     ScopedPyObjectPtr enum_type(
154         PyEnumDescriptor_FromDescriptor(enum_descriptor));
155     if (enum_type == NULL) {
156       return -1;
157      }
158     // Add wrapped enum type to message class.
159     ScopedPyObjectPtr wrapped(PyObject_CallFunctionObjArgs(
160         EnumTypeWrapper_class, enum_type.get(), NULL));
161     if (wrapped == NULL) {
162       return -1;
163     }
164     if (PyObject_SetAttrString(
165             cls, enum_descriptor->name().c_str(), wrapped.get()) == -1) {
166       return -1;
167     }
168 
169     // For each enum value add cls.<name> = <number>
170     for (int j = 0; j < enum_descriptor->value_count(); ++j) {
171       const EnumValueDescriptor* enum_value_descriptor =
172           enum_descriptor->value(j);
173       ScopedPyObjectPtr value_number(PyInt_FromLong(
174           enum_value_descriptor->number()));
175       if (value_number == NULL) {
176         return -1;
177       }
178       if (PyObject_SetAttrString(cls, enum_value_descriptor->name().c_str(),
179                                  value_number.get()) == -1) {
180         return -1;
181       }
182     }
183   }
184 
185   // For each extension set cls.<extension name> = <extension descriptor>.
186   //
187   // Extension descriptors come from
188   // <message descriptor>.extensions_by_name[name]
189   // which was defined previously.
190   for (int i = 0; i < descriptor->extension_count(); ++i) {
191     const google::protobuf::FieldDescriptor* field = descriptor->extension(i);
192     ScopedPyObjectPtr extension_field(PyFieldDescriptor_FromDescriptor(field));
193     if (extension_field == NULL) {
194       return -1;
195     }
196 
197     // Add the extension field to the message class.
198     if (PyObject_SetAttrString(
199             cls, field->name().c_str(), extension_field.get()) == -1) {
200       return -1;
201     }
202 
203     // For each extension set cls.<extension name>_FIELD_NUMBER = <number>.
204     if (!AddFieldNumberToClass(cls, field)) {
205       return -1;
206     }
207   }
208 
209   return 0;
210 }
211 
New(PyTypeObject * type,PyObject * args,PyObject * kwargs)212 static PyObject* New(PyTypeObject* type,
213                      PyObject* args, PyObject* kwargs) {
214   static char *kwlist[] = {"name", "bases", "dict", 0};
215   PyObject *bases, *dict;
216   const char* name;
217 
218   // Check arguments: (name, bases, dict)
219   if (!PyArg_ParseTupleAndKeywords(args, kwargs, "sO!O!:type", kwlist,
220                                    &name,
221                                    &PyTuple_Type, &bases,
222                                    &PyDict_Type, &dict)) {
223     return NULL;
224   }
225 
226   // Check bases: only (), or (message.Message,) are allowed
227   if (!(PyTuple_GET_SIZE(bases) == 0 ||
228         (PyTuple_GET_SIZE(bases) == 1 &&
229          PyTuple_GET_ITEM(bases, 0) == PythonMessage_class))) {
230     PyErr_SetString(PyExc_TypeError,
231                     "A Message class can only inherit from Message");
232     return NULL;
233   }
234 
235   // Check dict['DESCRIPTOR']
236   PyObject* py_descriptor = PyDict_GetItem(dict, kDESCRIPTOR);
237   if (py_descriptor == NULL) {
238     PyErr_SetString(PyExc_TypeError, "Message class has no DESCRIPTOR");
239     return NULL;
240   }
241   if (!PyObject_TypeCheck(py_descriptor, &PyMessageDescriptor_Type)) {
242     PyErr_Format(PyExc_TypeError, "Expected a message Descriptor, got %s",
243                  py_descriptor->ob_type->tp_name);
244     return NULL;
245   }
246 
247   // Build the arguments to the base metaclass.
248   // We change the __bases__ classes.
249   ScopedPyObjectPtr new_args;
250   const Descriptor* message_descriptor =
251       PyMessageDescriptor_AsDescriptor(py_descriptor);
252   if (message_descriptor == NULL) {
253     return NULL;
254   }
255 
256   if (WKT_classes == NULL) {
257     ScopedPyObjectPtr well_known_types(PyImport_ImportModule(
258         "google.protobuf.internal.well_known_types"));
259     GOOGLE_DCHECK(well_known_types != NULL);
260 
261     WKT_classes = PyObject_GetAttrString(well_known_types.get(), "WKTBASES");
262     GOOGLE_DCHECK(WKT_classes != NULL);
263   }
264 
265   PyObject* well_known_class = PyDict_GetItemString(
266       WKT_classes, message_descriptor->full_name().c_str());
267   if (well_known_class == NULL) {
268     new_args.reset(Py_BuildValue("s(OO)O", name, &CMessage_Type,
269                                  PythonMessage_class, dict));
270   } else {
271     new_args.reset(Py_BuildValue("s(OOO)O", name, &CMessage_Type,
272                                  PythonMessage_class, well_known_class, dict));
273   }
274 
275   if (new_args == NULL) {
276     return NULL;
277   }
278   // Call the base metaclass.
279   ScopedPyObjectPtr result(PyType_Type.tp_new(type, new_args.get(), NULL));
280   if (result == NULL) {
281     return NULL;
282   }
283   CMessageClass* newtype = reinterpret_cast<CMessageClass*>(result.get());
284 
285   // Insert the empty weakref into the base classes.
286   if (InsertEmptyWeakref(
287           reinterpret_cast<PyTypeObject*>(PythonMessage_class)) < 0 ||
288       InsertEmptyWeakref(&CMessage_Type) < 0) {
289     return NULL;
290   }
291 
292   // Cache the descriptor, both as Python object and as C++ pointer.
293   const Descriptor* descriptor =
294       PyMessageDescriptor_AsDescriptor(py_descriptor);
295   if (descriptor == NULL) {
296     return NULL;
297   }
298   Py_INCREF(py_descriptor);
299   newtype->py_message_descriptor = py_descriptor;
300   newtype->message_descriptor = descriptor;
301   // TODO(amauryfa): Don't always use the canonical pool of the descriptor,
302   // use the MessageFactory optionally passed in the class dict.
303   newtype->py_descriptor_pool = GetDescriptorPool_FromPool(
304       descriptor->file()->pool());
305   if (newtype->py_descriptor_pool == NULL) {
306     return NULL;
307   }
308   Py_INCREF(newtype->py_descriptor_pool);
309 
310   // Add the message to the DescriptorPool.
311   if (cdescriptor_pool::RegisterMessageClass(newtype->py_descriptor_pool,
312                                              descriptor, newtype) < 0) {
313     return NULL;
314   }
315 
316   // Continue with type initialization: add other descriptors, enum values...
317   if (AddDescriptors(result.get(), descriptor) < 0) {
318     return NULL;
319   }
320   return result.release();
321 }
322 
Dealloc(CMessageClass * self)323 static void Dealloc(CMessageClass *self) {
324   Py_DECREF(self->py_message_descriptor);
325   Py_DECREF(self->py_descriptor_pool);
326   Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
327 }
328 
329 
330 // This function inserts and empty weakref at the end of the list of
331 // subclasses for the main protocol buffer Message class.
332 //
333 // This eliminates a O(n^2) behaviour in the internal add_subclass
334 // routine.
InsertEmptyWeakref(PyTypeObject * base_type)335 static int InsertEmptyWeakref(PyTypeObject *base_type) {
336 #if PY_MAJOR_VERSION >= 3
337   // Python 3.4 has already included the fix for the issue that this
338   // hack addresses. For further background and the fix please see
339   // https://bugs.python.org/issue17936.
340   return 0;
341 #else
342   PyObject *subclasses = base_type->tp_subclasses;
343   if (subclasses && PyList_CheckExact(subclasses)) {
344     return PyList_Append(subclasses, kEmptyWeakref);
345   }
346   return 0;
347 #endif  // PY_MAJOR_VERSION >= 3
348 }
349 
350 }  // namespace message_meta
351 
352 PyTypeObject CMessageClass_Type = {
353   PyVarObject_HEAD_INIT(&PyType_Type, 0)
354   FULL_MODULE_NAME ".MessageMeta",     // tp_name
355   sizeof(CMessageClass),               // tp_basicsize
356   0,                                   // tp_itemsize
357   (destructor)message_meta::Dealloc,   // tp_dealloc
358   0,                                   // tp_print
359   0,                                   // tp_getattr
360   0,                                   // tp_setattr
361   0,                                   // tp_compare
362   0,                                   // tp_repr
363   0,                                   // tp_as_number
364   0,                                   // tp_as_sequence
365   0,                                   // tp_as_mapping
366   0,                                   // tp_hash
367   0,                                   // tp_call
368   0,                                   // tp_str
369   0,                                   // tp_getattro
370   0,                                   // tp_setattro
371   0,                                   // tp_as_buffer
372   Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,  // tp_flags
373   "The metaclass of ProtocolMessages",  // tp_doc
374   0,                                   // tp_traverse
375   0,                                   // tp_clear
376   0,                                   // tp_richcompare
377   0,                                   // tp_weaklistoffset
378   0,                                   // tp_iter
379   0,                                   // tp_iternext
380   0,                                   // tp_methods
381   0,                                   // tp_members
382   0,                                   // tp_getset
383   0,                                   // tp_base
384   0,                                   // tp_dict
385   0,                                   // tp_descr_get
386   0,                                   // tp_descr_set
387   0,                                   // tp_dictoffset
388   0,                                   // tp_init
389   0,                                   // tp_alloc
390   message_meta::New,                   // tp_new
391 };
392 
CheckMessageClass(PyTypeObject * cls)393 static CMessageClass* CheckMessageClass(PyTypeObject* cls) {
394   if (!PyObject_TypeCheck(cls, &CMessageClass_Type)) {
395     PyErr_Format(PyExc_TypeError, "Class %s is not a Message", cls->tp_name);
396     return NULL;
397   }
398   return reinterpret_cast<CMessageClass*>(cls);
399 }
400 
GetMessageDescriptor(PyTypeObject * cls)401 static const Descriptor* GetMessageDescriptor(PyTypeObject* cls) {
402   CMessageClass* type = CheckMessageClass(cls);
403   if (type == NULL) {
404     return NULL;
405   }
406   return type->message_descriptor;
407 }
408 
409 // Forward declarations
410 namespace cmessage {
411 int InternalReleaseFieldByDescriptor(
412     CMessage* self,
413     const FieldDescriptor* field_descriptor,
414     PyObject* composite_field);
415 }  // namespace cmessage
416 
417 // ---------------------------------------------------------------------
418 // Visiting the composite children of a CMessage
419 
420 struct ChildVisitor {
421   // Returns 0 on success, -1 on failure.
VisitRepeatedCompositeContainergoogle::protobuf::python::ChildVisitor422   int VisitRepeatedCompositeContainer(RepeatedCompositeContainer* container) {
423     return 0;
424   }
425 
426   // Returns 0 on success, -1 on failure.
VisitRepeatedScalarContainergoogle::protobuf::python::ChildVisitor427   int VisitRepeatedScalarContainer(RepeatedScalarContainer* container) {
428     return 0;
429   }
430 
431   // Returns 0 on success, -1 on failure.
VisitCMessagegoogle::protobuf::python::ChildVisitor432   int VisitCMessage(CMessage* cmessage,
433                     const FieldDescriptor* field_descriptor) {
434     return 0;
435   }
436 };
437 
438 // Apply a function to a composite field.  Does nothing if child is of
439 // non-composite type.
440 template<class Visitor>
VisitCompositeField(const FieldDescriptor * descriptor,PyObject * child,Visitor visitor)441 static int VisitCompositeField(const FieldDescriptor* descriptor,
442                                PyObject* child,
443                                Visitor visitor) {
444   if (descriptor->label() == FieldDescriptor::LABEL_REPEATED) {
445     if (descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
446       if (descriptor->is_map()) {
447         MapContainer* container = reinterpret_cast<MapContainer*>(child);
448         if (visitor.VisitMapContainer(container) == -1) {
449           return -1;
450         }
451       } else {
452         RepeatedCompositeContainer* container =
453           reinterpret_cast<RepeatedCompositeContainer*>(child);
454         if (visitor.VisitRepeatedCompositeContainer(container) == -1)
455           return -1;
456       }
457     } else {
458       RepeatedScalarContainer* container =
459         reinterpret_cast<RepeatedScalarContainer*>(child);
460       if (visitor.VisitRepeatedScalarContainer(container) == -1)
461         return -1;
462     }
463   } else if (descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
464     CMessage* cmsg = reinterpret_cast<CMessage*>(child);
465     if (visitor.VisitCMessage(cmsg, descriptor) == -1)
466       return -1;
467   }
468   // The ExtensionDict might contain non-composite fields, which we
469   // skip here.
470   return 0;
471 }
472 
473 // Visit each composite field and extension field of this CMessage.
474 // Returns -1 on error and 0 on success.
475 template<class Visitor>
ForEachCompositeField(CMessage * self,Visitor visitor)476 int ForEachCompositeField(CMessage* self, Visitor visitor) {
477   Py_ssize_t pos = 0;
478   PyObject* key;
479   PyObject* field;
480 
481   // Visit normal fields.
482   if (self->composite_fields) {
483     // Never use self->message in this function, it may be already freed.
484     const Descriptor* message_descriptor =
485         GetMessageDescriptor(Py_TYPE(self));
486     while (PyDict_Next(self->composite_fields, &pos, &key, &field)) {
487       Py_ssize_t key_str_size;
488       char *key_str_data;
489       if (PyString_AsStringAndSize(key, &key_str_data, &key_str_size) != 0)
490         return -1;
491       const string key_str(key_str_data, key_str_size);
492       const FieldDescriptor* descriptor =
493         message_descriptor->FindFieldByName(key_str);
494       if (descriptor != NULL) {
495         if (VisitCompositeField(descriptor, field, visitor) == -1)
496           return -1;
497       }
498     }
499   }
500 
501   // Visit extension fields.
502   if (self->extensions != NULL) {
503     pos = 0;
504     while (PyDict_Next(self->extensions->values, &pos, &key, &field)) {
505       const FieldDescriptor* descriptor = cmessage::GetExtensionDescriptor(key);
506       if (descriptor == NULL)
507         return -1;
508       if (VisitCompositeField(descriptor, field, visitor) == -1)
509         return -1;
510     }
511   }
512 
513   return 0;
514 }
515 
516 // ---------------------------------------------------------------------
517 
518 // Constants used for integer type range checking.
519 PyObject* kPythonZero;
520 PyObject* kint32min_py;
521 PyObject* kint32max_py;
522 PyObject* kuint32max_py;
523 PyObject* kint64min_py;
524 PyObject* kint64max_py;
525 PyObject* kuint64max_py;
526 
527 PyObject* EncodeError_class;
528 PyObject* DecodeError_class;
529 PyObject* PickleError_class;
530 
531 // Constant PyString values used for GetAttr/GetItem.
532 static PyObject* k_cdescriptor;
533 static PyObject* kfull_name;
534 
535 /* Is 64bit */
FormatTypeError(PyObject * arg,char * expected_types)536 void FormatTypeError(PyObject* arg, char* expected_types) {
537   PyObject* repr = PyObject_Repr(arg);
538   if (repr) {
539     PyErr_Format(PyExc_TypeError,
540                  "%.100s has type %.100s, but expected one of: %s",
541                  PyString_AsString(repr),
542                  Py_TYPE(arg)->tp_name,
543                  expected_types);
544     Py_DECREF(repr);
545   }
546 }
547 
548 template<class T>
CheckAndGetInteger(PyObject * arg,T * value,PyObject * min,PyObject * max)549 bool CheckAndGetInteger(
550     PyObject* arg, T* value, PyObject* min, PyObject* max) {
551   bool is_long = PyLong_Check(arg);
552 #if PY_MAJOR_VERSION < 3
553   if (!PyInt_Check(arg) && !is_long) {
554     FormatTypeError(arg, "int, long");
555     return false;
556   }
557   if (PyObject_Compare(min, arg) > 0 || PyObject_Compare(max, arg) < 0) {
558 #else
559   if (!is_long) {
560     FormatTypeError(arg, "int");
561     return false;
562   }
563   if (PyObject_RichCompareBool(min, arg, Py_LE) != 1 ||
564       PyObject_RichCompareBool(max, arg, Py_GE) != 1) {
565 #endif
566     if (!PyErr_Occurred()) {
567       PyObject *s = PyObject_Str(arg);
568       if (s) {
569         PyErr_Format(PyExc_ValueError,
570                      "Value out of range: %s",
571                      PyString_AsString(s));
572         Py_DECREF(s);
573       }
574     }
575     return false;
576   }
577 #if PY_MAJOR_VERSION < 3
578   if (!is_long) {
579     *value = static_cast<T>(PyInt_AsLong(arg));
580   } else  // NOLINT
581 #endif
582   {
583     if (min == kPythonZero) {
584       *value = static_cast<T>(PyLong_AsUnsignedLongLong(arg));
585     } else {
586       *value = static_cast<T>(PyLong_AsLongLong(arg));
587     }
588   }
589   return true;
590 }
591 
592 // These are referenced by repeated_scalar_container, and must
593 // be explicitly instantiated.
594 template bool CheckAndGetInteger<int32>(
595     PyObject*, int32*, PyObject*, PyObject*);
596 template bool CheckAndGetInteger<int64>(
597     PyObject*, int64*, PyObject*, PyObject*);
598 template bool CheckAndGetInteger<uint32>(
599     PyObject*, uint32*, PyObject*, PyObject*);
600 template bool CheckAndGetInteger<uint64>(
601     PyObject*, uint64*, PyObject*, PyObject*);
602 
603 bool CheckAndGetDouble(PyObject* arg, double* value) {
604   if (!PyInt_Check(arg) && !PyLong_Check(arg) &&
605       !PyFloat_Check(arg)) {
606     FormatTypeError(arg, "int, long, float");
607     return false;
608   }
609   *value = PyFloat_AsDouble(arg);
610   return true;
611 }
612 
613 bool CheckAndGetFloat(PyObject* arg, float* value) {
614   double double_value;
615   if (!CheckAndGetDouble(arg, &double_value)) {
616     return false;
617   }
618   *value = static_cast<float>(double_value);
619   return true;
620 }
621 
622 bool CheckAndGetBool(PyObject* arg, bool* value) {
623   if (!PyInt_Check(arg) && !PyBool_Check(arg) && !PyLong_Check(arg)) {
624     FormatTypeError(arg, "int, long, bool");
625     return false;
626   }
627   *value = static_cast<bool>(PyInt_AsLong(arg));
628   return true;
629 }
630 
631 // Checks whether the given object (which must be "bytes" or "unicode") contains
632 // valid UTF-8.
633 bool IsValidUTF8(PyObject* obj) {
634   if (PyBytes_Check(obj)) {
635     PyObject* unicode = PyUnicode_FromEncodedObject(obj, "utf-8", NULL);
636 
637     // Clear the error indicator; we report our own error when desired.
638     PyErr_Clear();
639 
640     if (unicode) {
641       Py_DECREF(unicode);
642       return true;
643     } else {
644       return false;
645     }
646   } else {
647     // Unicode object, known to be valid UTF-8.
648     return true;
649   }
650 }
651 
652 bool AllowInvalidUTF8(const FieldDescriptor* field) { return false; }
653 
654 PyObject* CheckString(PyObject* arg, const FieldDescriptor* descriptor) {
655   GOOGLE_DCHECK(descriptor->type() == FieldDescriptor::TYPE_STRING ||
656          descriptor->type() == FieldDescriptor::TYPE_BYTES);
657   if (descriptor->type() == FieldDescriptor::TYPE_STRING) {
658     if (!PyBytes_Check(arg) && !PyUnicode_Check(arg)) {
659       FormatTypeError(arg, "bytes, unicode");
660       return NULL;
661     }
662 
663     if (!IsValidUTF8(arg) && !AllowInvalidUTF8(descriptor)) {
664       PyObject* repr = PyObject_Repr(arg);
665       PyErr_Format(PyExc_ValueError,
666                    "%s has type str, but isn't valid UTF-8 "
667                    "encoding. Non-UTF-8 strings must be converted to "
668                    "unicode objects before being added.",
669                    PyString_AsString(repr));
670       Py_DECREF(repr);
671       return NULL;
672     }
673   } else if (!PyBytes_Check(arg)) {
674     FormatTypeError(arg, "bytes");
675     return NULL;
676   }
677 
678   PyObject* encoded_string = NULL;
679   if (descriptor->type() == FieldDescriptor::TYPE_STRING) {
680     if (PyBytes_Check(arg)) {
681       // The bytes were already validated as correctly encoded UTF-8 above.
682       encoded_string = arg;  // Already encoded.
683       Py_INCREF(encoded_string);
684     } else {
685       encoded_string = PyUnicode_AsEncodedObject(arg, "utf-8", NULL);
686     }
687   } else {
688     // In this case field type is "bytes".
689     encoded_string = arg;
690     Py_INCREF(encoded_string);
691   }
692 
693   return encoded_string;
694 }
695 
696 bool CheckAndSetString(
697     PyObject* arg, Message* message,
698     const FieldDescriptor* descriptor,
699     const Reflection* reflection,
700     bool append,
701     int index) {
702   ScopedPyObjectPtr encoded_string(CheckString(arg, descriptor));
703 
704   if (encoded_string.get() == NULL) {
705     return false;
706   }
707 
708   char* value;
709   Py_ssize_t value_len;
710   if (PyBytes_AsStringAndSize(encoded_string.get(), &value, &value_len) < 0) {
711     return false;
712   }
713 
714   string value_string(value, value_len);
715   if (append) {
716     reflection->AddString(message, descriptor, value_string);
717   } else if (index < 0) {
718     reflection->SetString(message, descriptor, value_string);
719   } else {
720     reflection->SetRepeatedString(message, descriptor, index, value_string);
721   }
722   return true;
723 }
724 
725 PyObject* ToStringObject(const FieldDescriptor* descriptor, string value) {
726   if (descriptor->type() != FieldDescriptor::TYPE_STRING) {
727     return PyBytes_FromStringAndSize(value.c_str(), value.length());
728   }
729 
730   PyObject* result = PyUnicode_DecodeUTF8(value.c_str(), value.length(), NULL);
731   // If the string can't be decoded in UTF-8, just return a string object that
732   // contains the raw bytes. This can't happen if the value was assigned using
733   // the members of the Python message object, but can happen if the values were
734   // parsed from the wire (binary).
735   if (result == NULL) {
736     PyErr_Clear();
737     result = PyBytes_FromStringAndSize(value.c_str(), value.length());
738   }
739   return result;
740 }
741 
742 bool CheckFieldBelongsToMessage(const FieldDescriptor* field_descriptor,
743                                 const Message* message) {
744   if (message->GetDescriptor() == field_descriptor->containing_type()) {
745     return true;
746   }
747   PyErr_Format(PyExc_KeyError, "Field '%s' does not belong to message '%s'",
748                field_descriptor->full_name().c_str(),
749                message->GetDescriptor()->full_name().c_str());
750   return false;
751 }
752 
753 namespace cmessage {
754 
755 PyDescriptorPool* GetDescriptorPoolForMessage(CMessage* message) {
756   // No need to check the type: the type of instances of CMessage is always
757   // an instance of CMessageClass. Let's prove it with a debug-only check.
758   GOOGLE_DCHECK(PyObject_TypeCheck(message, &CMessage_Type));
759   return reinterpret_cast<CMessageClass*>(Py_TYPE(message))->py_descriptor_pool;
760 }
761 
762 MessageFactory* GetFactoryForMessage(CMessage* message) {
763   return GetDescriptorPoolForMessage(message)->message_factory;
764 }
765 
766 static int MaybeReleaseOverlappingOneofField(
767     CMessage* cmessage,
768     const FieldDescriptor* field) {
769 #ifdef GOOGLE_PROTOBUF_HAS_ONEOF
770   Message* message = cmessage->message;
771   const Reflection* reflection = message->GetReflection();
772   if (!field->containing_oneof() ||
773       !reflection->HasOneof(*message, field->containing_oneof()) ||
774       reflection->HasField(*message, field)) {
775     // No other field in this oneof, no need to release.
776     return 0;
777   }
778 
779   const OneofDescriptor* oneof = field->containing_oneof();
780   const FieldDescriptor* existing_field =
781       reflection->GetOneofFieldDescriptor(*message, oneof);
782   if (existing_field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
783     // Non-message fields don't need to be released.
784     return 0;
785   }
786   const char* field_name = existing_field->name().c_str();
787   PyObject* child_message = cmessage->composite_fields ?
788       PyDict_GetItemString(cmessage->composite_fields, field_name) : NULL;
789   if (child_message == NULL) {
790     // No python reference to this field so no need to release.
791     return 0;
792   }
793 
794   if (InternalReleaseFieldByDescriptor(
795           cmessage, existing_field, child_message) < 0) {
796     return -1;
797   }
798   return PyDict_DelItemString(cmessage->composite_fields, field_name);
799 #else
800   return 0;
801 #endif
802 }
803 
804 // ---------------------------------------------------------------------
805 // Making a message writable
806 
807 static Message* GetMutableMessage(
808     CMessage* parent,
809     const FieldDescriptor* parent_field) {
810   Message* parent_message = parent->message;
811   const Reflection* reflection = parent_message->GetReflection();
812   if (MaybeReleaseOverlappingOneofField(parent, parent_field) < 0) {
813     return NULL;
814   }
815   return reflection->MutableMessage(
816       parent_message, parent_field, GetFactoryForMessage(parent));
817 }
818 
819 struct FixupMessageReference : public ChildVisitor {
820   // message must outlive this object.
821   explicit FixupMessageReference(Message* message) :
822       message_(message) {}
823 
824   int VisitRepeatedCompositeContainer(RepeatedCompositeContainer* container) {
825     container->message = message_;
826     return 0;
827   }
828 
829   int VisitRepeatedScalarContainer(RepeatedScalarContainer* container) {
830     container->message = message_;
831     return 0;
832   }
833 
834   int VisitMapContainer(MapContainer* container) {
835     container->message = message_;
836     return 0;
837   }
838 
839  private:
840   Message* message_;
841 };
842 
843 int AssureWritable(CMessage* self) {
844   if (self == NULL || !self->read_only) {
845     return 0;
846   }
847 
848   if (self->parent == NULL) {
849     // If parent is NULL but we are trying to modify a read-only message, this
850     // is a reference to a constant default instance that needs to be replaced
851     // with a mutable top-level message.
852     self->message = self->message->New();
853     self->owner.reset(self->message);
854     // Cascade the new owner to eventual children: even if this message is
855     // empty, some submessages or repeated containers might exist already.
856     SetOwner(self, self->owner);
857   } else {
858     // Otherwise, we need a mutable child message.
859     if (AssureWritable(self->parent) == -1)
860       return -1;
861 
862     // Make self->message writable.
863     Message* mutable_message = GetMutableMessage(
864         self->parent,
865         self->parent_field_descriptor);
866     if (mutable_message == NULL) {
867       return -1;
868     }
869     self->message = mutable_message;
870   }
871   self->read_only = false;
872 
873   // When a CMessage is made writable its Message pointer is updated
874   // to point to a new mutable Message.  When that happens we need to
875   // update any references to the old, read-only CMessage.  There are
876   // four places such references occur: RepeatedScalarContainer,
877   // RepeatedCompositeContainer, MapContainer, and ExtensionDict.
878   if (self->extensions != NULL)
879     self->extensions->message = self->message;
880   if (ForEachCompositeField(self, FixupMessageReference(self->message)) == -1)
881     return -1;
882 
883   return 0;
884 }
885 
886 // --- Globals:
887 
888 // Retrieve a C++ FieldDescriptor for a message attribute.
889 // The C++ message must be valid.
890 // TODO(amauryfa): This function should stay internal, because exception
891 // handling is not consistent.
892 static const FieldDescriptor* GetFieldDescriptor(
893     CMessage* self, PyObject* name) {
894   const Descriptor *message_descriptor = self->message->GetDescriptor();
895   char* field_name;
896   Py_ssize_t size;
897   if (PyString_AsStringAndSize(name, &field_name, &size) < 0) {
898     return NULL;
899   }
900   const FieldDescriptor *field_descriptor =
901       message_descriptor->FindFieldByName(string(field_name, size));
902   if (field_descriptor == NULL) {
903     // Note: No exception is set!
904     return NULL;
905   }
906   return field_descriptor;
907 }
908 
909 // Retrieve a C++ FieldDescriptor for an extension handle.
910 const FieldDescriptor* GetExtensionDescriptor(PyObject* extension) {
911   ScopedPyObjectPtr cdescriptor;
912   if (!PyObject_TypeCheck(extension, &PyFieldDescriptor_Type)) {
913     // Most callers consider extensions as a plain dictionary.  We should
914     // allow input which is not a field descriptor, and simply pretend it does
915     // not exist.
916     PyErr_SetObject(PyExc_KeyError, extension);
917     return NULL;
918   }
919   return PyFieldDescriptor_AsDescriptor(extension);
920 }
921 
922 // If value is a string, convert it into an enum value based on the labels in
923 // descriptor, otherwise simply return value.  Always returns a new reference.
924 static PyObject* GetIntegerEnumValue(const FieldDescriptor& descriptor,
925                                      PyObject* value) {
926   if (PyString_Check(value) || PyUnicode_Check(value)) {
927     const EnumDescriptor* enum_descriptor = descriptor.enum_type();
928     if (enum_descriptor == NULL) {
929       PyErr_SetString(PyExc_TypeError, "not an enum field");
930       return NULL;
931     }
932     char* enum_label;
933     Py_ssize_t size;
934     if (PyString_AsStringAndSize(value, &enum_label, &size) < 0) {
935       return NULL;
936     }
937     const EnumValueDescriptor* enum_value_descriptor =
938         enum_descriptor->FindValueByName(string(enum_label, size));
939     if (enum_value_descriptor == NULL) {
940       PyErr_SetString(PyExc_ValueError, "unknown enum label");
941       return NULL;
942     }
943     return PyInt_FromLong(enum_value_descriptor->number());
944   }
945   Py_INCREF(value);
946   return value;
947 }
948 
949 // If cmessage_list is not NULL, this function releases values into the
950 // container CMessages instead of just removing. Repeated composite container
951 // needs to do this to make sure CMessages stay alive if they're still
952 // referenced after deletion. Repeated scalar container doesn't need to worry.
953 int InternalDeleteRepeatedField(
954     CMessage* self,
955     const FieldDescriptor* field_descriptor,
956     PyObject* slice,
957     PyObject* cmessage_list) {
958   Message* message = self->message;
959   Py_ssize_t length, from, to, step, slice_length;
960   const Reflection* reflection = message->GetReflection();
961   int min, max;
962   length = reflection->FieldSize(*message, field_descriptor);
963 
964   if (PyInt_Check(slice) || PyLong_Check(slice)) {
965     from = to = PyLong_AsLong(slice);
966     if (from < 0) {
967       from = to = length + from;
968     }
969     step = 1;
970     min = max = from;
971 
972     // Range check.
973     if (from < 0 || from >= length) {
974       PyErr_Format(PyExc_IndexError, "list assignment index out of range");
975       return -1;
976     }
977   } else if (PySlice_Check(slice)) {
978     from = to = step = slice_length = 0;
979     PySlice_GetIndicesEx(
980 #if PY_MAJOR_VERSION < 3
981         reinterpret_cast<PySliceObject*>(slice),
982 #else
983         slice,
984 #endif
985         length, &from, &to, &step, &slice_length);
986     if (from < to) {
987       min = from;
988       max = to - 1;
989     } else {
990       min = to + 1;
991       max = from;
992     }
993   } else {
994     PyErr_SetString(PyExc_TypeError, "list indices must be integers");
995     return -1;
996   }
997 
998   Py_ssize_t i = from;
999   std::vector<bool> to_delete(length, false);
1000   while (i >= min && i <= max) {
1001     to_delete[i] = true;
1002     i += step;
1003   }
1004 
1005   to = 0;
1006   for (i = 0; i < length; ++i) {
1007     if (!to_delete[i]) {
1008       if (i != to) {
1009         reflection->SwapElements(message, field_descriptor, i, to);
1010         if (cmessage_list != NULL) {
1011           // If a list of cmessages is passed in (i.e. from a repeated
1012           // composite container), swap those as well to correspond to the
1013           // swaps in the underlying message so they're in the right order
1014           // when we start releasing.
1015           PyObject* tmp = PyList_GET_ITEM(cmessage_list, i);
1016           PyList_SET_ITEM(cmessage_list, i,
1017                           PyList_GET_ITEM(cmessage_list, to));
1018           PyList_SET_ITEM(cmessage_list, to, tmp);
1019         }
1020       }
1021       ++to;
1022     }
1023   }
1024 
1025   while (i > to) {
1026     if (cmessage_list == NULL) {
1027       reflection->RemoveLast(message, field_descriptor);
1028     } else {
1029       CMessage* last_cmessage = reinterpret_cast<CMessage*>(
1030           PyList_GET_ITEM(cmessage_list, PyList_GET_SIZE(cmessage_list) - 1));
1031       repeated_composite_container::ReleaseLastTo(
1032           self, field_descriptor, last_cmessage);
1033       if (PySequence_DelItem(cmessage_list, -1) < 0) {
1034         return -1;
1035       }
1036     }
1037     --i;
1038   }
1039 
1040   return 0;
1041 }
1042 
1043 // Initializes fields of a message. Used in constructors.
1044 int InitAttributes(CMessage* self, PyObject* args, PyObject* kwargs) {
1045   if (args != NULL && PyTuple_Size(args) != 0) {
1046     PyErr_SetString(PyExc_TypeError, "No positional arguments allowed");
1047     return -1;
1048   }
1049 
1050   if (kwargs == NULL) {
1051     return 0;
1052   }
1053 
1054   Py_ssize_t pos = 0;
1055   PyObject* name;
1056   PyObject* value;
1057   while (PyDict_Next(kwargs, &pos, &name, &value)) {
1058     if (!PyString_Check(name)) {
1059       PyErr_SetString(PyExc_ValueError, "Field name must be a string");
1060       return -1;
1061     }
1062     const FieldDescriptor* descriptor = GetFieldDescriptor(self, name);
1063     if (descriptor == NULL) {
1064       PyErr_Format(PyExc_ValueError, "Protocol message %s has no \"%s\" field.",
1065                    self->message->GetDescriptor()->name().c_str(),
1066                    PyString_AsString(name));
1067       return -1;
1068     }
1069     if (value == Py_None) {
1070       // field=None is the same as no field at all.
1071       continue;
1072     }
1073     if (descriptor->is_map()) {
1074       ScopedPyObjectPtr map(GetAttr(self, name));
1075       const FieldDescriptor* value_descriptor =
1076           descriptor->message_type()->FindFieldByName("value");
1077       if (value_descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
1078         Py_ssize_t map_pos = 0;
1079         PyObject* map_key;
1080         PyObject* map_value;
1081         while (PyDict_Next(value, &map_pos, &map_key, &map_value)) {
1082           ScopedPyObjectPtr function_return;
1083           function_return.reset(PyObject_GetItem(map.get(), map_key));
1084           if (function_return.get() == NULL) {
1085             return -1;
1086           }
1087           ScopedPyObjectPtr ok(PyObject_CallMethod(
1088               function_return.get(), "MergeFrom", "O", map_value));
1089           if (ok.get() == NULL) {
1090             return -1;
1091           }
1092         }
1093       } else {
1094         ScopedPyObjectPtr function_return;
1095         function_return.reset(
1096             PyObject_CallMethod(map.get(), "update", "O", value));
1097         if (function_return.get() == NULL) {
1098           return -1;
1099         }
1100       }
1101     } else if (descriptor->label() == FieldDescriptor::LABEL_REPEATED) {
1102       ScopedPyObjectPtr container(GetAttr(self, name));
1103       if (container == NULL) {
1104         return -1;
1105       }
1106       if (descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
1107         RepeatedCompositeContainer* rc_container =
1108             reinterpret_cast<RepeatedCompositeContainer*>(container.get());
1109         ScopedPyObjectPtr iter(PyObject_GetIter(value));
1110         if (iter == NULL) {
1111           PyErr_SetString(PyExc_TypeError, "Value must be iterable");
1112           return -1;
1113         }
1114         ScopedPyObjectPtr next;
1115         while ((next.reset(PyIter_Next(iter.get()))) != NULL) {
1116           PyObject* kwargs = (PyDict_Check(next.get()) ? next.get() : NULL);
1117           ScopedPyObjectPtr new_msg(
1118               repeated_composite_container::Add(rc_container, NULL, kwargs));
1119           if (new_msg == NULL) {
1120             return -1;
1121           }
1122           if (kwargs == NULL) {
1123             // next was not a dict, it's a message we need to merge
1124             ScopedPyObjectPtr merged(MergeFrom(
1125                 reinterpret_cast<CMessage*>(new_msg.get()), next.get()));
1126             if (merged.get() == NULL) {
1127               return -1;
1128             }
1129           }
1130         }
1131         if (PyErr_Occurred()) {
1132           // Check to see how PyIter_Next() exited.
1133           return -1;
1134         }
1135       } else if (descriptor->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
1136         RepeatedScalarContainer* rs_container =
1137             reinterpret_cast<RepeatedScalarContainer*>(container.get());
1138         ScopedPyObjectPtr iter(PyObject_GetIter(value));
1139         if (iter == NULL) {
1140           PyErr_SetString(PyExc_TypeError, "Value must be iterable");
1141           return -1;
1142         }
1143         ScopedPyObjectPtr next;
1144         while ((next.reset(PyIter_Next(iter.get()))) != NULL) {
1145           ScopedPyObjectPtr enum_value(
1146               GetIntegerEnumValue(*descriptor, next.get()));
1147           if (enum_value == NULL) {
1148             return -1;
1149           }
1150           ScopedPyObjectPtr new_msg(repeated_scalar_container::Append(
1151               rs_container, enum_value.get()));
1152           if (new_msg == NULL) {
1153             return -1;
1154           }
1155         }
1156         if (PyErr_Occurred()) {
1157           // Check to see how PyIter_Next() exited.
1158           return -1;
1159         }
1160       } else {
1161         if (ScopedPyObjectPtr(repeated_scalar_container::Extend(
1162                 reinterpret_cast<RepeatedScalarContainer*>(container.get()),
1163                 value)) ==
1164             NULL) {
1165           return -1;
1166         }
1167       }
1168     } else if (descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
1169       ScopedPyObjectPtr message(GetAttr(self, name));
1170       if (message == NULL) {
1171         return -1;
1172       }
1173       CMessage* cmessage = reinterpret_cast<CMessage*>(message.get());
1174       if (PyDict_Check(value)) {
1175         if (InitAttributes(cmessage, NULL, value) < 0) {
1176           return -1;
1177         }
1178       } else {
1179         ScopedPyObjectPtr merged(MergeFrom(cmessage, value));
1180         if (merged == NULL) {
1181           return -1;
1182         }
1183       }
1184     } else {
1185       ScopedPyObjectPtr new_val;
1186       if (descriptor->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
1187         new_val.reset(GetIntegerEnumValue(*descriptor, value));
1188         if (new_val == NULL) {
1189           return -1;
1190         }
1191       }
1192       if (SetAttr(self, name, (new_val.get() == NULL) ? value : new_val.get()) <
1193           0) {
1194         return -1;
1195       }
1196     }
1197   }
1198   return 0;
1199 }
1200 
1201 // Allocates an incomplete Python Message: the caller must fill self->message,
1202 // self->owner and eventually self->parent.
1203 CMessage* NewEmptyMessage(CMessageClass* type) {
1204   CMessage* self = reinterpret_cast<CMessage*>(
1205       PyType_GenericAlloc(&type->super.ht_type, 0));
1206   if (self == NULL) {
1207     return NULL;
1208   }
1209 
1210   self->message = NULL;
1211   self->parent = NULL;
1212   self->parent_field_descriptor = NULL;
1213   self->read_only = false;
1214   self->extensions = NULL;
1215 
1216   self->composite_fields = NULL;
1217 
1218   return self;
1219 }
1220 
1221 // The __new__ method of Message classes.
1222 // Creates a new C++ message and takes ownership.
1223 static PyObject* New(PyTypeObject* cls,
1224                      PyObject* unused_args, PyObject* unused_kwargs) {
1225   CMessageClass* type = CheckMessageClass(cls);
1226   if (type == NULL) {
1227     return NULL;
1228   }
1229   // Retrieve the message descriptor and the default instance (=prototype).
1230   const Descriptor* message_descriptor = type->message_descriptor;
1231   if (message_descriptor == NULL) {
1232     return NULL;
1233   }
1234   const Message* default_message = type->py_descriptor_pool->message_factory
1235                                    ->GetPrototype(message_descriptor);
1236   if (default_message == NULL) {
1237     PyErr_SetString(PyExc_TypeError, message_descriptor->full_name().c_str());
1238     return NULL;
1239   }
1240 
1241   CMessage* self = NewEmptyMessage(type);
1242   if (self == NULL) {
1243     return NULL;
1244   }
1245   self->message = default_message->New();
1246   self->owner.reset(self->message);
1247   return reinterpret_cast<PyObject*>(self);
1248 }
1249 
1250 // The __init__ method of Message classes.
1251 // It initializes fields from keywords passed to the constructor.
1252 static int Init(CMessage* self, PyObject* args, PyObject* kwargs) {
1253   return InitAttributes(self, args, kwargs);
1254 }
1255 
1256 // ---------------------------------------------------------------------
1257 // Deallocating a CMessage
1258 //
1259 // Deallocating a CMessage requires that we clear any weak references
1260 // from children to the message being deallocated.
1261 
1262 // Clear the weak reference from the child to the parent.
1263 struct ClearWeakReferences : public ChildVisitor {
1264   int VisitRepeatedCompositeContainer(RepeatedCompositeContainer* container) {
1265     container->parent = NULL;
1266     // The elements in the container have the same parent as the
1267     // container itself, so NULL out that pointer as well.
1268     const Py_ssize_t n = PyList_GET_SIZE(container->child_messages);
1269     for (Py_ssize_t i = 0; i < n; ++i) {
1270       CMessage* child_cmessage = reinterpret_cast<CMessage*>(
1271           PyList_GET_ITEM(container->child_messages, i));
1272       child_cmessage->parent = NULL;
1273     }
1274     return 0;
1275   }
1276 
1277   int VisitRepeatedScalarContainer(RepeatedScalarContainer* container) {
1278     container->parent = NULL;
1279     return 0;
1280   }
1281 
1282   int VisitMapContainer(MapContainer* container) {
1283     container->parent = NULL;
1284     return 0;
1285   }
1286 
1287   int VisitCMessage(CMessage* cmessage,
1288                     const FieldDescriptor* field_descriptor) {
1289     cmessage->parent = NULL;
1290     return 0;
1291   }
1292 };
1293 
1294 static void Dealloc(CMessage* self) {
1295   // Null out all weak references from children to this message.
1296   GOOGLE_CHECK_EQ(0, ForEachCompositeField(self, ClearWeakReferences()));
1297   if (self->extensions) {
1298     self->extensions->parent = NULL;
1299   }
1300 
1301   Py_CLEAR(self->extensions);
1302   Py_CLEAR(self->composite_fields);
1303   self->owner.reset();
1304   Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
1305 }
1306 
1307 // ---------------------------------------------------------------------
1308 
1309 
1310 PyObject* IsInitialized(CMessage* self, PyObject* args) {
1311   PyObject* errors = NULL;
1312   if (PyArg_ParseTuple(args, "|O", &errors) < 0) {
1313     return NULL;
1314   }
1315   if (self->message->IsInitialized()) {
1316     Py_RETURN_TRUE;
1317   }
1318   if (errors != NULL) {
1319     ScopedPyObjectPtr initialization_errors(
1320         FindInitializationErrors(self));
1321     if (initialization_errors == NULL) {
1322       return NULL;
1323     }
1324     ScopedPyObjectPtr extend_name(PyString_FromString("extend"));
1325     if (extend_name == NULL) {
1326       return NULL;
1327     }
1328     ScopedPyObjectPtr result(PyObject_CallMethodObjArgs(
1329         errors,
1330         extend_name.get(),
1331         initialization_errors.get(),
1332         NULL));
1333     if (result == NULL) {
1334       return NULL;
1335     }
1336   }
1337   Py_RETURN_FALSE;
1338 }
1339 
1340 PyObject* HasFieldByDescriptor(
1341     CMessage* self, const FieldDescriptor* field_descriptor) {
1342   Message* message = self->message;
1343   if (!CheckFieldBelongsToMessage(field_descriptor, message)) {
1344     return NULL;
1345   }
1346   if (field_descriptor->label() == FieldDescriptor::LABEL_REPEATED) {
1347     PyErr_SetString(PyExc_KeyError,
1348                     "Field is repeated. A singular method is required.");
1349     return NULL;
1350   }
1351   bool has_field =
1352       message->GetReflection()->HasField(*message, field_descriptor);
1353   return PyBool_FromLong(has_field ? 1 : 0);
1354 }
1355 
1356 const FieldDescriptor* FindFieldWithOneofs(
1357     const Message* message, const string& field_name, bool* in_oneof) {
1358   *in_oneof = false;
1359   const Descriptor* descriptor = message->GetDescriptor();
1360   const FieldDescriptor* field_descriptor =
1361       descriptor->FindFieldByName(field_name);
1362   if (field_descriptor != NULL) {
1363     return field_descriptor;
1364   }
1365   const OneofDescriptor* oneof_desc =
1366       descriptor->FindOneofByName(field_name);
1367   if (oneof_desc != NULL) {
1368     *in_oneof = true;
1369     return message->GetReflection()->GetOneofFieldDescriptor(*message,
1370                                                              oneof_desc);
1371   }
1372   return NULL;
1373 }
1374 
1375 bool CheckHasPresence(const FieldDescriptor* field_descriptor, bool in_oneof) {
1376   if (field_descriptor->label() == FieldDescriptor::LABEL_REPEATED) {
1377     PyErr_Format(PyExc_ValueError,
1378                  "Protocol message has no singular \"%s\" field.",
1379                  field_descriptor->name().c_str());
1380     return false;
1381   }
1382 
1383   if (field_descriptor->file()->syntax() == FileDescriptor::SYNTAX_PROTO3) {
1384     // HasField() for a oneof *itself* isn't supported.
1385     if (in_oneof) {
1386       PyErr_Format(PyExc_ValueError,
1387                    "Can't test oneof field \"%s\" for presence in proto3, use "
1388                    "WhichOneof instead.",
1389                    field_descriptor->containing_oneof()->name().c_str());
1390       return false;
1391     }
1392 
1393     // ...but HasField() for fields *in* a oneof is supported.
1394     if (field_descriptor->containing_oneof() != NULL) {
1395       return true;
1396     }
1397 
1398     if (field_descriptor->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
1399       PyErr_Format(
1400           PyExc_ValueError,
1401           "Can't test non-submessage field \"%s\" for presence in proto3.",
1402           field_descriptor->name().c_str());
1403       return false;
1404     }
1405   }
1406 
1407   return true;
1408 }
1409 
1410 PyObject* HasField(CMessage* self, PyObject* arg) {
1411   char* field_name;
1412   Py_ssize_t size;
1413 #if PY_MAJOR_VERSION < 3
1414   if (PyString_AsStringAndSize(arg, &field_name, &size) < 0) {
1415     return NULL;
1416   }
1417 #else
1418   field_name = PyUnicode_AsUTF8AndSize(arg, &size);
1419   if (!field_name) {
1420     return NULL;
1421   }
1422 #endif
1423 
1424   Message* message = self->message;
1425   bool is_in_oneof;
1426   const FieldDescriptor* field_descriptor =
1427       FindFieldWithOneofs(message, string(field_name, size), &is_in_oneof);
1428   if (field_descriptor == NULL) {
1429     if (!is_in_oneof) {
1430       PyErr_Format(PyExc_ValueError, "Unknown field %s.", field_name);
1431       return NULL;
1432     } else {
1433       Py_RETURN_FALSE;
1434     }
1435   }
1436 
1437   if (!CheckHasPresence(field_descriptor, is_in_oneof)) {
1438     return NULL;
1439   }
1440 
1441   if (message->GetReflection()->HasField(*message, field_descriptor)) {
1442     Py_RETURN_TRUE;
1443   }
1444   if (!message->GetReflection()->SupportsUnknownEnumValues() &&
1445       field_descriptor->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
1446     // Special case: Python HasField() differs in semantics from C++
1447     // slightly: we return HasField('enum_field') == true if there is
1448     // an unknown enum value present. To implement this we have to
1449     // look in the UnknownFieldSet.
1450     const UnknownFieldSet& unknown_field_set =
1451         message->GetReflection()->GetUnknownFields(*message);
1452     for (int i = 0; i < unknown_field_set.field_count(); ++i) {
1453       if (unknown_field_set.field(i).number() == field_descriptor->number()) {
1454         Py_RETURN_TRUE;
1455       }
1456     }
1457   }
1458   Py_RETURN_FALSE;
1459 }
1460 
1461 PyObject* ClearExtension(CMessage* self, PyObject* extension) {
1462   if (self->extensions != NULL) {
1463     return extension_dict::ClearExtension(self->extensions, extension);
1464   } else {
1465     const FieldDescriptor* descriptor = GetExtensionDescriptor(extension);
1466     if (descriptor == NULL) {
1467       return NULL;
1468     }
1469     if (ScopedPyObjectPtr(ClearFieldByDescriptor(self, descriptor)) == NULL) {
1470       return NULL;
1471     }
1472   }
1473   Py_RETURN_NONE;
1474 }
1475 
1476 PyObject* HasExtension(CMessage* self, PyObject* extension) {
1477   const FieldDescriptor* descriptor = GetExtensionDescriptor(extension);
1478   if (descriptor == NULL) {
1479     return NULL;
1480   }
1481   return HasFieldByDescriptor(self, descriptor);
1482 }
1483 
1484 // ---------------------------------------------------------------------
1485 // Releasing messages
1486 //
1487 // The Python API's ClearField() and Clear() methods behave
1488 // differently than their C++ counterparts.  While the C++ versions
1489 // clears the children the Python versions detaches the children,
1490 // without touching their content.  This impedance mismatch causes
1491 // some complexity in the implementation, which is captured in this
1492 // section.
1493 //
1494 // When a CMessage field is cleared we need to:
1495 //
1496 // * Release the Message used as the backing store for the CMessage
1497 //   from its parent.
1498 //
1499 // * Change the owner field of the released CMessage and all of its
1500 //   children to point to the newly released Message.
1501 //
1502 // * Clear the weak references from the released CMessage to the
1503 //   parent.
1504 //
1505 // When a RepeatedCompositeContainer field is cleared we need to:
1506 //
1507 // * Release all the Message used as the backing store for the
1508 //   CMessages stored in the container.
1509 //
1510 // * Change the owner field of all the released CMessage and all of
1511 //   their children to point to the newly released Messages.
1512 //
1513 // * Clear the weak references from the released container to the
1514 //   parent.
1515 
1516 struct SetOwnerVisitor : public ChildVisitor {
1517   // new_owner must outlive this object.
1518   explicit SetOwnerVisitor(const shared_ptr<Message>& new_owner)
1519       : new_owner_(new_owner) {}
1520 
1521   int VisitRepeatedCompositeContainer(RepeatedCompositeContainer* container) {
1522     repeated_composite_container::SetOwner(container, new_owner_);
1523     return 0;
1524   }
1525 
1526   int VisitRepeatedScalarContainer(RepeatedScalarContainer* container) {
1527     repeated_scalar_container::SetOwner(container, new_owner_);
1528     return 0;
1529   }
1530 
1531   int VisitMapContainer(MapContainer* container) {
1532     container->SetOwner(new_owner_);
1533     return 0;
1534   }
1535 
1536   int VisitCMessage(CMessage* cmessage,
1537                     const FieldDescriptor* field_descriptor) {
1538     return SetOwner(cmessage, new_owner_);
1539   }
1540 
1541  private:
1542   const shared_ptr<Message>& new_owner_;
1543 };
1544 
1545 // Change the owner of this CMessage and all its children, recursively.
1546 int SetOwner(CMessage* self, const shared_ptr<Message>& new_owner) {
1547   self->owner = new_owner;
1548   if (ForEachCompositeField(self, SetOwnerVisitor(new_owner)) == -1)
1549     return -1;
1550   return 0;
1551 }
1552 
1553 // Releases the message specified by 'field' and returns the
1554 // pointer. If the field does not exist a new message is created using
1555 // 'descriptor'. The caller takes ownership of the returned pointer.
1556 Message* ReleaseMessage(CMessage* self,
1557                         const Descriptor* descriptor,
1558                         const FieldDescriptor* field_descriptor) {
1559   MessageFactory* message_factory = GetFactoryForMessage(self);
1560   Message* released_message = self->message->GetReflection()->ReleaseMessage(
1561       self->message, field_descriptor, message_factory);
1562   // ReleaseMessage will return NULL which differs from
1563   // child_cmessage->message, if the field does not exist.  In this case,
1564   // the latter points to the default instance via a const_cast<>, so we
1565   // have to reset it to a new mutable object since we are taking ownership.
1566   if (released_message == NULL) {
1567     const Message* prototype = message_factory->GetPrototype(descriptor);
1568     GOOGLE_DCHECK(prototype != NULL);
1569     released_message = prototype->New();
1570   }
1571 
1572   return released_message;
1573 }
1574 
1575 int ReleaseSubMessage(CMessage* self,
1576                       const FieldDescriptor* field_descriptor,
1577                       CMessage* child_cmessage) {
1578   // Release the Message
1579   shared_ptr<Message> released_message(ReleaseMessage(
1580       self, child_cmessage->message->GetDescriptor(), field_descriptor));
1581   child_cmessage->message = released_message.get();
1582   child_cmessage->owner.swap(released_message);
1583   child_cmessage->parent = NULL;
1584   child_cmessage->parent_field_descriptor = NULL;
1585   child_cmessage->read_only = false;
1586   return ForEachCompositeField(child_cmessage,
1587                                SetOwnerVisitor(child_cmessage->owner));
1588 }
1589 
1590 struct ReleaseChild : public ChildVisitor {
1591   // message must outlive this object.
1592   explicit ReleaseChild(CMessage* parent) :
1593       parent_(parent) {}
1594 
1595   int VisitRepeatedCompositeContainer(RepeatedCompositeContainer* container) {
1596     return repeated_composite_container::Release(container);
1597   }
1598 
1599   int VisitRepeatedScalarContainer(RepeatedScalarContainer* container) {
1600     return repeated_scalar_container::Release(container);
1601   }
1602 
1603   int VisitMapContainer(MapContainer* container) {
1604     return container->Release();
1605   }
1606 
1607   int VisitCMessage(CMessage* cmessage,
1608                     const FieldDescriptor* field_descriptor) {
1609     return ReleaseSubMessage(parent_, field_descriptor, cmessage);
1610   }
1611 
1612   CMessage* parent_;
1613 };
1614 
1615 int InternalReleaseFieldByDescriptor(
1616     CMessage* self,
1617     const FieldDescriptor* field_descriptor,
1618     PyObject* composite_field) {
1619   return VisitCompositeField(
1620       field_descriptor,
1621       composite_field,
1622       ReleaseChild(self));
1623 }
1624 
1625 PyObject* ClearFieldByDescriptor(
1626     CMessage* self,
1627     const FieldDescriptor* descriptor) {
1628   if (!CheckFieldBelongsToMessage(descriptor, self->message)) {
1629     return NULL;
1630   }
1631   AssureWritable(self);
1632   self->message->GetReflection()->ClearField(self->message, descriptor);
1633   Py_RETURN_NONE;
1634 }
1635 
1636 PyObject* ClearField(CMessage* self, PyObject* arg) {
1637   if (!PyString_Check(arg)) {
1638     PyErr_SetString(PyExc_TypeError, "field name must be a string");
1639     return NULL;
1640   }
1641 #if PY_MAJOR_VERSION < 3
1642   const char* field_name = PyString_AS_STRING(arg);
1643   Py_ssize_t size = PyString_GET_SIZE(arg);
1644 #else
1645   Py_ssize_t size;
1646   const char* field_name = PyUnicode_AsUTF8AndSize(arg, &size);
1647 #endif
1648   AssureWritable(self);
1649   Message* message = self->message;
1650   ScopedPyObjectPtr arg_in_oneof;
1651   bool is_in_oneof;
1652   const FieldDescriptor* field_descriptor =
1653       FindFieldWithOneofs(message, string(field_name, size), &is_in_oneof);
1654   if (field_descriptor == NULL) {
1655     if (!is_in_oneof) {
1656       PyErr_Format(PyExc_ValueError,
1657                    "Protocol message has no \"%s\" field.", field_name);
1658       return NULL;
1659     } else {
1660       Py_RETURN_NONE;
1661     }
1662   } else if (is_in_oneof) {
1663     const string& name = field_descriptor->name();
1664     arg_in_oneof.reset(PyString_FromStringAndSize(name.c_str(), name.size()));
1665     arg = arg_in_oneof.get();
1666   }
1667 
1668   PyObject* composite_field = self->composite_fields ?
1669       PyDict_GetItem(self->composite_fields, arg) : NULL;
1670 
1671   // Only release the field if there's a possibility that there are
1672   // references to it.
1673   if (composite_field != NULL) {
1674     if (InternalReleaseFieldByDescriptor(self, field_descriptor,
1675                                          composite_field) < 0) {
1676       return NULL;
1677     }
1678     PyDict_DelItem(self->composite_fields, arg);
1679   }
1680   message->GetReflection()->ClearField(message, field_descriptor);
1681   if (field_descriptor->cpp_type() == FieldDescriptor::CPPTYPE_ENUM &&
1682       !message->GetReflection()->SupportsUnknownEnumValues()) {
1683     UnknownFieldSet* unknown_field_set =
1684         message->GetReflection()->MutableUnknownFields(message);
1685     unknown_field_set->DeleteByNumber(field_descriptor->number());
1686   }
1687 
1688   Py_RETURN_NONE;
1689 }
1690 
1691 PyObject* Clear(CMessage* self) {
1692   AssureWritable(self);
1693   if (ForEachCompositeField(self, ReleaseChild(self)) == -1)
1694     return NULL;
1695   Py_CLEAR(self->extensions);
1696   if (self->composite_fields) {
1697     PyDict_Clear(self->composite_fields);
1698   }
1699   self->message->Clear();
1700   Py_RETURN_NONE;
1701 }
1702 
1703 // ---------------------------------------------------------------------
1704 
1705 static string GetMessageName(CMessage* self) {
1706   if (self->parent_field_descriptor != NULL) {
1707     return self->parent_field_descriptor->full_name();
1708   } else {
1709     return self->message->GetDescriptor()->full_name();
1710   }
1711 }
1712 
1713 static PyObject* SerializeToString(CMessage* self, PyObject* args) {
1714   if (!self->message->IsInitialized()) {
1715     ScopedPyObjectPtr errors(FindInitializationErrors(self));
1716     if (errors == NULL) {
1717       return NULL;
1718     }
1719     ScopedPyObjectPtr comma(PyString_FromString(","));
1720     if (comma == NULL) {
1721       return NULL;
1722     }
1723     ScopedPyObjectPtr joined(
1724         PyObject_CallMethod(comma.get(), "join", "O", errors.get()));
1725     if (joined == NULL) {
1726       return NULL;
1727     }
1728 
1729     // TODO(haberman): this is a (hopefully temporary) hack.  The unit testing
1730     // infrastructure reloads all pure-Python modules for every test, but not
1731     // C++ modules (because that's generally impossible:
1732     // http://bugs.python.org/issue1144263).  But if we cache EncodeError, we'll
1733     // return the EncodeError from a previous load of the module, which won't
1734     // match a user's attempt to catch EncodeError.  So we have to look it up
1735     // again every time.
1736     ScopedPyObjectPtr message_module(PyImport_ImportModule(
1737         "google.protobuf.message"));
1738     if (message_module.get() == NULL) {
1739       return NULL;
1740     }
1741 
1742     ScopedPyObjectPtr encode_error(
1743         PyObject_GetAttrString(message_module.get(), "EncodeError"));
1744     if (encode_error.get() == NULL) {
1745       return NULL;
1746     }
1747     PyErr_Format(encode_error.get(),
1748                  "Message %s is missing required fields: %s",
1749                  GetMessageName(self).c_str(), PyString_AsString(joined.get()));
1750     return NULL;
1751   }
1752   int size = self->message->ByteSize();
1753   if (size <= 0) {
1754     return PyBytes_FromString("");
1755   }
1756   PyObject* result = PyBytes_FromStringAndSize(NULL, size);
1757   if (result == NULL) {
1758     return NULL;
1759   }
1760   char* buffer = PyBytes_AS_STRING(result);
1761   self->message->SerializeWithCachedSizesToArray(
1762       reinterpret_cast<uint8*>(buffer));
1763   return result;
1764 }
1765 
1766 static PyObject* SerializePartialToString(CMessage* self) {
1767   string contents;
1768   self->message->SerializePartialToString(&contents);
1769   return PyBytes_FromStringAndSize(contents.c_str(), contents.size());
1770 }
1771 
1772 // Formats proto fields for ascii dumps using python formatting functions where
1773 // appropriate.
1774 class PythonFieldValuePrinter : public TextFormat::FieldValuePrinter {
1775  public:
1776   // Python has some differences from C++ when printing floating point numbers.
1777   //
1778   // 1) Trailing .0 is always printed.
1779   // 2) (Python2) Output is rounded to 12 digits.
1780   // 3) (Python3) The full precision of the double is preserved (and Python uses
1781   //    David M. Gay's dtoa(), when the C++ code uses SimpleDtoa. There are some
1782   //    differences, but they rarely happen)
1783   //
1784   // We override floating point printing with the C-API function for printing
1785   // Python floats to ensure consistency.
1786   string PrintFloat(float value) const { return PrintDouble(value); }
1787   string PrintDouble(double value) const {
1788     // This implementation is not highly optimized (it allocates two temporary
1789     // Python objects) but it is simple and portable.  If this is shown to be a
1790     // performance bottleneck, we can optimize it, but the results will likely
1791     // be more complicated to accommodate the differing behavior of double
1792     // formatting between Python 2 and Python 3.
1793     //
1794     // (Though a valid question is: do we really want to make out output
1795     // dependent on the Python version?)
1796     ScopedPyObjectPtr py_value(PyFloat_FromDouble(value));
1797     if (!py_value.get()) {
1798       return string();
1799     }
1800 
1801     ScopedPyObjectPtr py_str(PyObject_Str(py_value.get()));
1802     if (!py_str.get()) {
1803       return string();
1804     }
1805 
1806     return string(PyString_AsString(py_str.get()));
1807   }
1808 };
1809 
1810 static PyObject* ToStr(CMessage* self) {
1811   TextFormat::Printer printer;
1812   // Passes ownership
1813   printer.SetDefaultFieldValuePrinter(new PythonFieldValuePrinter());
1814   printer.SetHideUnknownFields(true);
1815   string output;
1816   if (!printer.PrintToString(*self->message, &output)) {
1817     PyErr_SetString(PyExc_ValueError, "Unable to convert message to str");
1818     return NULL;
1819   }
1820   return PyString_FromString(output.c_str());
1821 }
1822 
1823 PyObject* MergeFrom(CMessage* self, PyObject* arg) {
1824   CMessage* other_message;
1825   if (!PyObject_TypeCheck(arg, &CMessage_Type)) {
1826     PyErr_Format(PyExc_TypeError,
1827                  "Parameter to MergeFrom() must be instance of same class: "
1828                  "expected %s got %s.",
1829                  self->message->GetDescriptor()->full_name().c_str(),
1830                  Py_TYPE(arg)->tp_name);
1831     return NULL;
1832   }
1833 
1834   other_message = reinterpret_cast<CMessage*>(arg);
1835   if (other_message->message->GetDescriptor() !=
1836       self->message->GetDescriptor()) {
1837     PyErr_Format(PyExc_TypeError,
1838                  "Parameter to MergeFrom() must be instance of same class: "
1839                  "expected %s got %s.",
1840                  self->message->GetDescriptor()->full_name().c_str(),
1841                  other_message->message->GetDescriptor()->full_name().c_str());
1842     return NULL;
1843   }
1844   AssureWritable(self);
1845 
1846   // TODO(tibell): Message::MergeFrom might turn some child Messages
1847   // into mutable messages, invalidating the message field in the
1848   // corresponding CMessages.  We should run a FixupMessageReferences
1849   // pass here.
1850 
1851   self->message->MergeFrom(*other_message->message);
1852   Py_RETURN_NONE;
1853 }
1854 
1855 static PyObject* CopyFrom(CMessage* self, PyObject* arg) {
1856   CMessage* other_message;
1857   if (!PyObject_TypeCheck(arg, &CMessage_Type)) {
1858     PyErr_Format(PyExc_TypeError,
1859                  "Parameter to CopyFrom() must be instance of same class: "
1860                  "expected %s got %s.",
1861                  self->message->GetDescriptor()->full_name().c_str(),
1862                  Py_TYPE(arg)->tp_name);
1863     return NULL;
1864   }
1865 
1866   other_message = reinterpret_cast<CMessage*>(arg);
1867 
1868   if (self == other_message) {
1869     Py_RETURN_NONE;
1870   }
1871 
1872   if (other_message->message->GetDescriptor() !=
1873       self->message->GetDescriptor()) {
1874     PyErr_Format(PyExc_TypeError,
1875                  "Parameter to CopyFrom() must be instance of same class: "
1876                  "expected %s got %s.",
1877                  self->message->GetDescriptor()->full_name().c_str(),
1878                  other_message->message->GetDescriptor()->full_name().c_str());
1879     return NULL;
1880   }
1881 
1882   AssureWritable(self);
1883 
1884   // CopyFrom on the message will not clean up self->composite_fields,
1885   // which can leave us in an inconsistent state, so clear it out here.
1886   (void)ScopedPyObjectPtr(Clear(self));
1887 
1888   self->message->CopyFrom(*other_message->message);
1889 
1890   Py_RETURN_NONE;
1891 }
1892 
1893 // Protobuf has a 64MB limit built in, this variable will override this. Please
1894 // do not enable this unless you fully understand the implications: protobufs
1895 // must all be kept in memory at the same time, so if they grow too big you may
1896 // get OOM errors. The protobuf APIs do not provide any tools for processing
1897 // protobufs in chunks.  If you have protos this big you should break them up if
1898 // it is at all convenient to do so.
1899 static bool allow_oversize_protos = false;
1900 
1901 // Provide a method in the module to set allow_oversize_protos to a boolean
1902 // value. This method returns the newly value of allow_oversize_protos.
1903 PyObject* SetAllowOversizeProtos(PyObject* m, PyObject* arg) {
1904   if (!arg || !PyBool_Check(arg)) {
1905     PyErr_SetString(PyExc_TypeError,
1906                     "Argument to SetAllowOversizeProtos must be boolean");
1907     return NULL;
1908   }
1909   allow_oversize_protos = PyObject_IsTrue(arg);
1910   if (allow_oversize_protos) {
1911     Py_RETURN_TRUE;
1912   } else {
1913     Py_RETURN_FALSE;
1914   }
1915 }
1916 
1917 static PyObject* MergeFromString(CMessage* self, PyObject* arg) {
1918   const void* data;
1919   Py_ssize_t data_length;
1920   if (PyObject_AsReadBuffer(arg, &data, &data_length) < 0) {
1921     return NULL;
1922   }
1923 
1924   AssureWritable(self);
1925   io::CodedInputStream input(
1926       reinterpret_cast<const uint8*>(data), data_length);
1927   if (allow_oversize_protos) {
1928     input.SetTotalBytesLimit(INT_MAX, INT_MAX);
1929   }
1930   PyDescriptorPool* pool = GetDescriptorPoolForMessage(self);
1931   input.SetExtensionRegistry(pool->pool, pool->message_factory);
1932   bool success = self->message->MergePartialFromCodedStream(&input);
1933   if (success) {
1934     return PyInt_FromLong(input.CurrentPosition());
1935   } else {
1936     PyErr_Format(DecodeError_class, "Error parsing message");
1937     return NULL;
1938   }
1939 }
1940 
1941 static PyObject* ParseFromString(CMessage* self, PyObject* arg) {
1942   if (ScopedPyObjectPtr(Clear(self)) == NULL) {
1943     return NULL;
1944   }
1945   return MergeFromString(self, arg);
1946 }
1947 
1948 static PyObject* ByteSize(CMessage* self, PyObject* args) {
1949   return PyLong_FromLong(self->message->ByteSize());
1950 }
1951 
1952 static PyObject* RegisterExtension(PyObject* cls,
1953                                    PyObject* extension_handle) {
1954   const FieldDescriptor* descriptor =
1955       GetExtensionDescriptor(extension_handle);
1956   if (descriptor == NULL) {
1957     return NULL;
1958   }
1959 
1960   ScopedPyObjectPtr extensions_by_name(
1961       PyObject_GetAttr(cls, k_extensions_by_name));
1962   if (extensions_by_name == NULL) {
1963     PyErr_SetString(PyExc_TypeError, "no extensions_by_name on class");
1964     return NULL;
1965   }
1966   ScopedPyObjectPtr full_name(PyObject_GetAttr(extension_handle, kfull_name));
1967   if (full_name == NULL) {
1968     return NULL;
1969   }
1970 
1971   // If the extension was already registered, check that it is the same.
1972   PyObject* existing_extension =
1973       PyDict_GetItem(extensions_by_name.get(), full_name.get());
1974   if (existing_extension != NULL) {
1975     const FieldDescriptor* existing_extension_descriptor =
1976         GetExtensionDescriptor(existing_extension);
1977     if (existing_extension_descriptor != descriptor) {
1978       PyErr_SetString(PyExc_ValueError, "Double registration of Extensions");
1979       return NULL;
1980     }
1981     // Nothing else to do.
1982     Py_RETURN_NONE;
1983   }
1984 
1985   if (PyDict_SetItem(extensions_by_name.get(), full_name.get(),
1986                      extension_handle) < 0) {
1987     return NULL;
1988   }
1989 
1990   // Also store a mapping from extension number to implementing class.
1991   ScopedPyObjectPtr extensions_by_number(
1992       PyObject_GetAttr(cls, k_extensions_by_number));
1993   if (extensions_by_number == NULL) {
1994     PyErr_SetString(PyExc_TypeError, "no extensions_by_number on class");
1995     return NULL;
1996   }
1997 
1998   ScopedPyObjectPtr number(PyObject_GetAttrString(extension_handle, "number"));
1999   if (number == NULL) {
2000     return NULL;
2001   }
2002 
2003   // If the extension was already registered by number, check that it is the
2004   // same.
2005   existing_extension = PyDict_GetItem(extensions_by_number.get(), number.get());
2006   if (existing_extension != NULL) {
2007     const FieldDescriptor* existing_extension_descriptor =
2008         GetExtensionDescriptor(existing_extension);
2009     if (existing_extension_descriptor != descriptor) {
2010       const Descriptor* msg_desc = GetMessageDescriptor(
2011           reinterpret_cast<PyTypeObject*>(cls));
2012       PyErr_Format(
2013           PyExc_ValueError,
2014           "Extensions \"%s\" and \"%s\" both try to extend message type "
2015           "\"%s\" with field number %ld.",
2016           existing_extension_descriptor->full_name().c_str(),
2017           descriptor->full_name().c_str(),
2018           msg_desc->full_name().c_str(),
2019           PyInt_AsLong(number.get()));
2020       return NULL;
2021     }
2022     // Nothing else to do.
2023     Py_RETURN_NONE;
2024   }
2025   if (PyDict_SetItem(extensions_by_number.get(), number.get(),
2026                      extension_handle) < 0) {
2027     return NULL;
2028   }
2029 
2030   // Check if it's a message set
2031   if (descriptor->is_extension() &&
2032       descriptor->containing_type()->options().message_set_wire_format() &&
2033       descriptor->type() == FieldDescriptor::TYPE_MESSAGE &&
2034       descriptor->label() == FieldDescriptor::LABEL_OPTIONAL) {
2035     ScopedPyObjectPtr message_name(PyString_FromStringAndSize(
2036         descriptor->message_type()->full_name().c_str(),
2037         descriptor->message_type()->full_name().size()));
2038     if (message_name == NULL) {
2039       return NULL;
2040     }
2041     PyDict_SetItem(extensions_by_name.get(), message_name.get(),
2042                    extension_handle);
2043   }
2044 
2045   Py_RETURN_NONE;
2046 }
2047 
2048 static PyObject* SetInParent(CMessage* self, PyObject* args) {
2049   AssureWritable(self);
2050   Py_RETURN_NONE;
2051 }
2052 
2053 static PyObject* WhichOneof(CMessage* self, PyObject* arg) {
2054   Py_ssize_t name_size;
2055   char *name_data;
2056   if (PyString_AsStringAndSize(arg, &name_data, &name_size) < 0)
2057     return NULL;
2058   string oneof_name = string(name_data, name_size);
2059   const OneofDescriptor* oneof_desc =
2060       self->message->GetDescriptor()->FindOneofByName(oneof_name);
2061   if (oneof_desc == NULL) {
2062     PyErr_Format(PyExc_ValueError,
2063                  "Protocol message has no oneof \"%s\" field.",
2064                  oneof_name.c_str());
2065     return NULL;
2066   }
2067   const FieldDescriptor* field_in_oneof =
2068       self->message->GetReflection()->GetOneofFieldDescriptor(
2069           *self->message, oneof_desc);
2070   if (field_in_oneof == NULL) {
2071     Py_RETURN_NONE;
2072   } else {
2073     const string& name = field_in_oneof->name();
2074     return PyString_FromStringAndSize(name.c_str(), name.size());
2075   }
2076 }
2077 
2078 static PyObject* GetExtensionDict(CMessage* self, void *closure);
2079 
2080 static PyObject* ListFields(CMessage* self) {
2081   vector<const FieldDescriptor*> fields;
2082   self->message->GetReflection()->ListFields(*self->message, &fields);
2083 
2084   // Normally, the list will be exactly the size of the fields.
2085   ScopedPyObjectPtr all_fields(PyList_New(fields.size()));
2086   if (all_fields == NULL) {
2087     return NULL;
2088   }
2089 
2090   // When there are unknown extensions, the py list will *not* contain
2091   // the field information.  Thus the actual size of the py list will be
2092   // smaller than the size of fields.  Set the actual size at the end.
2093   Py_ssize_t actual_size = 0;
2094   for (size_t i = 0; i < fields.size(); ++i) {
2095     ScopedPyObjectPtr t(PyTuple_New(2));
2096     if (t == NULL) {
2097       return NULL;
2098     }
2099 
2100     if (fields[i]->is_extension()) {
2101       ScopedPyObjectPtr extension_field(
2102           PyFieldDescriptor_FromDescriptor(fields[i]));
2103       if (extension_field == NULL) {
2104         return NULL;
2105       }
2106       // With C++ descriptors, the field can always be retrieved, but for
2107       // unknown extensions which have not been imported in Python code, there
2108       // is no message class and we cannot retrieve the value.
2109       // TODO(amauryfa): consider building the class on the fly!
2110       if (fields[i]->message_type() != NULL &&
2111           cdescriptor_pool::GetMessageClass(
2112               GetDescriptorPoolForMessage(self),
2113               fields[i]->message_type()) == NULL) {
2114         PyErr_Clear();
2115         continue;
2116       }
2117       ScopedPyObjectPtr extensions(GetExtensionDict(self, NULL));
2118       if (extensions == NULL) {
2119         return NULL;
2120       }
2121       // 'extension' reference later stolen by PyTuple_SET_ITEM.
2122       PyObject* extension = PyObject_GetItem(
2123           extensions.get(), extension_field.get());
2124       if (extension == NULL) {
2125         return NULL;
2126       }
2127       PyTuple_SET_ITEM(t.get(), 0, extension_field.release());
2128       // Steals reference to 'extension'
2129       PyTuple_SET_ITEM(t.get(), 1, extension);
2130     } else {
2131       // Normal field
2132       const string& field_name = fields[i]->name();
2133       ScopedPyObjectPtr py_field_name(PyString_FromStringAndSize(
2134           field_name.c_str(), field_name.length()));
2135       if (py_field_name == NULL) {
2136         PyErr_SetString(PyExc_ValueError, "bad string");
2137         return NULL;
2138       }
2139       ScopedPyObjectPtr field_descriptor(
2140           PyFieldDescriptor_FromDescriptor(fields[i]));
2141       if (field_descriptor == NULL) {
2142         return NULL;
2143       }
2144 
2145       PyObject* field_value = GetAttr(self, py_field_name.get());
2146       if (field_value == NULL) {
2147         PyErr_SetObject(PyExc_ValueError, py_field_name.get());
2148         return NULL;
2149       }
2150       PyTuple_SET_ITEM(t.get(), 0, field_descriptor.release());
2151       PyTuple_SET_ITEM(t.get(), 1, field_value);
2152     }
2153     PyList_SET_ITEM(all_fields.get(), actual_size, t.release());
2154     ++actual_size;
2155   }
2156   if (static_cast<size_t>(actual_size) != fields.size() &&
2157       (PyList_SetSlice(all_fields.get(), actual_size, fields.size(), NULL) <
2158        0)) {
2159     return NULL;
2160   }
2161   return all_fields.release();
2162 }
2163 
2164 static PyObject* DiscardUnknownFields(CMessage* self) {
2165   AssureWritable(self);
2166   self->message->DiscardUnknownFields();
2167   Py_RETURN_NONE;
2168 }
2169 
2170 PyObject* FindInitializationErrors(CMessage* self) {
2171   Message* message = self->message;
2172   vector<string> errors;
2173   message->FindInitializationErrors(&errors);
2174 
2175   PyObject* error_list = PyList_New(errors.size());
2176   if (error_list == NULL) {
2177     return NULL;
2178   }
2179   for (size_t i = 0; i < errors.size(); ++i) {
2180     const string& error = errors[i];
2181     PyObject* error_string = PyString_FromStringAndSize(
2182         error.c_str(), error.length());
2183     if (error_string == NULL) {
2184       Py_DECREF(error_list);
2185       return NULL;
2186     }
2187     PyList_SET_ITEM(error_list, i, error_string);
2188   }
2189   return error_list;
2190 }
2191 
2192 static PyObject* RichCompare(CMessage* self, PyObject* other, int opid) {
2193   // Only equality comparisons are implemented.
2194   if (opid != Py_EQ && opid != Py_NE) {
2195     Py_INCREF(Py_NotImplemented);
2196     return Py_NotImplemented;
2197   }
2198   bool equals = true;
2199   // If other is not a message, it cannot be equal.
2200   if (!PyObject_TypeCheck(other, &CMessage_Type)) {
2201     equals = false;
2202   }
2203   const google::protobuf::Message* other_message =
2204       reinterpret_cast<CMessage*>(other)->message;
2205   // If messages don't have the same descriptors, they are not equal.
2206   if (equals &&
2207       self->message->GetDescriptor() != other_message->GetDescriptor()) {
2208     equals = false;
2209   }
2210   // Check the message contents.
2211   if (equals && !google::protobuf::util::MessageDifferencer::Equals(
2212           *self->message,
2213           *reinterpret_cast<CMessage*>(other)->message)) {
2214     equals = false;
2215   }
2216   if (equals ^ (opid == Py_EQ)) {
2217     Py_RETURN_FALSE;
2218   } else {
2219     Py_RETURN_TRUE;
2220   }
2221 }
2222 
2223 PyObject* InternalGetScalar(const Message* message,
2224                             const FieldDescriptor* field_descriptor) {
2225   const Reflection* reflection = message->GetReflection();
2226 
2227   if (!CheckFieldBelongsToMessage(field_descriptor, message)) {
2228     return NULL;
2229   }
2230 
2231   PyObject* result = NULL;
2232   switch (field_descriptor->cpp_type()) {
2233     case FieldDescriptor::CPPTYPE_INT32: {
2234       int32 value = reflection->GetInt32(*message, field_descriptor);
2235       result = PyInt_FromLong(value);
2236       break;
2237     }
2238     case FieldDescriptor::CPPTYPE_INT64: {
2239       int64 value = reflection->GetInt64(*message, field_descriptor);
2240       result = PyLong_FromLongLong(value);
2241       break;
2242     }
2243     case FieldDescriptor::CPPTYPE_UINT32: {
2244       uint32 value = reflection->GetUInt32(*message, field_descriptor);
2245       result = PyInt_FromSize_t(value);
2246       break;
2247     }
2248     case FieldDescriptor::CPPTYPE_UINT64: {
2249       uint64 value = reflection->GetUInt64(*message, field_descriptor);
2250       result = PyLong_FromUnsignedLongLong(value);
2251       break;
2252     }
2253     case FieldDescriptor::CPPTYPE_FLOAT: {
2254       float value = reflection->GetFloat(*message, field_descriptor);
2255       result = PyFloat_FromDouble(value);
2256       break;
2257     }
2258     case FieldDescriptor::CPPTYPE_DOUBLE: {
2259       double value = reflection->GetDouble(*message, field_descriptor);
2260       result = PyFloat_FromDouble(value);
2261       break;
2262     }
2263     case FieldDescriptor::CPPTYPE_BOOL: {
2264       bool value = reflection->GetBool(*message, field_descriptor);
2265       result = PyBool_FromLong(value);
2266       break;
2267     }
2268     case FieldDescriptor::CPPTYPE_STRING: {
2269       string value = reflection->GetString(*message, field_descriptor);
2270       result = ToStringObject(field_descriptor, value);
2271       break;
2272     }
2273     case FieldDescriptor::CPPTYPE_ENUM: {
2274       if (!message->GetReflection()->SupportsUnknownEnumValues() &&
2275           !message->GetReflection()->HasField(*message, field_descriptor)) {
2276         // Look for the value in the unknown fields.
2277         const UnknownFieldSet& unknown_field_set =
2278             message->GetReflection()->GetUnknownFields(*message);
2279         for (int i = 0; i < unknown_field_set.field_count(); ++i) {
2280           if (unknown_field_set.field(i).number() ==
2281               field_descriptor->number() &&
2282               unknown_field_set.field(i).type() ==
2283               google::protobuf::UnknownField::TYPE_VARINT) {
2284             result = PyInt_FromLong(unknown_field_set.field(i).varint());
2285             break;
2286           }
2287         }
2288       }
2289 
2290       if (result == NULL) {
2291         const EnumValueDescriptor* enum_value =
2292             message->GetReflection()->GetEnum(*message, field_descriptor);
2293         result = PyInt_FromLong(enum_value->number());
2294       }
2295       break;
2296     }
2297     default:
2298       PyErr_Format(
2299           PyExc_SystemError, "Getting a value from a field of unknown type %d",
2300           field_descriptor->cpp_type());
2301   }
2302 
2303   return result;
2304 }
2305 
2306 PyObject* InternalGetSubMessage(
2307     CMessage* self, const FieldDescriptor* field_descriptor) {
2308   const Reflection* reflection = self->message->GetReflection();
2309   PyDescriptorPool* pool = GetDescriptorPoolForMessage(self);
2310   const Message& sub_message = reflection->GetMessage(
2311       *self->message, field_descriptor, pool->message_factory);
2312 
2313   CMessageClass* message_class = cdescriptor_pool::GetMessageClass(
2314       pool, field_descriptor->message_type());
2315   if (message_class == NULL) {
2316     return NULL;
2317   }
2318 
2319   CMessage* cmsg = cmessage::NewEmptyMessage(message_class);
2320   if (cmsg == NULL) {
2321     return NULL;
2322   }
2323 
2324   cmsg->owner = self->owner;
2325   cmsg->parent = self;
2326   cmsg->parent_field_descriptor = field_descriptor;
2327   cmsg->read_only = !reflection->HasField(*self->message, field_descriptor);
2328   cmsg->message = const_cast<Message*>(&sub_message);
2329 
2330   return reinterpret_cast<PyObject*>(cmsg);
2331 }
2332 
2333 int InternalSetNonOneofScalar(
2334     Message* message,
2335     const FieldDescriptor* field_descriptor,
2336     PyObject* arg) {
2337   const Reflection* reflection = message->GetReflection();
2338 
2339   if (!CheckFieldBelongsToMessage(field_descriptor, message)) {
2340     return -1;
2341   }
2342 
2343   switch (field_descriptor->cpp_type()) {
2344     case FieldDescriptor::CPPTYPE_INT32: {
2345       GOOGLE_CHECK_GET_INT32(arg, value, -1);
2346       reflection->SetInt32(message, field_descriptor, value);
2347       break;
2348     }
2349     case FieldDescriptor::CPPTYPE_INT64: {
2350       GOOGLE_CHECK_GET_INT64(arg, value, -1);
2351       reflection->SetInt64(message, field_descriptor, value);
2352       break;
2353     }
2354     case FieldDescriptor::CPPTYPE_UINT32: {
2355       GOOGLE_CHECK_GET_UINT32(arg, value, -1);
2356       reflection->SetUInt32(message, field_descriptor, value);
2357       break;
2358     }
2359     case FieldDescriptor::CPPTYPE_UINT64: {
2360       GOOGLE_CHECK_GET_UINT64(arg, value, -1);
2361       reflection->SetUInt64(message, field_descriptor, value);
2362       break;
2363     }
2364     case FieldDescriptor::CPPTYPE_FLOAT: {
2365       GOOGLE_CHECK_GET_FLOAT(arg, value, -1);
2366       reflection->SetFloat(message, field_descriptor, value);
2367       break;
2368     }
2369     case FieldDescriptor::CPPTYPE_DOUBLE: {
2370       GOOGLE_CHECK_GET_DOUBLE(arg, value, -1);
2371       reflection->SetDouble(message, field_descriptor, value);
2372       break;
2373     }
2374     case FieldDescriptor::CPPTYPE_BOOL: {
2375       GOOGLE_CHECK_GET_BOOL(arg, value, -1);
2376       reflection->SetBool(message, field_descriptor, value);
2377       break;
2378     }
2379     case FieldDescriptor::CPPTYPE_STRING: {
2380       if (!CheckAndSetString(
2381           arg, message, field_descriptor, reflection, false, -1)) {
2382         return -1;
2383       }
2384       break;
2385     }
2386     case FieldDescriptor::CPPTYPE_ENUM: {
2387       GOOGLE_CHECK_GET_INT32(arg, value, -1);
2388       if (reflection->SupportsUnknownEnumValues()) {
2389         reflection->SetEnumValue(message, field_descriptor, value);
2390       } else {
2391         const EnumDescriptor* enum_descriptor = field_descriptor->enum_type();
2392         const EnumValueDescriptor* enum_value =
2393             enum_descriptor->FindValueByNumber(value);
2394         if (enum_value != NULL) {
2395           reflection->SetEnum(message, field_descriptor, enum_value);
2396         } else {
2397           PyErr_Format(PyExc_ValueError, "Unknown enum value: %d", value);
2398           return -1;
2399         }
2400       }
2401       break;
2402     }
2403     default:
2404       PyErr_Format(
2405           PyExc_SystemError, "Setting value to a field of unknown type %d",
2406           field_descriptor->cpp_type());
2407       return -1;
2408   }
2409 
2410   return 0;
2411 }
2412 
2413 int InternalSetScalar(
2414     CMessage* self,
2415     const FieldDescriptor* field_descriptor,
2416     PyObject* arg) {
2417   if (!CheckFieldBelongsToMessage(field_descriptor, self->message)) {
2418     return -1;
2419   }
2420 
2421   if (MaybeReleaseOverlappingOneofField(self, field_descriptor) < 0) {
2422     return -1;
2423   }
2424 
2425   return InternalSetNonOneofScalar(self->message, field_descriptor, arg);
2426 }
2427 
2428 PyObject* FromString(PyTypeObject* cls, PyObject* serialized) {
2429   PyObject* py_cmsg = PyObject_CallObject(
2430       reinterpret_cast<PyObject*>(cls), NULL);
2431   if (py_cmsg == NULL) {
2432     return NULL;
2433   }
2434   CMessage* cmsg = reinterpret_cast<CMessage*>(py_cmsg);
2435 
2436   ScopedPyObjectPtr py_length(MergeFromString(cmsg, serialized));
2437   if (py_length == NULL) {
2438     Py_DECREF(py_cmsg);
2439     return NULL;
2440   }
2441 
2442   return py_cmsg;
2443 }
2444 
2445 PyObject* DeepCopy(CMessage* self, PyObject* arg) {
2446   PyObject* clone = PyObject_CallObject(
2447       reinterpret_cast<PyObject*>(Py_TYPE(self)), NULL);
2448   if (clone == NULL) {
2449     return NULL;
2450   }
2451   if (!PyObject_TypeCheck(clone, &CMessage_Type)) {
2452     Py_DECREF(clone);
2453     return NULL;
2454   }
2455   if (ScopedPyObjectPtr(MergeFrom(
2456           reinterpret_cast<CMessage*>(clone),
2457           reinterpret_cast<PyObject*>(self))) == NULL) {
2458     Py_DECREF(clone);
2459     return NULL;
2460   }
2461   return clone;
2462 }
2463 
2464 PyObject* ToUnicode(CMessage* self) {
2465   // Lazy import to prevent circular dependencies
2466   ScopedPyObjectPtr text_format(
2467       PyImport_ImportModule("google.protobuf.text_format"));
2468   if (text_format == NULL) {
2469     return NULL;
2470   }
2471   ScopedPyObjectPtr method_name(PyString_FromString("MessageToString"));
2472   if (method_name == NULL) {
2473     return NULL;
2474   }
2475   Py_INCREF(Py_True);
2476   ScopedPyObjectPtr encoded(PyObject_CallMethodObjArgs(
2477       text_format.get(), method_name.get(), self, Py_True, NULL));
2478   Py_DECREF(Py_True);
2479   if (encoded == NULL) {
2480     return NULL;
2481   }
2482 #if PY_MAJOR_VERSION < 3
2483   PyObject* decoded = PyString_AsDecodedObject(encoded.get(), "utf-8", NULL);
2484 #else
2485   PyObject* decoded = PyUnicode_FromEncodedObject(encoded.get(), "utf-8", NULL);
2486 #endif
2487   if (decoded == NULL) {
2488     return NULL;
2489   }
2490   return decoded;
2491 }
2492 
2493 PyObject* Reduce(CMessage* self) {
2494   ScopedPyObjectPtr constructor(reinterpret_cast<PyObject*>(Py_TYPE(self)));
2495   constructor.inc();
2496   ScopedPyObjectPtr args(PyTuple_New(0));
2497   if (args == NULL) {
2498     return NULL;
2499   }
2500   ScopedPyObjectPtr state(PyDict_New());
2501   if (state == NULL) {
2502     return  NULL;
2503   }
2504   ScopedPyObjectPtr serialized(SerializePartialToString(self));
2505   if (serialized == NULL) {
2506     return NULL;
2507   }
2508   if (PyDict_SetItemString(state.get(), "serialized", serialized.get()) < 0) {
2509     return NULL;
2510   }
2511   return Py_BuildValue("OOO", constructor.get(), args.get(), state.get());
2512 }
2513 
2514 PyObject* SetState(CMessage* self, PyObject* state) {
2515   if (!PyDict_Check(state)) {
2516     PyErr_SetString(PyExc_TypeError, "state not a dict");
2517     return NULL;
2518   }
2519   PyObject* serialized = PyDict_GetItemString(state, "serialized");
2520   if (serialized == NULL) {
2521     return NULL;
2522   }
2523   if (ScopedPyObjectPtr(ParseFromString(self, serialized)) == NULL) {
2524     return NULL;
2525   }
2526   Py_RETURN_NONE;
2527 }
2528 
2529 // CMessage static methods:
2530 PyObject* _CheckCalledFromGeneratedFile(PyObject* unused,
2531                                         PyObject* unused_arg) {
2532   if (!_CalledFromGeneratedFile(1)) {
2533     PyErr_SetString(PyExc_TypeError,
2534                     "Descriptors should not be created directly, "
2535                     "but only retrieved from their parent.");
2536     return NULL;
2537   }
2538   Py_RETURN_NONE;
2539 }
2540 
2541 static PyObject* GetExtensionDict(CMessage* self, void *closure) {
2542   if (self->extensions)  {
2543     Py_INCREF(self->extensions);
2544     return reinterpret_cast<PyObject*>(self->extensions);
2545   }
2546 
2547   // If there are extension_ranges, the message is "extendable". Allocate a
2548   // dictionary to store the extension fields.
2549   const Descriptor* descriptor = GetMessageDescriptor(Py_TYPE(self));
2550   if (descriptor->extension_range_count() > 0) {
2551     ExtensionDict* extension_dict = extension_dict::NewExtensionDict(self);
2552     if (extension_dict == NULL) {
2553       return NULL;
2554     }
2555     self->extensions = extension_dict;
2556     Py_INCREF(self->extensions);
2557     return reinterpret_cast<PyObject*>(self->extensions);
2558   }
2559 
2560   PyErr_SetNone(PyExc_AttributeError);
2561   return NULL;
2562 }
2563 
2564 static PyGetSetDef Getters[] = {
2565   {"Extensions", (getter)GetExtensionDict, NULL, "Extension dict"},
2566   {NULL}
2567 };
2568 
2569 static PyMethodDef Methods[] = {
2570   { "__deepcopy__", (PyCFunction)DeepCopy, METH_VARARGS,
2571     "Makes a deep copy of the class." },
2572   { "__reduce__", (PyCFunction)Reduce, METH_NOARGS,
2573     "Outputs picklable representation of the message." },
2574   { "__setstate__", (PyCFunction)SetState, METH_O,
2575     "Inputs picklable representation of the message." },
2576   { "__unicode__", (PyCFunction)ToUnicode, METH_NOARGS,
2577     "Outputs a unicode representation of the message." },
2578   { "ByteSize", (PyCFunction)ByteSize, METH_NOARGS,
2579     "Returns the size of the message in bytes." },
2580   { "Clear", (PyCFunction)Clear, METH_NOARGS,
2581     "Clears the message." },
2582   { "ClearExtension", (PyCFunction)ClearExtension, METH_O,
2583     "Clears a message field." },
2584   { "ClearField", (PyCFunction)ClearField, METH_O,
2585     "Clears a message field." },
2586   { "CopyFrom", (PyCFunction)CopyFrom, METH_O,
2587     "Copies a protocol message into the current message." },
2588   { "DiscardUnknownFields", (PyCFunction)DiscardUnknownFields, METH_NOARGS,
2589     "Discards the unknown fields." },
2590   { "FindInitializationErrors", (PyCFunction)FindInitializationErrors,
2591     METH_NOARGS,
2592     "Finds unset required fields." },
2593   { "FromString", (PyCFunction)FromString, METH_O | METH_CLASS,
2594     "Creates new method instance from given serialized data." },
2595   { "HasExtension", (PyCFunction)HasExtension, METH_O,
2596     "Checks if a message field is set." },
2597   { "HasField", (PyCFunction)HasField, METH_O,
2598     "Checks if a message field is set." },
2599   { "IsInitialized", (PyCFunction)IsInitialized, METH_VARARGS,
2600     "Checks if all required fields of a protocol message are set." },
2601   { "ListFields", (PyCFunction)ListFields, METH_NOARGS,
2602     "Lists all set fields of a message." },
2603   { "MergeFrom", (PyCFunction)MergeFrom, METH_O,
2604     "Merges a protocol message into the current message." },
2605   { "MergeFromString", (PyCFunction)MergeFromString, METH_O,
2606     "Merges a serialized message into the current message." },
2607   { "ParseFromString", (PyCFunction)ParseFromString, METH_O,
2608     "Parses a serialized message into the current message." },
2609   { "RegisterExtension", (PyCFunction)RegisterExtension, METH_O | METH_CLASS,
2610     "Registers an extension with the current message." },
2611   { "SerializePartialToString", (PyCFunction)SerializePartialToString,
2612     METH_NOARGS,
2613     "Serializes the message to a string, even if it isn't initialized." },
2614   { "SerializeToString", (PyCFunction)SerializeToString, METH_NOARGS,
2615     "Serializes the message to a string, only for initialized messages." },
2616   { "SetInParent", (PyCFunction)SetInParent, METH_NOARGS,
2617     "Sets the has bit of the given field in its parent message." },
2618   { "WhichOneof", (PyCFunction)WhichOneof, METH_O,
2619     "Returns the name of the field set inside a oneof, "
2620     "or None if no field is set." },
2621 
2622   // Static Methods.
2623   { "_CheckCalledFromGeneratedFile", (PyCFunction)_CheckCalledFromGeneratedFile,
2624     METH_NOARGS | METH_STATIC,
2625     "Raises TypeError if the caller is not in a _pb2.py file."},
2626   { NULL, NULL}
2627 };
2628 
2629 static bool SetCompositeField(
2630     CMessage* self, PyObject* name, PyObject* value) {
2631   if (self->composite_fields == NULL) {
2632     self->composite_fields = PyDict_New();
2633     if (self->composite_fields == NULL) {
2634       return false;
2635     }
2636   }
2637   return PyDict_SetItem(self->composite_fields, name, value) == 0;
2638 }
2639 
2640 PyObject* GetAttr(CMessage* self, PyObject* name) {
2641   PyObject* value = self->composite_fields ?
2642       PyDict_GetItem(self->composite_fields, name) : NULL;
2643   if (value != NULL) {
2644     Py_INCREF(value);
2645     return value;
2646   }
2647 
2648   const FieldDescriptor* field_descriptor = GetFieldDescriptor(self, name);
2649   if (field_descriptor == NULL) {
2650     return CMessage_Type.tp_base->tp_getattro(
2651         reinterpret_cast<PyObject*>(self), name);
2652   }
2653 
2654   if (field_descriptor->is_map()) {
2655     PyObject* py_container = NULL;
2656     const Descriptor* entry_type = field_descriptor->message_type();
2657     const FieldDescriptor* value_type = entry_type->FindFieldByName("value");
2658     if (value_type->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
2659       CMessageClass* value_class = cdescriptor_pool::GetMessageClass(
2660           GetDescriptorPoolForMessage(self), value_type->message_type());
2661       if (value_class == NULL) {
2662         return NULL;
2663       }
2664       py_container =
2665           NewMessageMapContainer(self, field_descriptor, value_class);
2666     } else {
2667       py_container = NewScalarMapContainer(self, field_descriptor);
2668     }
2669     if (py_container == NULL) {
2670       return NULL;
2671     }
2672     if (!SetCompositeField(self, name, py_container)) {
2673       Py_DECREF(py_container);
2674       return NULL;
2675     }
2676     return py_container;
2677   }
2678 
2679   if (field_descriptor->label() == FieldDescriptor::LABEL_REPEATED) {
2680     PyObject* py_container = NULL;
2681     if (field_descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
2682       CMessageClass* message_class = cdescriptor_pool::GetMessageClass(
2683           GetDescriptorPoolForMessage(self), field_descriptor->message_type());
2684       if (message_class == NULL) {
2685         return NULL;
2686       }
2687       py_container = repeated_composite_container::NewContainer(
2688           self, field_descriptor, message_class);
2689     } else {
2690       py_container = repeated_scalar_container::NewContainer(
2691           self, field_descriptor);
2692     }
2693     if (py_container == NULL) {
2694       return NULL;
2695     }
2696     if (!SetCompositeField(self, name, py_container)) {
2697       Py_DECREF(py_container);
2698       return NULL;
2699     }
2700     return py_container;
2701   }
2702 
2703   if (field_descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
2704     PyObject* sub_message = InternalGetSubMessage(self, field_descriptor);
2705     if (sub_message == NULL) {
2706       return NULL;
2707     }
2708     if (!SetCompositeField(self, name, sub_message)) {
2709       Py_DECREF(sub_message);
2710       return NULL;
2711     }
2712     return sub_message;
2713   }
2714 
2715   return InternalGetScalar(self->message, field_descriptor);
2716 }
2717 
2718 int SetAttr(CMessage* self, PyObject* name, PyObject* value) {
2719   if (self->composite_fields && PyDict_Contains(self->composite_fields, name)) {
2720     PyErr_SetString(PyExc_TypeError, "Can't set composite field");
2721     return -1;
2722   }
2723 
2724   const FieldDescriptor* field_descriptor = GetFieldDescriptor(self, name);
2725   if (field_descriptor != NULL) {
2726     AssureWritable(self);
2727     if (field_descriptor->label() == FieldDescriptor::LABEL_REPEATED) {
2728       PyErr_Format(PyExc_AttributeError, "Assignment not allowed to repeated "
2729                    "field \"%s\" in protocol message object.",
2730                    field_descriptor->name().c_str());
2731       return -1;
2732     } else {
2733       if (field_descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
2734         PyErr_Format(PyExc_AttributeError, "Assignment not allowed to "
2735                      "field \"%s\" in protocol message object.",
2736                      field_descriptor->name().c_str());
2737         return -1;
2738       } else {
2739         return InternalSetScalar(self, field_descriptor, value);
2740       }
2741     }
2742   }
2743 
2744   PyErr_Format(PyExc_AttributeError,
2745                "Assignment not allowed "
2746                "(no field \"%s\" in protocol message object).",
2747                PyString_AsString(name));
2748   return -1;
2749 }
2750 
2751 }  // namespace cmessage
2752 
2753 PyTypeObject CMessage_Type = {
2754   PyVarObject_HEAD_INIT(&CMessageClass_Type, 0)
2755   FULL_MODULE_NAME ".CMessage",        // tp_name
2756   sizeof(CMessage),                    // tp_basicsize
2757   0,                                   //  tp_itemsize
2758   (destructor)cmessage::Dealloc,       //  tp_dealloc
2759   0,                                   //  tp_print
2760   0,                                   //  tp_getattr
2761   0,                                   //  tp_setattr
2762   0,                                   //  tp_compare
2763   (reprfunc)cmessage::ToStr,           //  tp_repr
2764   0,                                   //  tp_as_number
2765   0,                                   //  tp_as_sequence
2766   0,                                   //  tp_as_mapping
2767   PyObject_HashNotImplemented,         //  tp_hash
2768   0,                                   //  tp_call
2769   (reprfunc)cmessage::ToStr,           //  tp_str
2770   (getattrofunc)cmessage::GetAttr,     //  tp_getattro
2771   (setattrofunc)cmessage::SetAttr,     //  tp_setattro
2772   0,                                   //  tp_as_buffer
2773   Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,  //  tp_flags
2774   "A ProtocolMessage",                 //  tp_doc
2775   0,                                   //  tp_traverse
2776   0,                                   //  tp_clear
2777   (richcmpfunc)cmessage::RichCompare,  //  tp_richcompare
2778   0,                                   //  tp_weaklistoffset
2779   0,                                   //  tp_iter
2780   0,                                   //  tp_iternext
2781   cmessage::Methods,                   //  tp_methods
2782   0,                                   //  tp_members
2783   cmessage::Getters,                   //  tp_getset
2784   0,                                   //  tp_base
2785   0,                                   //  tp_dict
2786   0,                                   //  tp_descr_get
2787   0,                                   //  tp_descr_set
2788   0,                                   //  tp_dictoffset
2789   (initproc)cmessage::Init,            //  tp_init
2790   0,                                   //  tp_alloc
2791   cmessage::New,                       //  tp_new
2792 };
2793 
2794 // --- Exposing the C proto living inside Python proto to C code:
2795 
2796 const Message* (*GetCProtoInsidePyProtoPtr)(PyObject* msg);
2797 Message* (*MutableCProtoInsidePyProtoPtr)(PyObject* msg);
2798 
2799 static const Message* GetCProtoInsidePyProtoImpl(PyObject* msg) {
2800   if (!PyObject_TypeCheck(msg, &CMessage_Type)) {
2801     return NULL;
2802   }
2803   CMessage* cmsg = reinterpret_cast<CMessage*>(msg);
2804   return cmsg->message;
2805 }
2806 
2807 static Message* MutableCProtoInsidePyProtoImpl(PyObject* msg) {
2808   if (!PyObject_TypeCheck(msg, &CMessage_Type)) {
2809     return NULL;
2810   }
2811   CMessage* cmsg = reinterpret_cast<CMessage*>(msg);
2812   if ((cmsg->composite_fields && PyDict_Size(cmsg->composite_fields) != 0) ||
2813       (cmsg->extensions != NULL &&
2814        PyDict_Size(cmsg->extensions->values) != 0)) {
2815     // There is currently no way of accurately syncing arbitrary changes to
2816     // the underlying C++ message back to the CMessage (e.g. removed repeated
2817     // composite containers). We only allow direct mutation of the underlying
2818     // C++ message if there is no child data in the CMessage.
2819     return NULL;
2820   }
2821   cmessage::AssureWritable(cmsg);
2822   return cmsg->message;
2823 }
2824 
2825 static const char module_docstring[] =
2826 "python-proto2 is a module that can be used to enhance proto2 Python API\n"
2827 "performance.\n"
2828 "\n"
2829 "It provides access to the protocol buffers C++ reflection API that\n"
2830 "implements the basic protocol buffer functions.";
2831 
2832 void InitGlobals() {
2833   // TODO(gps): Check all return values in this function for NULL and propagate
2834   // the error (MemoryError) on up to result in an import failure.  These should
2835   // also be freed and reset to NULL during finalization.
2836   kPythonZero = PyInt_FromLong(0);
2837   kint32min_py = PyInt_FromLong(kint32min);
2838   kint32max_py = PyInt_FromLong(kint32max);
2839   kuint32max_py = PyLong_FromLongLong(kuint32max);
2840   kint64min_py = PyLong_FromLongLong(kint64min);
2841   kint64max_py = PyLong_FromLongLong(kint64max);
2842   kuint64max_py = PyLong_FromUnsignedLongLong(kuint64max);
2843 
2844   kDESCRIPTOR = PyString_FromString("DESCRIPTOR");
2845   k_cdescriptor = PyString_FromString("_cdescriptor");
2846   kfull_name = PyString_FromString("full_name");
2847   k_extensions_by_name = PyString_FromString("_extensions_by_name");
2848   k_extensions_by_number = PyString_FromString("_extensions_by_number");
2849 
2850   PyObject *dummy_obj = PySet_New(NULL);
2851   kEmptyWeakref = PyWeakref_NewRef(dummy_obj, NULL);
2852   Py_DECREF(dummy_obj);
2853 }
2854 
2855 bool InitProto2MessageModule(PyObject *m) {
2856   // Initialize types and globals in descriptor.cc
2857   if (!InitDescriptor()) {
2858     return false;
2859   }
2860 
2861   // Initialize types and globals in descriptor_pool.cc
2862   if (!InitDescriptorPool()) {
2863     return false;
2864   }
2865 
2866   // Initialize constants defined in this file.
2867   InitGlobals();
2868 
2869   CMessageClass_Type.tp_base = &PyType_Type;
2870   if (PyType_Ready(&CMessageClass_Type) < 0) {
2871     return false;
2872   }
2873   PyModule_AddObject(m, "MessageMeta",
2874                      reinterpret_cast<PyObject*>(&CMessageClass_Type));
2875 
2876   if (PyType_Ready(&CMessage_Type) < 0) {
2877     return false;
2878   }
2879 
2880   // DESCRIPTOR is set on each protocol buffer message class elsewhere, but set
2881   // it here as well to document that subclasses need to set it.
2882   PyDict_SetItem(CMessage_Type.tp_dict, kDESCRIPTOR, Py_None);
2883   // Subclasses with message extensions will override _extensions_by_name and
2884   // _extensions_by_number with fresh mutable dictionaries in AddDescriptors.
2885   // All other classes can share this same immutable mapping.
2886   ScopedPyObjectPtr empty_dict(PyDict_New());
2887   if (empty_dict == NULL) {
2888     return false;
2889   }
2890   ScopedPyObjectPtr immutable_dict(PyDictProxy_New(empty_dict.get()));
2891   if (immutable_dict == NULL) {
2892     return false;
2893   }
2894   if (PyDict_SetItem(CMessage_Type.tp_dict,
2895                      k_extensions_by_name, immutable_dict.get()) < 0) {
2896     return false;
2897   }
2898   if (PyDict_SetItem(CMessage_Type.tp_dict,
2899                      k_extensions_by_number, immutable_dict.get()) < 0) {
2900     return false;
2901   }
2902 
2903   PyModule_AddObject(m, "Message", reinterpret_cast<PyObject*>(&CMessage_Type));
2904 
2905   // Initialize Repeated container types.
2906   {
2907     if (PyType_Ready(&RepeatedScalarContainer_Type) < 0) {
2908       return false;
2909     }
2910 
2911     PyModule_AddObject(m, "RepeatedScalarContainer",
2912                        reinterpret_cast<PyObject*>(
2913                            &RepeatedScalarContainer_Type));
2914 
2915     if (PyType_Ready(&RepeatedCompositeContainer_Type) < 0) {
2916       return false;
2917     }
2918 
2919     PyModule_AddObject(
2920         m, "RepeatedCompositeContainer",
2921         reinterpret_cast<PyObject*>(
2922             &RepeatedCompositeContainer_Type));
2923 
2924     // Register them as collections.Sequence
2925     ScopedPyObjectPtr collections(PyImport_ImportModule("collections"));
2926     if (collections == NULL) {
2927       return false;
2928     }
2929     ScopedPyObjectPtr mutable_sequence(
2930         PyObject_GetAttrString(collections.get(), "MutableSequence"));
2931     if (mutable_sequence == NULL) {
2932       return false;
2933     }
2934     if (ScopedPyObjectPtr(
2935             PyObject_CallMethod(mutable_sequence.get(), "register", "O",
2936                                 &RepeatedScalarContainer_Type)) == NULL) {
2937       return false;
2938     }
2939     if (ScopedPyObjectPtr(
2940             PyObject_CallMethod(mutable_sequence.get(), "register", "O",
2941                                 &RepeatedCompositeContainer_Type)) == NULL) {
2942       return false;
2943     }
2944   }
2945 
2946   // Initialize Map container types.
2947   {
2948     // ScalarMapContainer_Type derives from our MutableMapping type.
2949     ScopedPyObjectPtr containers(PyImport_ImportModule(
2950         "google.protobuf.internal.containers"));
2951     if (containers == NULL) {
2952       return false;
2953     }
2954 
2955     ScopedPyObjectPtr mutable_mapping(
2956         PyObject_GetAttrString(containers.get(), "MutableMapping"));
2957     if (mutable_mapping == NULL) {
2958       return false;
2959     }
2960 
2961     if (!PyObject_TypeCheck(mutable_mapping.get(), &PyType_Type)) {
2962       return false;
2963     }
2964 
2965     Py_INCREF(mutable_mapping.get());
2966 #if PY_MAJOR_VERSION >= 3
2967     PyObject* bases = PyTuple_New(1);
2968     PyTuple_SET_ITEM(bases, 0, mutable_mapping.get());
2969 
2970     ScalarMapContainer_Type =
2971         PyType_FromSpecWithBases(&ScalarMapContainer_Type_spec, bases);
2972     PyModule_AddObject(m, "ScalarMapContainer", ScalarMapContainer_Type);
2973 #else
2974     ScalarMapContainer_Type.tp_base =
2975         reinterpret_cast<PyTypeObject*>(mutable_mapping.get());
2976 
2977     if (PyType_Ready(&ScalarMapContainer_Type) < 0) {
2978       return false;
2979     }
2980 
2981     PyModule_AddObject(m, "ScalarMapContainer",
2982                        reinterpret_cast<PyObject*>(&ScalarMapContainer_Type));
2983 #endif
2984 
2985     if (PyType_Ready(&MapIterator_Type) < 0) {
2986       return false;
2987     }
2988 
2989     PyModule_AddObject(m, "MapIterator",
2990                        reinterpret_cast<PyObject*>(&MapIterator_Type));
2991 
2992 
2993 #if PY_MAJOR_VERSION >= 3
2994     MessageMapContainer_Type =
2995         PyType_FromSpecWithBases(&MessageMapContainer_Type_spec, bases);
2996     PyModule_AddObject(m, "MessageMapContainer", MessageMapContainer_Type);
2997 #else
2998     Py_INCREF(mutable_mapping.get());
2999     MessageMapContainer_Type.tp_base =
3000         reinterpret_cast<PyTypeObject*>(mutable_mapping.get());
3001 
3002     if (PyType_Ready(&MessageMapContainer_Type) < 0) {
3003       return false;
3004     }
3005 
3006     PyModule_AddObject(m, "MessageMapContainer",
3007                        reinterpret_cast<PyObject*>(&MessageMapContainer_Type));
3008 #endif
3009   }
3010 
3011   if (PyType_Ready(&ExtensionDict_Type) < 0) {
3012     return false;
3013   }
3014   PyModule_AddObject(
3015       m, "ExtensionDict",
3016       reinterpret_cast<PyObject*>(&ExtensionDict_Type));
3017 
3018   // Expose the DescriptorPool used to hold all descriptors added from generated
3019   // pb2.py files.
3020   // PyModule_AddObject steals a reference.
3021   Py_INCREF(GetDefaultDescriptorPool());
3022   PyModule_AddObject(m, "default_pool",
3023                      reinterpret_cast<PyObject*>(GetDefaultDescriptorPool()));
3024 
3025   PyModule_AddObject(m, "DescriptorPool", reinterpret_cast<PyObject*>(
3026       &PyDescriptorPool_Type));
3027 
3028   // This implementation provides full Descriptor types, we advertise it so that
3029   // descriptor.py can use them in replacement of the Python classes.
3030   PyModule_AddIntConstant(m, "_USE_C_DESCRIPTORS", 1);
3031 
3032   PyModule_AddObject(m, "Descriptor", reinterpret_cast<PyObject*>(
3033       &PyMessageDescriptor_Type));
3034   PyModule_AddObject(m, "FieldDescriptor", reinterpret_cast<PyObject*>(
3035       &PyFieldDescriptor_Type));
3036   PyModule_AddObject(m, "EnumDescriptor", reinterpret_cast<PyObject*>(
3037       &PyEnumDescriptor_Type));
3038   PyModule_AddObject(m, "EnumValueDescriptor", reinterpret_cast<PyObject*>(
3039       &PyEnumValueDescriptor_Type));
3040   PyModule_AddObject(m, "FileDescriptor", reinterpret_cast<PyObject*>(
3041       &PyFileDescriptor_Type));
3042   PyModule_AddObject(m, "OneofDescriptor", reinterpret_cast<PyObject*>(
3043       &PyOneofDescriptor_Type));
3044   PyModule_AddObject(m, "ServiceDescriptor", reinterpret_cast<PyObject*>(
3045       &PyServiceDescriptor_Type));
3046   PyModule_AddObject(m, "MethodDescriptor", reinterpret_cast<PyObject*>(
3047       &PyMethodDescriptor_Type));
3048 
3049   PyObject* enum_type_wrapper = PyImport_ImportModule(
3050       "google.protobuf.internal.enum_type_wrapper");
3051   if (enum_type_wrapper == NULL) {
3052     return false;
3053   }
3054   EnumTypeWrapper_class =
3055       PyObject_GetAttrString(enum_type_wrapper, "EnumTypeWrapper");
3056   Py_DECREF(enum_type_wrapper);
3057 
3058   PyObject* message_module = PyImport_ImportModule(
3059       "google.protobuf.message");
3060   if (message_module == NULL) {
3061     return false;
3062   }
3063   EncodeError_class = PyObject_GetAttrString(message_module, "EncodeError");
3064   DecodeError_class = PyObject_GetAttrString(message_module, "DecodeError");
3065   PythonMessage_class = PyObject_GetAttrString(message_module, "Message");
3066   Py_DECREF(message_module);
3067 
3068   PyObject* pickle_module = PyImport_ImportModule("pickle");
3069   if (pickle_module == NULL) {
3070     return false;
3071   }
3072   PickleError_class = PyObject_GetAttrString(pickle_module, "PickleError");
3073   Py_DECREF(pickle_module);
3074 
3075   // Override {Get,Mutable}CProtoInsidePyProto.
3076   GetCProtoInsidePyProtoPtr = GetCProtoInsidePyProtoImpl;
3077   MutableCProtoInsidePyProtoPtr = MutableCProtoInsidePyProtoImpl;
3078 
3079   return true;
3080 }
3081 
3082 }  // namespace python
3083 }  // namespace protobuf
3084 
3085 }  // namespace google
3086