1 /*
2  * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  */
23 #include "r600_sq.h"
24 #include "r600_opcodes.h"
25 #include "r600_formats.h"
26 #include "r600_shader.h"
27 #include "r600d.h"
28 
29 #include <errno.h>
30 #include "util/u_bitcast.h"
31 #include "util/u_dump.h"
32 #include "util/u_memory.h"
33 #include "util/u_math.h"
34 #include "pipe/p_shader_tokens.h"
35 
36 #include "sb/sb_public.h"
37 
38 #define NUM_OF_CYCLES 3
39 #define NUM_OF_COMPONENTS 4
40 
alu_writes(struct r600_bytecode_alu * alu)41 static inline bool alu_writes(struct r600_bytecode_alu *alu)
42 {
43 	return alu->dst.write || alu->is_op3;
44 }
45 
r600_bytecode_get_num_operands(const struct r600_bytecode_alu * alu)46 static inline unsigned int r600_bytecode_get_num_operands(const struct r600_bytecode_alu *alu)
47 {
48 	return r600_isa_alu(alu->op)->src_count;
49 }
50 
r600_bytecode_cf(void)51 static struct r600_bytecode_cf *r600_bytecode_cf(void)
52 {
53 	struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
54 
55 	if (!cf)
56 		return NULL;
57 	LIST_INITHEAD(&cf->list);
58 	LIST_INITHEAD(&cf->alu);
59 	LIST_INITHEAD(&cf->vtx);
60 	LIST_INITHEAD(&cf->tex);
61 	LIST_INITHEAD(&cf->gds);
62 	return cf;
63 }
64 
r600_bytecode_alu(void)65 static struct r600_bytecode_alu *r600_bytecode_alu(void)
66 {
67 	struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
68 
69 	if (!alu)
70 		return NULL;
71 	LIST_INITHEAD(&alu->list);
72 	return alu;
73 }
74 
r600_bytecode_vtx(void)75 static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
76 {
77 	struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
78 
79 	if (!vtx)
80 		return NULL;
81 	LIST_INITHEAD(&vtx->list);
82 	return vtx;
83 }
84 
r600_bytecode_tex(void)85 static struct r600_bytecode_tex *r600_bytecode_tex(void)
86 {
87 	struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
88 
89 	if (!tex)
90 		return NULL;
91 	LIST_INITHEAD(&tex->list);
92 	return tex;
93 }
94 
r600_bytecode_gds(void)95 static struct r600_bytecode_gds *r600_bytecode_gds(void)
96 {
97 	struct r600_bytecode_gds *gds = CALLOC_STRUCT(r600_bytecode_gds);
98 
99 	if (gds == NULL)
100 		return NULL;
101 	LIST_INITHEAD(&gds->list);
102 	return gds;
103 }
104 
stack_entry_size(enum radeon_family chip)105 static unsigned stack_entry_size(enum radeon_family chip) {
106 	/* Wavefront size:
107 	 *   64: R600/RV670/RV770/Cypress/R740/Barts/Turks/Caicos/
108 	 *       Aruba/Sumo/Sumo2/redwood/juniper
109 	 *   32: R630/R730/R710/Palm/Cedar
110 	 *   16: R610/Rs780
111 	 *
112 	 * Stack row size:
113 	 * 	Wavefront Size                        16  32  48  64
114 	 * 	Columns per Row (R6xx/R7xx/R8xx only)  8   8   4   4
115 	 * 	Columns per Row (R9xx+)                8   4   4   4 */
116 
117 	switch (chip) {
118 	/* FIXME: are some chips missing here? */
119 	/* wavefront size 16 */
120 	case CHIP_RV610:
121 	case CHIP_RS780:
122 	case CHIP_RV620:
123 	case CHIP_RS880:
124 	/* wavefront size 32 */
125 	case CHIP_RV630:
126 	case CHIP_RV635:
127 	case CHIP_RV730:
128 	case CHIP_RV710:
129 	case CHIP_PALM:
130 	case CHIP_CEDAR:
131 		return 8;
132 
133 	/* wavefront size 64 */
134 	default:
135 		return 4;
136 	}
137 }
138 
r600_bytecode_init(struct r600_bytecode * bc,enum chip_class chip_class,enum radeon_family family,bool has_compressed_msaa_texturing)139 void r600_bytecode_init(struct r600_bytecode *bc,
140 			enum chip_class chip_class,
141 			enum radeon_family family,
142 			bool has_compressed_msaa_texturing)
143 {
144 	static unsigned next_shader_id = 0;
145 
146 	bc->debug_id = ++next_shader_id;
147 
148 	if ((chip_class == R600) &&
149 	    (family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) {
150 		bc->ar_handling = AR_HANDLE_RV6XX;
151 		bc->r6xx_nop_after_rel_dst = 1;
152 	} else {
153 		bc->ar_handling = AR_HANDLE_NORMAL;
154 		bc->r6xx_nop_after_rel_dst = 0;
155 	}
156 
157 	LIST_INITHEAD(&bc->cf);
158 	bc->chip_class = chip_class;
159 	bc->family = family;
160 	bc->has_compressed_msaa_texturing = has_compressed_msaa_texturing;
161 	bc->stack.entry_size = stack_entry_size(family);
162 }
163 
r600_bytecode_add_cf(struct r600_bytecode * bc)164 int r600_bytecode_add_cf(struct r600_bytecode *bc)
165 {
166 	struct r600_bytecode_cf *cf = r600_bytecode_cf();
167 
168 	if (!cf)
169 		return -ENOMEM;
170 	LIST_ADDTAIL(&cf->list, &bc->cf);
171 	if (bc->cf_last) {
172 		cf->id = bc->cf_last->id + 2;
173 		if (bc->cf_last->eg_alu_extended) {
174 			/* take into account extended alu size */
175 			cf->id += 2;
176 			bc->ndw += 2;
177 		}
178 	}
179 	bc->cf_last = cf;
180 	bc->ncf++;
181 	bc->ndw += 2;
182 	bc->force_add_cf = 0;
183 	bc->ar_loaded = 0;
184 	return 0;
185 }
186 
r600_bytecode_add_output(struct r600_bytecode * bc,const struct r600_bytecode_output * output)187 int r600_bytecode_add_output(struct r600_bytecode *bc,
188 		const struct r600_bytecode_output *output)
189 {
190 	int r;
191 
192 	if (output->gpr >= bc->ngpr)
193 		bc->ngpr = output->gpr + 1;
194 
195 	if (bc->cf_last && (bc->cf_last->op == output->op ||
196 		(bc->cf_last->op == CF_OP_EXPORT &&
197 		output->op == CF_OP_EXPORT_DONE)) &&
198 		output->type == bc->cf_last->output.type &&
199 		output->elem_size == bc->cf_last->output.elem_size &&
200 		output->swizzle_x == bc->cf_last->output.swizzle_x &&
201 		output->swizzle_y == bc->cf_last->output.swizzle_y &&
202 		output->swizzle_z == bc->cf_last->output.swizzle_z &&
203 		output->swizzle_w == bc->cf_last->output.swizzle_w &&
204 		output->comp_mask == bc->cf_last->output.comp_mask &&
205 		(output->burst_count + bc->cf_last->output.burst_count) <= 16) {
206 
207 		if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
208 			(output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
209 
210 			bc->cf_last->op = bc->cf_last->output.op = output->op;
211 			bc->cf_last->output.gpr = output->gpr;
212 			bc->cf_last->output.array_base = output->array_base;
213 			bc->cf_last->output.burst_count += output->burst_count;
214 			return 0;
215 
216 		} else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
217 			output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
218 
219 			bc->cf_last->op = bc->cf_last->output.op = output->op;
220 			bc->cf_last->output.burst_count += output->burst_count;
221 			return 0;
222 		}
223 	}
224 
225 	r = r600_bytecode_add_cf(bc);
226 	if (r)
227 		return r;
228 	bc->cf_last->op = output->op;
229 	memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
230 	bc->cf_last->barrier = 1;
231 	return 0;
232 }
233 
234 /* alu instructions that can ony exits once per group */
is_alu_once_inst(struct r600_bytecode_alu * alu)235 static int is_alu_once_inst(struct r600_bytecode_alu *alu)
236 {
237 	return r600_isa_alu(alu->op)->flags & (AF_KILL | AF_PRED) || alu->is_lds_idx_op || alu->op == ALU_OP0_GROUP_BARRIER;
238 }
239 
is_alu_reduction_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)240 static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
241 {
242 	return (r600_isa_alu(alu->op)->flags & AF_REPL) &&
243 			(r600_isa_alu_slots(bc->isa->hw_class, alu->op) == AF_4V);
244 }
245 
is_alu_mova_inst(struct r600_bytecode_alu * alu)246 static int is_alu_mova_inst(struct r600_bytecode_alu *alu)
247 {
248 	return r600_isa_alu(alu->op)->flags & AF_MOVA;
249 }
250 
alu_uses_rel(struct r600_bytecode_alu * alu)251 static int alu_uses_rel(struct r600_bytecode_alu *alu)
252 {
253 	unsigned num_src = r600_bytecode_get_num_operands(alu);
254 	unsigned src;
255 
256 	if (alu->dst.rel) {
257 		return 1;
258 	}
259 
260 	for (src = 0; src < num_src; ++src) {
261 		if (alu->src[src].rel) {
262 			return 1;
263 		}
264 	}
265 	return 0;
266 }
267 
is_lds_read(int sel)268 static int is_lds_read(int sel)
269 {
270   return sel == EG_V_SQ_ALU_SRC_LDS_OQ_A_POP || sel == EG_V_SQ_ALU_SRC_LDS_OQ_B_POP;
271 }
272 
alu_uses_lds(struct r600_bytecode_alu * alu)273 static int alu_uses_lds(struct r600_bytecode_alu *alu)
274 {
275 	unsigned num_src = r600_bytecode_get_num_operands(alu);
276 	unsigned src;
277 
278 	for (src = 0; src < num_src; ++src) {
279 		if (is_lds_read(alu->src[src].sel)) {
280 			return 1;
281 		}
282 	}
283 	return 0;
284 }
285 
is_alu_64bit_inst(struct r600_bytecode_alu * alu)286 static int is_alu_64bit_inst(struct r600_bytecode_alu *alu)
287 {
288 	const struct alu_op_info *op = r600_isa_alu(alu->op);
289 	return (op->flags & AF_64);
290 }
291 
is_alu_vec_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)292 static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
293 {
294 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
295 	return !(slots & AF_S);
296 }
297 
is_alu_trans_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)298 static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
299 {
300 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
301 	return !(slots & AF_V);
302 }
303 
304 /* alu instructions that can execute on any unit */
is_alu_any_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)305 static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
306 {
307 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
308 	return slots == AF_VS;
309 }
310 
is_nop_inst(struct r600_bytecode_alu * alu)311 static int is_nop_inst(struct r600_bytecode_alu *alu)
312 {
313 	return alu->op == ALU_OP0_NOP;
314 }
315 
assign_alu_units(struct r600_bytecode * bc,struct r600_bytecode_alu * alu_first,struct r600_bytecode_alu * assignment[5])316 static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
317 			    struct r600_bytecode_alu *assignment[5])
318 {
319 	struct r600_bytecode_alu *alu;
320 	unsigned i, chan, trans;
321 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
322 
323 	for (i = 0; i < max_slots; i++)
324 		assignment[i] = NULL;
325 
326 	for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bytecode_alu, alu->list.next, list)) {
327 		chan = alu->dst.chan;
328 		if (max_slots == 4)
329 			trans = 0;
330 		else if (is_alu_trans_unit_inst(bc, alu))
331 			trans = 1;
332 		else if (is_alu_vec_unit_inst(bc, alu))
333 			trans = 0;
334 		else if (assignment[chan])
335 			trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
336 		else
337 			trans = 0;
338 
339 		if (trans) {
340 			if (assignment[4]) {
341 				assert(0); /* ALU.Trans has already been allocated. */
342 				return -1;
343 			}
344 			assignment[4] = alu;
345 		} else {
346 			if (assignment[chan]) {
347 				assert(0); /* ALU.chan has already been allocated. */
348 				return -1;
349 			}
350 			assignment[chan] = alu;
351 		}
352 
353 		if (alu->last)
354 			break;
355 	}
356 	return 0;
357 }
358 
359 struct alu_bank_swizzle {
360 	int	hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
361 	int	hw_cfile_addr[4];
362 	int	hw_cfile_elem[4];
363 };
364 
365 static const unsigned cycle_for_bank_swizzle_vec[][3] = {
366 	[SQ_ALU_VEC_012] = { 0, 1, 2 },
367 	[SQ_ALU_VEC_021] = { 0, 2, 1 },
368 	[SQ_ALU_VEC_120] = { 1, 2, 0 },
369 	[SQ_ALU_VEC_102] = { 1, 0, 2 },
370 	[SQ_ALU_VEC_201] = { 2, 0, 1 },
371 	[SQ_ALU_VEC_210] = { 2, 1, 0 }
372 };
373 
374 static const unsigned cycle_for_bank_swizzle_scl[][3] = {
375 	[SQ_ALU_SCL_210] = { 2, 1, 0 },
376 	[SQ_ALU_SCL_122] = { 1, 2, 2 },
377 	[SQ_ALU_SCL_212] = { 2, 1, 2 },
378 	[SQ_ALU_SCL_221] = { 2, 2, 1 }
379 };
380 
init_bank_swizzle(struct alu_bank_swizzle * bs)381 static void init_bank_swizzle(struct alu_bank_swizzle *bs)
382 {
383 	int i, cycle, component;
384 	/* set up gpr use */
385 	for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
386 		for (component = 0; component < NUM_OF_COMPONENTS; component++)
387 			 bs->hw_gpr[cycle][component] = -1;
388 	for (i = 0; i < 4; i++)
389 		bs->hw_cfile_addr[i] = -1;
390 	for (i = 0; i < 4; i++)
391 		bs->hw_cfile_elem[i] = -1;
392 }
393 
reserve_gpr(struct alu_bank_swizzle * bs,unsigned sel,unsigned chan,unsigned cycle)394 static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
395 {
396 	if (bs->hw_gpr[cycle][chan] == -1)
397 		bs->hw_gpr[cycle][chan] = sel;
398 	else if (bs->hw_gpr[cycle][chan] != (int)sel) {
399 		/* Another scalar operation has already used the GPR read port for the channel. */
400 		return -1;
401 	}
402 	return 0;
403 }
404 
reserve_cfile(const struct r600_bytecode * bc,struct alu_bank_swizzle * bs,unsigned sel,unsigned chan)405 static int reserve_cfile(const struct r600_bytecode *bc,
406 			 struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
407 {
408 	int res, num_res = 4;
409 	if (bc->chip_class >= R700) {
410 		num_res = 2;
411 		chan /= 2;
412 	}
413 	for (res = 0; res < num_res; ++res) {
414 		if (bs->hw_cfile_addr[res] == -1) {
415 			bs->hw_cfile_addr[res] = sel;
416 			bs->hw_cfile_elem[res] = chan;
417 			return 0;
418 		} else if (bs->hw_cfile_addr[res] == sel &&
419 			bs->hw_cfile_elem[res] == chan)
420 			return 0; /* Read for this scalar element already reserved, nothing to do here. */
421 	}
422 	/* All cfile read ports are used, cannot reference vector element. */
423 	return -1;
424 }
425 
is_gpr(unsigned sel)426 static int is_gpr(unsigned sel)
427 {
428 	return (sel <= 127);
429 }
430 
431 /* CB constants start at 512, and get translated to a kcache index when ALU
432  * clauses are constructed. Note that we handle kcache constants the same way
433  * as (the now gone) cfile constants, is that really required? */
is_cfile(unsigned sel)434 static int is_cfile(unsigned sel)
435 {
436 	return (sel > 255 && sel < 512) ||
437 		(sel > 511 && sel < 4607) || /* Kcache before translation. */
438 		(sel > 127 && sel < 192); /* Kcache after translation. */
439 }
440 
is_const(int sel)441 static int is_const(int sel)
442 {
443 	return is_cfile(sel) ||
444 		(sel >= V_SQ_ALU_SRC_0 &&
445 		sel <= V_SQ_ALU_SRC_LITERAL);
446 }
447 
check_vector(const struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,struct alu_bank_swizzle * bs,int bank_swizzle)448 static int check_vector(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
449 			struct alu_bank_swizzle *bs, int bank_swizzle)
450 {
451 	int r, src, num_src, sel, elem, cycle;
452 
453 	num_src = r600_bytecode_get_num_operands(alu);
454 	for (src = 0; src < num_src; src++) {
455 		sel = alu->src[src].sel;
456 		elem = alu->src[src].chan;
457 		if (is_gpr(sel)) {
458 			cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
459 			if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
460 				/* Nothing to do; special-case optimization,
461 				 * second source uses first source’s reservation. */
462 				continue;
463 			else {
464 				r = reserve_gpr(bs, sel, elem, cycle);
465 				if (r)
466 					return r;
467 			}
468 		} else if (is_cfile(sel)) {
469 			r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
470 			if (r)
471 				return r;
472 		}
473 		/* No restrictions on PV, PS, literal or special constants. */
474 	}
475 	return 0;
476 }
477 
check_scalar(const struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,struct alu_bank_swizzle * bs,int bank_swizzle)478 static int check_scalar(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
479 			struct alu_bank_swizzle *bs, int bank_swizzle)
480 {
481 	int r, src, num_src, const_count, sel, elem, cycle;
482 
483 	num_src = r600_bytecode_get_num_operands(alu);
484 	for (const_count = 0, src = 0; src < num_src; ++src) {
485 		sel = alu->src[src].sel;
486 		elem = alu->src[src].chan;
487 		if (is_const(sel)) { /* Any constant, including literal and inline constants. */
488 			if (const_count >= 2)
489 				/* More than two references to a constant in
490 				 * transcendental operation. */
491 				return -1;
492 			else
493 				const_count++;
494 		}
495 		if (is_cfile(sel)) {
496 			r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
497 			if (r)
498 				return r;
499 		}
500 	}
501 	for (src = 0; src < num_src; ++src) {
502 		sel = alu->src[src].sel;
503 		elem = alu->src[src].chan;
504 		if (is_gpr(sel)) {
505 			cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
506 			if (cycle < const_count)
507 				/* Cycle for GPR load conflicts with
508 				 * constant load in transcendental operation. */
509 				return -1;
510 			r = reserve_gpr(bs, sel, elem, cycle);
511 			if (r)
512 				return r;
513 		}
514 		/* PV PS restrictions */
515 		if (const_count && (sel == 254 || sel == 255)) {
516 			cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
517 			if (cycle < const_count)
518 				return -1;
519 		}
520 	}
521 	return 0;
522 }
523 
check_and_set_bank_swizzle(const struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5])524 static int check_and_set_bank_swizzle(const struct r600_bytecode *bc,
525 				      struct r600_bytecode_alu *slots[5])
526 {
527 	struct alu_bank_swizzle bs;
528 	int bank_swizzle[5];
529 	int i, r = 0, forced = 1;
530 	boolean scalar_only = bc->chip_class == CAYMAN ? false : true;
531 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
532 
533 	for (i = 0; i < max_slots; i++) {
534 		if (slots[i]) {
535 			if (slots[i]->bank_swizzle_force) {
536 				slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
537 			} else {
538 				forced = 0;
539 			}
540 		}
541 
542 		if (i < 4 && slots[i])
543 			scalar_only = false;
544 	}
545 	if (forced)
546 		return 0;
547 
548 	/* Just check every possible combination of bank swizzle.
549 	 * Not very efficent, but works on the first try in most of the cases. */
550 	for (i = 0; i < 4; i++)
551 		if (!slots[i] || !slots[i]->bank_swizzle_force)
552 			bank_swizzle[i] = SQ_ALU_VEC_012;
553 		else
554 			bank_swizzle[i] = slots[i]->bank_swizzle;
555 
556 	bank_swizzle[4] = SQ_ALU_SCL_210;
557 	while(bank_swizzle[4] <= SQ_ALU_SCL_221) {
558 
559 		init_bank_swizzle(&bs);
560 		if (scalar_only == false) {
561 			for (i = 0; i < 4; i++) {
562 				if (slots[i]) {
563 					r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
564 					if (r)
565 						break;
566 				}
567 			}
568 		} else
569 			r = 0;
570 
571 		if (!r && max_slots == 5 && slots[4]) {
572 			r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
573 		}
574 		if (!r) {
575 			for (i = 0; i < max_slots; i++) {
576 				if (slots[i])
577 					slots[i]->bank_swizzle = bank_swizzle[i];
578 			}
579 			return 0;
580 		}
581 
582 		if (scalar_only) {
583 			bank_swizzle[4]++;
584 		} else {
585 			for (i = 0; i < max_slots; i++) {
586 				if (!slots[i] || !slots[i]->bank_swizzle_force) {
587 					bank_swizzle[i]++;
588 					if (bank_swizzle[i] <= SQ_ALU_VEC_210)
589 						break;
590 					else if (i < max_slots - 1)
591 						bank_swizzle[i] = SQ_ALU_VEC_012;
592 					else
593 						return -1;
594 				}
595 			}
596 		}
597 	}
598 
599 	/* Couldn't find a working swizzle. */
600 	return -1;
601 }
602 
replace_gpr_with_pv_ps(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5],struct r600_bytecode_alu * alu_prev)603 static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
604 				  struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
605 {
606 	struct r600_bytecode_alu *prev[5];
607 	int gpr[5], chan[5];
608 	int i, j, r, src, num_src;
609 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
610 
611 	r = assign_alu_units(bc, alu_prev, prev);
612 	if (r)
613 		return r;
614 
615 	for (i = 0; i < max_slots; ++i) {
616 		if (prev[i] && alu_writes(prev[i]) && !prev[i]->dst.rel) {
617 
618 			if (is_alu_64bit_inst(prev[i])) {
619 				gpr[i] = -1;
620 				continue;
621 			}
622 
623 			gpr[i] = prev[i]->dst.sel;
624 			/* cube writes more than PV.X */
625 			if (is_alu_reduction_inst(bc, prev[i]))
626 				chan[i] = 0;
627 			else
628 				chan[i] = prev[i]->dst.chan;
629 		} else
630 			gpr[i] = -1;
631 	}
632 
633 	for (i = 0; i < max_slots; ++i) {
634 		struct r600_bytecode_alu *alu = slots[i];
635 		if (!alu)
636 			continue;
637 
638 		if (is_alu_64bit_inst(alu))
639 			continue;
640 		num_src = r600_bytecode_get_num_operands(alu);
641 		for (src = 0; src < num_src; ++src) {
642 			if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
643 				continue;
644 
645 			if (bc->chip_class < CAYMAN) {
646 				if (alu->src[src].sel == gpr[4] &&
647 				    alu->src[src].chan == chan[4] &&
648 				    alu_prev->pred_sel == alu->pred_sel) {
649 					alu->src[src].sel = V_SQ_ALU_SRC_PS;
650 					alu->src[src].chan = 0;
651 					continue;
652 				}
653 			}
654 
655 			for (j = 0; j < 4; ++j) {
656 				if (alu->src[src].sel == gpr[j] &&
657 					alu->src[src].chan == j &&
658 				      alu_prev->pred_sel == alu->pred_sel) {
659 					alu->src[src].sel = V_SQ_ALU_SRC_PV;
660 					alu->src[src].chan = chan[j];
661 					break;
662 				}
663 			}
664 		}
665 	}
666 
667 	return 0;
668 }
669 
r600_bytecode_special_constants(uint32_t value,unsigned * sel,unsigned * neg,unsigned abs)670 void r600_bytecode_special_constants(uint32_t value, unsigned *sel, unsigned *neg, unsigned abs)
671 {
672 	switch(value) {
673 	case 0:
674 		*sel = V_SQ_ALU_SRC_0;
675 		break;
676 	case 1:
677 		*sel = V_SQ_ALU_SRC_1_INT;
678 		break;
679 	case -1:
680 		*sel = V_SQ_ALU_SRC_M_1_INT;
681 		break;
682 	case 0x3F800000: /* 1.0f */
683 		*sel = V_SQ_ALU_SRC_1;
684 		break;
685 	case 0x3F000000: /* 0.5f */
686 		*sel = V_SQ_ALU_SRC_0_5;
687 		break;
688 	case 0xBF800000: /* -1.0f */
689 		*sel = V_SQ_ALU_SRC_1;
690 		*neg ^= !abs;
691 		break;
692 	case 0xBF000000: /* -0.5f */
693 		*sel = V_SQ_ALU_SRC_0_5;
694 		*neg ^= !abs;
695 		break;
696 	default:
697 		*sel = V_SQ_ALU_SRC_LITERAL;
698 		break;
699 	}
700 }
701 
702 /* compute how many literal are needed */
r600_bytecode_alu_nliterals(struct r600_bytecode_alu * alu,uint32_t literal[4],unsigned * nliteral)703 static int r600_bytecode_alu_nliterals(struct r600_bytecode_alu *alu,
704 				 uint32_t literal[4], unsigned *nliteral)
705 {
706 	unsigned num_src = r600_bytecode_get_num_operands(alu);
707 	unsigned i, j;
708 
709 	for (i = 0; i < num_src; ++i) {
710 		if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
711 			uint32_t value = alu->src[i].value;
712 			unsigned found = 0;
713 			for (j = 0; j < *nliteral; ++j) {
714 				if (literal[j] == value) {
715 					found = 1;
716 					break;
717 				}
718 			}
719 			if (!found) {
720 				if (*nliteral >= 4)
721 					return -EINVAL;
722 				literal[(*nliteral)++] = value;
723 			}
724 		}
725 	}
726 	return 0;
727 }
728 
r600_bytecode_alu_adjust_literals(struct r600_bytecode_alu * alu,uint32_t literal[4],unsigned nliteral)729 static void r600_bytecode_alu_adjust_literals(struct r600_bytecode_alu *alu,
730 					      uint32_t literal[4], unsigned nliteral)
731 {
732 	unsigned num_src = r600_bytecode_get_num_operands(alu);
733 	unsigned i, j;
734 
735 	for (i = 0; i < num_src; ++i) {
736 		if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
737 			uint32_t value = alu->src[i].value;
738 			for (j = 0; j < nliteral; ++j) {
739 				if (literal[j] == value) {
740 					alu->src[i].chan = j;
741 					break;
742 				}
743 			}
744 		}
745 	}
746 }
747 
merge_inst_groups(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5],struct r600_bytecode_alu * alu_prev)748 static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
749 			     struct r600_bytecode_alu *alu_prev)
750 {
751 	struct r600_bytecode_alu *prev[5];
752 	struct r600_bytecode_alu *result[5] = { NULL };
753 
754 	uint32_t literal[4], prev_literal[4];
755 	unsigned nliteral = 0, prev_nliteral = 0;
756 
757 	int i, j, r, src, num_src;
758 	int num_once_inst = 0;
759 	int have_mova = 0, have_rel = 0;
760 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
761 
762 	r = assign_alu_units(bc, alu_prev, prev);
763 	if (r)
764 		return r;
765 
766 	for (i = 0; i < max_slots; ++i) {
767 		if (prev[i]) {
768 		      if (prev[i]->pred_sel)
769 			      return 0;
770 		      if (is_alu_once_inst(prev[i]))
771 			      return 0;
772 		}
773 		if (slots[i]) {
774 			if (slots[i]->pred_sel)
775 				return 0;
776 			if (is_alu_once_inst(slots[i]))
777 				return 0;
778 		}
779 	}
780 
781 	for (i = 0; i < max_slots; ++i) {
782 		struct r600_bytecode_alu *alu;
783 
784 		if (num_once_inst > 0)
785 		   return 0;
786 
787 		/* check number of literals */
788 		if (prev[i]) {
789 			if (r600_bytecode_alu_nliterals(prev[i], literal, &nliteral))
790 				return 0;
791 			if (r600_bytecode_alu_nliterals(prev[i], prev_literal, &prev_nliteral))
792 				return 0;
793 			if (is_alu_mova_inst(prev[i])) {
794 				if (have_rel)
795 					return 0;
796 				have_mova = 1;
797 			}
798 
799 			if (alu_uses_rel(prev[i])) {
800 				if (have_mova) {
801 					return 0;
802 				}
803 				have_rel = 1;
804 			}
805 			if (alu_uses_lds(prev[i]))
806 				return 0;
807 
808 			num_once_inst += is_alu_once_inst(prev[i]);
809 		}
810 		if (slots[i] && r600_bytecode_alu_nliterals(slots[i], literal, &nliteral))
811 			return 0;
812 
813 		/* Let's check used slots. */
814 		if (prev[i] && !slots[i]) {
815 			result[i] = prev[i];
816 			continue;
817 		} else if (prev[i] && slots[i]) {
818 			if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
819 				/* Trans unit is still free try to use it. */
820 				if (is_alu_any_unit_inst(bc, slots[i]) && !alu_uses_lds(slots[i])) {
821 					result[i] = prev[i];
822 					result[4] = slots[i];
823 				} else if (is_alu_any_unit_inst(bc, prev[i])) {
824 					if (slots[i]->dst.sel == prev[i]->dst.sel &&
825 					    alu_writes(slots[i]) &&
826 					    alu_writes(prev[i]))
827 						return 0;
828 
829 					result[i] = slots[i];
830 					result[4] = prev[i];
831 				} else
832 					return 0;
833 			} else
834 				return 0;
835 		} else if(!slots[i]) {
836 			continue;
837 		} else {
838 			if (max_slots == 5 && slots[i] && prev[4] &&
839 					slots[i]->dst.sel == prev[4]->dst.sel &&
840 					slots[i]->dst.chan == prev[4]->dst.chan &&
841 					alu_writes(slots[i]) &&
842 					alu_writes(prev[4]))
843 				return 0;
844 
845 			result[i] = slots[i];
846 		}
847 
848 		alu = slots[i];
849 		num_once_inst += is_alu_once_inst(alu);
850 
851 		/* don't reschedule NOPs */
852 		if (is_nop_inst(alu))
853 			return 0;
854 
855 		if (is_alu_mova_inst(alu)) {
856 			if (have_rel) {
857 				return 0;
858 			}
859 			have_mova = 1;
860 		}
861 
862 		if (alu_uses_rel(alu)) {
863 			if (have_mova) {
864 				return 0;
865 			}
866 			have_rel = 1;
867 		}
868 
869 		if (alu->op == ALU_OP0_SET_CF_IDX0 ||
870 			alu->op == ALU_OP0_SET_CF_IDX1)
871 			return 0; /* data hazard with MOVA */
872 
873 		/* Let's check source gprs */
874 		num_src = r600_bytecode_get_num_operands(alu);
875 		for (src = 0; src < num_src; ++src) {
876 
877 			/* Constants don't matter. */
878 			if (!is_gpr(alu->src[src].sel))
879 				continue;
880 
881 			for (j = 0; j < max_slots; ++j) {
882 				if (!prev[j] || !alu_writes(prev[j]))
883 					continue;
884 
885 				/* If it's relative then we can't determin which gpr is really used. */
886 				if (prev[j]->dst.chan == alu->src[src].chan &&
887 					(prev[j]->dst.sel == alu->src[src].sel ||
888 					prev[j]->dst.rel || alu->src[src].rel))
889 					return 0;
890 			}
891 		}
892 	}
893 
894 	/* more than one PRED_ or KILL_ ? */
895 	if (num_once_inst > 1)
896 		return 0;
897 
898 	/* check if the result can still be swizzlet */
899 	r = check_and_set_bank_swizzle(bc, result);
900 	if (r)
901 		return 0;
902 
903 	/* looks like everything worked out right, apply the changes */
904 
905 	/* undo adding previus literals */
906 	bc->cf_last->ndw -= align(prev_nliteral, 2);
907 
908 	/* sort instructions */
909 	for (i = 0; i < max_slots; ++i) {
910 		slots[i] = result[i];
911 		if (result[i]) {
912 			LIST_DEL(&result[i]->list);
913 			result[i]->last = 0;
914 			LIST_ADDTAIL(&result[i]->list, &bc->cf_last->alu);
915 		}
916 	}
917 
918 	/* determine new last instruction */
919 	LIST_ENTRY(struct r600_bytecode_alu, bc->cf_last->alu.prev, list)->last = 1;
920 
921 	/* determine new first instruction */
922 	for (i = 0; i < max_slots; ++i) {
923 		if (result[i]) {
924 			bc->cf_last->curr_bs_head = result[i];
925 			break;
926 		}
927 	}
928 
929 	bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
930 	bc->cf_last->prev2_bs_head = NULL;
931 
932 	return 0;
933 }
934 
935 /* we'll keep kcache sets sorted by bank & addr */
r600_bytecode_alloc_kcache_line(struct r600_bytecode * bc,struct r600_bytecode_kcache * kcache,unsigned bank,unsigned line,unsigned index_mode)936 static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
937 		struct r600_bytecode_kcache *kcache,
938 		unsigned bank, unsigned line, unsigned index_mode)
939 {
940 	int i, kcache_banks = bc->chip_class >= EVERGREEN ? 4 : 2;
941 
942 	for (i = 0; i < kcache_banks; i++) {
943 		if (kcache[i].mode) {
944 			int d;
945 
946 			if (kcache[i].bank < bank)
947 				continue;
948 
949 			if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
950 					kcache[i].bank > bank) {
951 				/* try to insert new line */
952 				if (kcache[kcache_banks-1].mode) {
953 					/* all sets are in use */
954 					return -ENOMEM;
955 				}
956 
957 				memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
958 				kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
959 				kcache[i].bank = bank;
960 				kcache[i].addr = line;
961 				kcache[i].index_mode = index_mode;
962 				return 0;
963 			}
964 
965 			d = line - kcache[i].addr;
966 
967 			if (d == -1) {
968 				kcache[i].addr--;
969 				if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
970 					/* we are prepending the line to the current set,
971 					 * discarding the existing second line,
972 					 * so we'll have to insert line+2 after it */
973 					line += 2;
974 					continue;
975 				} else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
976 					kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
977 					return 0;
978 				} else {
979 					/* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
980 					return -ENOMEM;
981 				}
982 			} else if (d == 1) {
983 				kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
984 				return 0;
985 			} else if (d == 0)
986 				return 0;
987 		} else { /* free kcache set - use it */
988 			kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
989 			kcache[i].bank = bank;
990 			kcache[i].addr = line;
991 			kcache[i].index_mode = index_mode;
992 			return 0;
993 		}
994 	}
995 	return -ENOMEM;
996 }
997 
r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode * bc,struct r600_bytecode_kcache * kcache,struct r600_bytecode_alu * alu)998 static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
999 		struct r600_bytecode_kcache *kcache,
1000 		struct r600_bytecode_alu *alu)
1001 {
1002 	int i, r;
1003 
1004 	for (i = 0; i < 3; i++) {
1005 		unsigned bank, line, sel = alu->src[i].sel, index_mode;
1006 
1007 		if (sel < 512)
1008 			continue;
1009 
1010 		bank = alu->src[i].kc_bank;
1011 		assert(bank < R600_MAX_HW_CONST_BUFFERS);
1012 		line = (sel-512)>>4;
1013 		index_mode = alu->src[i].kc_rel ? 1 : 0; // V_SQ_CF_INDEX_0 / V_SQ_CF_INDEX_NONE
1014 
1015 		if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line, index_mode)))
1016 			return r;
1017 	}
1018 	return 0;
1019 }
1020 
r600_bytecode_assign_kcache_banks(struct r600_bytecode_alu * alu,struct r600_bytecode_kcache * kcache)1021 static int r600_bytecode_assign_kcache_banks(
1022 		struct r600_bytecode_alu *alu,
1023 		struct r600_bytecode_kcache * kcache)
1024 {
1025 	int i, j;
1026 
1027 	/* Alter the src operands to refer to the kcache. */
1028 	for (i = 0; i < 3; ++i) {
1029 		static const unsigned int base[] = {128, 160, 256, 288};
1030 		unsigned int line, sel = alu->src[i].sel, found = 0;
1031 
1032 		if (sel < 512)
1033 			continue;
1034 
1035 		sel -= 512;
1036 		line = sel>>4;
1037 
1038 		for (j = 0; j < 4 && !found; ++j) {
1039 			switch (kcache[j].mode) {
1040 			case V_SQ_CF_KCACHE_NOP:
1041 			case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
1042 				R600_ERR("unexpected kcache line mode\n");
1043 				return -ENOMEM;
1044 			default:
1045 				if (kcache[j].bank == alu->src[i].kc_bank &&
1046 						kcache[j].addr <= line &&
1047 						line < kcache[j].addr + kcache[j].mode) {
1048 					alu->src[i].sel = sel - (kcache[j].addr<<4);
1049 					alu->src[i].sel += base[j];
1050 					found=1;
1051 			    }
1052 			}
1053 		}
1054 	}
1055 	return 0;
1056 }
1057 
r600_bytecode_alloc_kcache_lines(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,unsigned type)1058 static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc,
1059 		struct r600_bytecode_alu *alu,
1060 		unsigned type)
1061 {
1062 	struct r600_bytecode_kcache kcache_sets[4];
1063 	struct r600_bytecode_kcache *kcache = kcache_sets;
1064 	int r;
1065 
1066 	memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
1067 
1068 	if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1069 		/* can't alloc, need to start new clause */
1070 		if ((r = r600_bytecode_add_cf(bc))) {
1071 			return r;
1072 		}
1073 		bc->cf_last->op = type;
1074 
1075 		/* retry with the new clause */
1076 		kcache = bc->cf_last->kcache;
1077 		if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1078 			/* can't alloc again- should never happen */
1079 			return r;
1080 		}
1081 	} else {
1082 		/* update kcache sets */
1083 		memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
1084 	}
1085 
1086 	/* if we actually used more than 2 kcache sets, or have relative indexing - use ALU_EXTENDED on eg+ */
1087 	if (kcache[2].mode != V_SQ_CF_KCACHE_NOP ||
1088 		kcache[0].index_mode || kcache[1].index_mode || kcache[2].index_mode || kcache[3].index_mode) {
1089 		if (bc->chip_class < EVERGREEN)
1090 			return -ENOMEM;
1091 		bc->cf_last->eg_alu_extended = 1;
1092 	}
1093 
1094 	return 0;
1095 }
1096 
insert_nop_r6xx(struct r600_bytecode * bc)1097 static int insert_nop_r6xx(struct r600_bytecode *bc)
1098 {
1099 	struct r600_bytecode_alu alu;
1100 	int r, i;
1101 
1102 	for (i = 0; i < 4; i++) {
1103 		memset(&alu, 0, sizeof(alu));
1104 		alu.op = ALU_OP0_NOP;
1105 		alu.src[0].chan = i;
1106 		alu.dst.chan = i;
1107 		alu.last = (i == 3);
1108 		r = r600_bytecode_add_alu(bc, &alu);
1109 		if (r)
1110 			return r;
1111 	}
1112 	return 0;
1113 }
1114 
1115 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
load_ar_r6xx(struct r600_bytecode * bc)1116 static int load_ar_r6xx(struct r600_bytecode *bc)
1117 {
1118 	struct r600_bytecode_alu alu;
1119 	int r;
1120 
1121 	if (bc->ar_loaded)
1122 		return 0;
1123 
1124 	/* hack to avoid making MOVA the last instruction in the clause */
1125 	if ((bc->cf_last->ndw>>1) >= 110)
1126 		bc->force_add_cf = 1;
1127 
1128 	memset(&alu, 0, sizeof(alu));
1129 	alu.op = ALU_OP1_MOVA_GPR_INT;
1130 	alu.src[0].sel = bc->ar_reg;
1131 	alu.src[0].chan = bc->ar_chan;
1132 	alu.last = 1;
1133 	alu.index_mode = INDEX_MODE_LOOP;
1134 	r = r600_bytecode_add_alu(bc, &alu);
1135 	if (r)
1136 		return r;
1137 
1138 	/* no requirement to set uses waterfall on MOVA_GPR_INT */
1139 	bc->ar_loaded = 1;
1140 	return 0;
1141 }
1142 
1143 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
load_ar(struct r600_bytecode * bc)1144 static int load_ar(struct r600_bytecode *bc)
1145 {
1146 	struct r600_bytecode_alu alu;
1147 	int r;
1148 
1149 	if (bc->ar_handling)
1150 		return load_ar_r6xx(bc);
1151 
1152 	if (bc->ar_loaded)
1153 		return 0;
1154 
1155 	/* hack to avoid making MOVA the last instruction in the clause */
1156 	if ((bc->cf_last->ndw>>1) >= 110)
1157 		bc->force_add_cf = 1;
1158 
1159 	memset(&alu, 0, sizeof(alu));
1160 	alu.op = ALU_OP1_MOVA_INT;
1161 	alu.src[0].sel = bc->ar_reg;
1162 	alu.src[0].chan = bc->ar_chan;
1163 	alu.last = 1;
1164 	r = r600_bytecode_add_alu(bc, &alu);
1165 	if (r)
1166 		return r;
1167 
1168 	bc->cf_last->r6xx_uses_waterfall = 1;
1169 	bc->ar_loaded = 1;
1170 	return 0;
1171 }
1172 
r600_bytecode_add_alu_type(struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,unsigned type)1173 int r600_bytecode_add_alu_type(struct r600_bytecode *bc,
1174 		const struct r600_bytecode_alu *alu, unsigned type)
1175 {
1176 	struct r600_bytecode_alu *nalu = r600_bytecode_alu();
1177 	struct r600_bytecode_alu *lalu;
1178 	int i, r;
1179 
1180 	if (!nalu)
1181 		return -ENOMEM;
1182 	memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
1183 
1184 	if (alu->is_op3) {
1185 		/* will fail later since alu does not support it. */
1186 		assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1187 	}
1188 
1189 	if (bc->cf_last != NULL && bc->cf_last->op != type) {
1190 		/* check if we could add it anyway */
1191 		if (bc->cf_last->op == CF_OP_ALU &&
1192 			type == CF_OP_ALU_PUSH_BEFORE) {
1193 			LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
1194 				if (lalu->execute_mask) {
1195 					bc->force_add_cf = 1;
1196 					break;
1197 				}
1198 			}
1199 		} else
1200 			bc->force_add_cf = 1;
1201 	}
1202 
1203 	/* cf can contains only alu or only vtx or only tex */
1204 	if (bc->cf_last == NULL || bc->force_add_cf) {
1205 		r = r600_bytecode_add_cf(bc);
1206 		if (r) {
1207 			free(nalu);
1208 			return r;
1209 		}
1210 	}
1211 	bc->cf_last->op = type;
1212 
1213 	/* Load index register if required */
1214 	if (bc->chip_class >= EVERGREEN) {
1215 		for (i = 0; i < 3; i++)
1216 			if (nalu->src[i].kc_bank && nalu->src[i].kc_rel)
1217 				egcm_load_index_reg(bc, 0, true);
1218 	}
1219 
1220 	/* Check AR usage and load it if required */
1221 	for (i = 0; i < 3; i++)
1222 		if (nalu->src[i].rel && !bc->ar_loaded)
1223 			load_ar(bc);
1224 
1225 	if (nalu->dst.rel && !bc->ar_loaded)
1226 		load_ar(bc);
1227 
1228 	/* Setup the kcache for this ALU instruction. This will start a new
1229 	 * ALU clause if needed. */
1230 	if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
1231 		free(nalu);
1232 		return r;
1233 	}
1234 
1235 	if (!bc->cf_last->curr_bs_head) {
1236 		bc->cf_last->curr_bs_head = nalu;
1237 	}
1238 	/* number of gpr == the last gpr used in any alu */
1239 	for (i = 0; i < 3; i++) {
1240 		if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) {
1241 			bc->ngpr = nalu->src[i].sel + 1;
1242 		}
1243 		if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
1244 			r600_bytecode_special_constants(nalu->src[i].value,
1245 				&nalu->src[i].sel, &nalu->src[i].neg, nalu->src[i].abs);
1246 	}
1247 	if (nalu->dst.sel >= bc->ngpr) {
1248 		bc->ngpr = nalu->dst.sel + 1;
1249 	}
1250 	LIST_ADDTAIL(&nalu->list, &bc->cf_last->alu);
1251 	/* each alu use 2 dwords */
1252 	bc->cf_last->ndw += 2;
1253 	bc->ndw += 2;
1254 
1255 	/* process cur ALU instructions for bank swizzle */
1256 	if (nalu->last) {
1257 		uint32_t literal[4];
1258 		unsigned nliteral;
1259 		struct r600_bytecode_alu *slots[5];
1260 		int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
1261 		r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
1262 		if (r)
1263 			return r;
1264 
1265 		if (bc->cf_last->prev_bs_head) {
1266 			r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head);
1267 			if (r)
1268 				return r;
1269 		}
1270 
1271 		if (bc->cf_last->prev_bs_head) {
1272 			r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
1273 			if (r)
1274 				return r;
1275 		}
1276 
1277 		r = check_and_set_bank_swizzle(bc, slots);
1278 		if (r)
1279 			return r;
1280 
1281 		for (i = 0, nliteral = 0; i < max_slots; i++) {
1282 			if (slots[i]) {
1283 				r = r600_bytecode_alu_nliterals(slots[i], literal, &nliteral);
1284 				if (r)
1285 					return r;
1286 			}
1287 		}
1288 		bc->cf_last->ndw += align(nliteral, 2);
1289 
1290 		/* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots)
1291 		 * worst case */
1292 		if ((bc->cf_last->ndw >> 1) >= 120) {
1293 			bc->force_add_cf = 1;
1294 		}
1295 
1296 		bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
1297 		bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
1298 		bc->cf_last->curr_bs_head = NULL;
1299 	}
1300 
1301 	if (nalu->dst.rel && bc->r6xx_nop_after_rel_dst)
1302 		insert_nop_r6xx(bc);
1303 
1304 	return 0;
1305 }
1306 
r600_bytecode_add_alu(struct r600_bytecode * bc,const struct r600_bytecode_alu * alu)1307 int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
1308 {
1309 	return r600_bytecode_add_alu_type(bc, alu, CF_OP_ALU);
1310 }
1311 
r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode * bc)1312 static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
1313 {
1314 	switch (bc->chip_class) {
1315 	case R600:
1316 		return 8;
1317 
1318 	case R700:
1319 	case EVERGREEN:
1320 	case CAYMAN:
1321 		return 16;
1322 
1323 	default:
1324 		R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1325 		return 8;
1326 	}
1327 }
1328 
last_inst_was_not_vtx_fetch(struct r600_bytecode * bc)1329 static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc)
1330 {
1331 	return !((r600_isa_cf(bc->cf_last->op)->flags & CF_FETCH) &&
1332 		 bc->cf_last->op != CF_OP_GDS &&
1333 		 (bc->chip_class == CAYMAN ||
1334 		  bc->cf_last->op != CF_OP_TEX));
1335 }
1336 
r600_bytecode_add_vtx_internal(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx,bool use_tc)1337 static int r600_bytecode_add_vtx_internal(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx,
1338 					  bool use_tc)
1339 {
1340 	struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
1341 	int r;
1342 
1343 	if (!nvtx)
1344 		return -ENOMEM;
1345 	memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
1346 
1347 	/* Load index register if required */
1348 	if (bc->chip_class >= EVERGREEN) {
1349 		if (vtx->buffer_index_mode)
1350 			egcm_load_index_reg(bc, vtx->buffer_index_mode - 1, false);
1351 	}
1352 
1353 	/* cf can contains only alu or only vtx or only tex */
1354 	if (bc->cf_last == NULL ||
1355 	    last_inst_was_not_vtx_fetch(bc) ||
1356 	    bc->force_add_cf) {
1357 		r = r600_bytecode_add_cf(bc);
1358 		if (r) {
1359 			free(nvtx);
1360 			return r;
1361 		}
1362 		switch (bc->chip_class) {
1363 		case R600:
1364 		case R700:
1365 			bc->cf_last->op = CF_OP_VTX;
1366 			break;
1367 		case EVERGREEN:
1368 			if (use_tc)
1369 				bc->cf_last->op = CF_OP_TEX;
1370 			else
1371 				bc->cf_last->op = CF_OP_VTX;
1372 			break;
1373 		case CAYMAN:
1374 			bc->cf_last->op = CF_OP_TEX;
1375 			break;
1376 		default:
1377 			R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1378 			free(nvtx);
1379 			return -EINVAL;
1380 		}
1381 	}
1382 	LIST_ADDTAIL(&nvtx->list, &bc->cf_last->vtx);
1383 	/* each fetch use 4 dwords */
1384 	bc->cf_last->ndw += 4;
1385 	bc->ndw += 4;
1386 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1387 		bc->force_add_cf = 1;
1388 
1389 	bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1);
1390 	bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1);
1391 
1392 	return 0;
1393 }
1394 
r600_bytecode_add_vtx(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx)1395 int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1396 {
1397 	return r600_bytecode_add_vtx_internal(bc, vtx, false);
1398 }
1399 
r600_bytecode_add_vtx_tc(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx)1400 int r600_bytecode_add_vtx_tc(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1401 {
1402 	return r600_bytecode_add_vtx_internal(bc, vtx, true);
1403 }
1404 
r600_bytecode_add_tex(struct r600_bytecode * bc,const struct r600_bytecode_tex * tex)1405 int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
1406 {
1407 	struct r600_bytecode_tex *ntex = r600_bytecode_tex();
1408 	int r;
1409 
1410 	if (!ntex)
1411 		return -ENOMEM;
1412 	memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
1413 
1414 	/* Load index register if required */
1415 	if (bc->chip_class >= EVERGREEN) {
1416 		if (tex->sampler_index_mode || tex->resource_index_mode)
1417 			egcm_load_index_reg(bc, 1, false);
1418 	}
1419 
1420 	/* we can't fetch data und use it as texture lookup address in the same TEX clause */
1421 	if (bc->cf_last != NULL &&
1422 		bc->cf_last->op == CF_OP_TEX) {
1423 		struct r600_bytecode_tex *ttex;
1424 		LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
1425 			if (ttex->dst_gpr == ntex->src_gpr) {
1426 				bc->force_add_cf = 1;
1427 				break;
1428 			}
1429 		}
1430 		/* slight hack to make gradients always go into same cf */
1431 		if (ntex->op == FETCH_OP_SET_GRADIENTS_H)
1432 			bc->force_add_cf = 1;
1433 	}
1434 
1435 	/* cf can contains only alu or only vtx or only tex */
1436 	if (bc->cf_last == NULL ||
1437 		bc->cf_last->op != CF_OP_TEX ||
1438 	        bc->force_add_cf) {
1439 		r = r600_bytecode_add_cf(bc);
1440 		if (r) {
1441 			free(ntex);
1442 			return r;
1443 		}
1444 		bc->cf_last->op = CF_OP_TEX;
1445 	}
1446 	if (ntex->src_gpr >= bc->ngpr) {
1447 		bc->ngpr = ntex->src_gpr + 1;
1448 	}
1449 	if (ntex->dst_gpr >= bc->ngpr) {
1450 		bc->ngpr = ntex->dst_gpr + 1;
1451 	}
1452 	LIST_ADDTAIL(&ntex->list, &bc->cf_last->tex);
1453 	/* each texture fetch use 4 dwords */
1454 	bc->cf_last->ndw += 4;
1455 	bc->ndw += 4;
1456 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1457 		bc->force_add_cf = 1;
1458 	return 0;
1459 }
1460 
r600_bytecode_add_gds(struct r600_bytecode * bc,const struct r600_bytecode_gds * gds)1461 int r600_bytecode_add_gds(struct r600_bytecode *bc, const struct r600_bytecode_gds *gds)
1462 {
1463 	struct r600_bytecode_gds *ngds = r600_bytecode_gds();
1464 	int r;
1465 
1466 	if (ngds == NULL)
1467 		return -ENOMEM;
1468 	memcpy(ngds, gds, sizeof(struct r600_bytecode_gds));
1469 
1470 	if (bc->chip_class >= EVERGREEN) {
1471 		if (gds->uav_index_mode)
1472 			egcm_load_index_reg(bc, gds->uav_index_mode - 1, false);
1473 	}
1474 
1475 	if (bc->cf_last == NULL ||
1476 	    bc->cf_last->op != CF_OP_GDS ||
1477 	    bc->force_add_cf) {
1478 		r = r600_bytecode_add_cf(bc);
1479 		if (r) {
1480 			free(ngds);
1481 			return r;
1482 		}
1483 		bc->cf_last->op = CF_OP_GDS;
1484 	}
1485 
1486 	LIST_ADDTAIL(&ngds->list, &bc->cf_last->gds);
1487 	bc->cf_last->ndw += 4; /* each GDS uses 4 dwords */
1488 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1489 		bc->force_add_cf = 1;
1490 	return 0;
1491 }
1492 
r600_bytecode_add_cfinst(struct r600_bytecode * bc,unsigned op)1493 int r600_bytecode_add_cfinst(struct r600_bytecode *bc, unsigned op)
1494 {
1495 	int r;
1496 	r = r600_bytecode_add_cf(bc);
1497 	if (r)
1498 		return r;
1499 
1500 	bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
1501 	bc->cf_last->op = op;
1502 	return 0;
1503 }
1504 
cm_bytecode_add_cf_end(struct r600_bytecode * bc)1505 int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
1506 {
1507 	return r600_bytecode_add_cfinst(bc, CF_OP_CF_END);
1508 }
1509 
1510 /* common to all 3 families */
r600_bytecode_vtx_build(struct r600_bytecode * bc,struct r600_bytecode_vtx * vtx,unsigned id)1511 static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
1512 {
1513 	bc->bytecode[id] = S_SQ_VTX_WORD0_VTX_INST(vtx->op) |
1514 			S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
1515 			S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
1516 			S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
1517 			S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
1518 	if (bc->chip_class < CAYMAN)
1519 		bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
1520 	id++;
1521 	bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
1522 				S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
1523 				S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
1524 				S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
1525 				S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
1526 				S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
1527 				S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
1528 				S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
1529 				S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
1530 				S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
1531 	bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
1532 				S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
1533 	if (bc->chip_class >= EVERGREEN)
1534 		bc->bytecode[id] |= ((vtx->buffer_index_mode & 0x3) << 21); // S_SQ_VTX_WORD2_BIM(vtx->buffer_index_mode);
1535 	if (bc->chip_class < CAYMAN)
1536 		bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
1537 	id++;
1538 	bc->bytecode[id++] = 0;
1539 	return 0;
1540 }
1541 
1542 /* common to all 3 families */
r600_bytecode_tex_build(struct r600_bytecode * bc,struct r600_bytecode_tex * tex,unsigned id)1543 static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
1544 {
1545 	bc->bytecode[id] = S_SQ_TEX_WORD0_TEX_INST(
1546 					r600_isa_fetch_opcode(bc->isa->hw_class, tex->op)) |
1547 			    EG_S_SQ_TEX_WORD0_INST_MOD(tex->inst_mod) |
1548 				S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
1549 				S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
1550 				S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
1551 	if (bc->chip_class >= EVERGREEN)
1552 		bc->bytecode[id] |= ((tex->sampler_index_mode & 0x3) << 27) | // S_SQ_TEX_WORD0_SIM(tex->sampler_index_mode);
1553 				((tex->resource_index_mode & 0x3) << 25); // S_SQ_TEX_WORD0_RIM(tex->resource_index_mode)
1554 	id++;
1555 	bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
1556 				S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
1557 				S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
1558 				S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
1559 				S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
1560 				S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
1561 				S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
1562 				S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
1563 				S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
1564 				S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
1565 				S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
1566 	bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
1567 				S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
1568 				S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
1569 				S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
1570 				S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
1571 				S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
1572 				S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
1573 				S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
1574 	bc->bytecode[id++] = 0;
1575 	return 0;
1576 }
1577 
1578 /* r600 only, r700/eg bits in r700_asm.c */
r600_bytecode_alu_build(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,unsigned id)1579 static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
1580 {
1581 	unsigned opcode = r600_isa_alu_opcode(bc->isa->hw_class, alu->op);
1582 
1583 	/* don't replace gpr by pv or ps for destination register */
1584 	bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
1585 				S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
1586 				S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
1587 				S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
1588 				S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
1589 				S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
1590 				S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
1591 				S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
1592 				S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
1593 				S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) |
1594 				S_SQ_ALU_WORD0_LAST(alu->last);
1595 
1596 	if (alu->is_op3) {
1597 		assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1598 		bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1599 					S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1600 					S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1601 					S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1602 					S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
1603 					S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
1604 					S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
1605 					S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
1606 					S_SQ_ALU_WORD1_OP3_ALU_INST(opcode) |
1607 					S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
1608 	} else {
1609 		bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1610 					S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1611 					S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1612 					S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1613 					S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
1614 					S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
1615 					S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
1616 					S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
1617 					S_SQ_ALU_WORD1_OP2_ALU_INST(opcode) |
1618 					S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
1619 					S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) |
1620 					S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred);
1621 	}
1622 	return 0;
1623 }
1624 
r600_bytecode_cf_vtx_build(uint32_t * bytecode,const struct r600_bytecode_cf * cf)1625 static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
1626 {
1627 	*bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
1628 	*bytecode++ = S_SQ_CF_WORD1_CF_INST(r600_isa_cf_opcode(ISA_CC_R600, cf->op)) |
1629 			S_SQ_CF_WORD1_BARRIER(1) |
1630 			S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1)|
1631 			S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
1632 }
1633 
1634 /* common for r600/r700 - eg in eg_asm.c */
r600_bytecode_cf_build(struct r600_bytecode * bc,struct r600_bytecode_cf * cf)1635 static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
1636 {
1637 	unsigned id = cf->id;
1638 	const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1639 	unsigned opcode = r600_isa_cf_opcode(bc->isa->hw_class, cf->op);
1640 
1641 
1642 	if (cf->op == CF_NATIVE) {
1643 		bc->bytecode[id++] = cf->isa[0];
1644 		bc->bytecode[id++] = cf->isa[1];
1645 	} else if (cfop->flags & CF_ALU) {
1646 		bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
1647 			S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
1648 			S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
1649 			S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
1650 
1651 		bc->bytecode[id++] = S_SQ_CF_ALU_WORD1_CF_INST(opcode) |
1652 			S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
1653 			S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
1654 			S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
1655 					S_SQ_CF_ALU_WORD1_BARRIER(1) |
1656 					S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chip_class == R600 ? cf->r6xx_uses_waterfall : 0) |
1657 					S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
1658 	} else if (cfop->flags & CF_FETCH) {
1659 		if (bc->chip_class == R700)
1660 			r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1661 		else
1662 			r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1663 	} else if (cfop->flags & CF_EXP) {
1664 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1665 			S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1666 			S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1667 			S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1668 			S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1669 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1670 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
1671 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
1672 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
1673 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
1674 			S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1675 			S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1676 			S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program);
1677 	} else if (cfop->flags & CF_MEM) {
1678 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1679 			S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1680 			S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1681 			S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1682 			S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1683 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1684 			S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1685 			S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1686 			S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program) |
1687 			S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
1688 			S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
1689 	} else {
1690 		bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
1691 		bc->bytecode[id++] = S_SQ_CF_WORD1_CF_INST(opcode) |
1692 					S_SQ_CF_WORD1_BARRIER(1) |
1693 			                S_SQ_CF_WORD1_COND(cf->cond) |
1694 			                S_SQ_CF_WORD1_POP_COUNT(cf->pop_count) |
1695 					S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
1696 	}
1697 	return 0;
1698 }
1699 
r600_bytecode_build(struct r600_bytecode * bc)1700 int r600_bytecode_build(struct r600_bytecode *bc)
1701 {
1702 	struct r600_bytecode_cf *cf;
1703 	struct r600_bytecode_alu *alu;
1704 	struct r600_bytecode_vtx *vtx;
1705 	struct r600_bytecode_tex *tex;
1706 	struct r600_bytecode_gds *gds;
1707 	uint32_t literal[4];
1708 	unsigned nliteral;
1709 	unsigned addr;
1710 	int i, r;
1711 
1712 	if (!bc->nstack) { // If not 0, Stack_size already provided by llvm
1713 		if (bc->stack.max_entries)
1714 			bc->nstack = bc->stack.max_entries;
1715 		else if (bc->type == PIPE_SHADER_VERTEX ||
1716 			 bc->type == PIPE_SHADER_TESS_EVAL ||
1717 			 bc->type == PIPE_SHADER_TESS_CTRL)
1718 			bc->nstack = 1;
1719 	}
1720 
1721 	/* first path compute addr of each CF block */
1722 	/* addr start after all the CF instructions */
1723 	addr = bc->cf_last->id + 2;
1724 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1725 		if (r600_isa_cf(cf->op)->flags & CF_FETCH) {
1726 			addr += 3;
1727 			addr &= 0xFFFFFFFCUL;
1728 		}
1729 		cf->addr = addr;
1730 		addr += cf->ndw;
1731 		bc->ndw = cf->addr + cf->ndw;
1732 	}
1733 	free(bc->bytecode);
1734 	bc->bytecode = calloc(4, bc->ndw);
1735 	if (bc->bytecode == NULL)
1736 		return -ENOMEM;
1737 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1738 		const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1739 		addr = cf->addr;
1740 		if (bc->chip_class >= EVERGREEN)
1741 			r = eg_bytecode_cf_build(bc, cf);
1742 		else
1743 			r = r600_bytecode_cf_build(bc, cf);
1744 		if (r)
1745 			return r;
1746 		if (cfop->flags & CF_ALU) {
1747 			nliteral = 0;
1748 			memset(literal, 0, sizeof(literal));
1749 			LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
1750 				r = r600_bytecode_alu_nliterals(alu, literal, &nliteral);
1751 				if (r)
1752 					return r;
1753 				r600_bytecode_alu_adjust_literals(alu, literal, nliteral);
1754 				r600_bytecode_assign_kcache_banks(alu, cf->kcache);
1755 
1756 				switch(bc->chip_class) {
1757 				case R600:
1758 					r = r600_bytecode_alu_build(bc, alu, addr);
1759 					break;
1760 				case R700:
1761 					r = r700_bytecode_alu_build(bc, alu, addr);
1762 					break;
1763 				case EVERGREEN:
1764 				case CAYMAN:
1765 					r = eg_bytecode_alu_build(bc, alu, addr);
1766 					break;
1767 				default:
1768 					R600_ERR("unknown chip class %d.\n", bc->chip_class);
1769 					return -EINVAL;
1770 				}
1771 				if (r)
1772 					return r;
1773 				addr += 2;
1774 				if (alu->last) {
1775 					for (i = 0; i < align(nliteral, 2); ++i) {
1776 						bc->bytecode[addr++] = literal[i];
1777 					}
1778 					nliteral = 0;
1779 					memset(literal, 0, sizeof(literal));
1780 				}
1781 			}
1782 		} else if (cf->op == CF_OP_VTX) {
1783 			LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1784 				r = r600_bytecode_vtx_build(bc, vtx, addr);
1785 				if (r)
1786 					return r;
1787 				addr += 4;
1788 			}
1789 		} else if (cf->op == CF_OP_GDS) {
1790 			assert(bc->chip_class >= EVERGREEN);
1791 			LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
1792 				r = eg_bytecode_gds_build(bc, gds, addr);
1793 				if (r)
1794 					return r;
1795 				addr += 4;
1796 			}
1797 		} else if (cf->op == CF_OP_TEX) {
1798 			LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1799 				assert(bc->chip_class >= EVERGREEN);
1800 				r = r600_bytecode_vtx_build(bc, vtx, addr);
1801 				if (r)
1802 					return r;
1803 				addr += 4;
1804 			}
1805 			LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
1806 				r = r600_bytecode_tex_build(bc, tex, addr);
1807 				if (r)
1808 					return r;
1809 				addr += 4;
1810 			}
1811 		}
1812 	}
1813 	return 0;
1814 }
1815 
r600_bytecode_clear(struct r600_bytecode * bc)1816 void r600_bytecode_clear(struct r600_bytecode *bc)
1817 {
1818 	struct r600_bytecode_cf *cf = NULL, *next_cf;
1819 
1820 	free(bc->bytecode);
1821 	bc->bytecode = NULL;
1822 
1823 	LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
1824 		struct r600_bytecode_alu *alu = NULL, *next_alu;
1825 		struct r600_bytecode_tex *tex = NULL, *next_tex;
1826 		struct r600_bytecode_tex *vtx = NULL, *next_vtx;
1827 		struct r600_bytecode_gds *gds = NULL, *next_gds;
1828 
1829 		LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
1830 			free(alu);
1831 		}
1832 
1833 		LIST_INITHEAD(&cf->alu);
1834 
1835 		LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
1836 			free(tex);
1837 		}
1838 
1839 		LIST_INITHEAD(&cf->tex);
1840 
1841 		LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
1842 			free(vtx);
1843 		}
1844 
1845 		LIST_INITHEAD(&cf->vtx);
1846 
1847 		LIST_FOR_EACH_ENTRY_SAFE(gds, next_gds, &cf->gds, list) {
1848 			free(gds);
1849 		}
1850 
1851 		LIST_INITHEAD(&cf->gds);
1852 
1853 		free(cf);
1854 	}
1855 
1856 	LIST_INITHEAD(&cf->list);
1857 }
1858 
print_swizzle(unsigned swz)1859 static int print_swizzle(unsigned swz)
1860 {
1861 	const char * swzchars = "xyzw01?_";
1862 	assert(swz<8 && swz != 6);
1863 	return fprintf(stderr, "%c", swzchars[swz]);
1864 }
1865 
print_sel(unsigned sel,unsigned rel,unsigned index_mode,unsigned need_brackets)1866 static int print_sel(unsigned sel, unsigned rel, unsigned index_mode,
1867 		unsigned need_brackets)
1868 {
1869 	int o = 0;
1870 	if (rel && index_mode >= 5 && sel < 128)
1871 		o += fprintf(stderr, "G");
1872 	if (rel || need_brackets) {
1873 		o += fprintf(stderr, "[");
1874 	}
1875 	o += fprintf(stderr, "%d", sel);
1876 	if (rel) {
1877 		if (index_mode == 0 || index_mode == 6)
1878 			o += fprintf(stderr, "+AR");
1879 		else if (index_mode == 4)
1880 			o += fprintf(stderr, "+AL");
1881 	}
1882 	if (rel || need_brackets) {
1883 		o += fprintf(stderr, "]");
1884 	}
1885 	return o;
1886 }
1887 
print_dst(struct r600_bytecode_alu * alu)1888 static int print_dst(struct r600_bytecode_alu *alu)
1889 {
1890 	int o = 0;
1891 	unsigned sel = alu->dst.sel;
1892 	char reg_char = 'R';
1893 	if (sel > 128 - 4) { /* clause temporary gpr */
1894 		sel -= 128 - 4;
1895 		reg_char = 'T';
1896 	}
1897 
1898 	if (alu_writes(alu)) {
1899 		o += fprintf(stderr, "%c", reg_char);
1900 		o += print_sel(alu->dst.sel, alu->dst.rel, alu->index_mode, 0);
1901 	} else {
1902 		o += fprintf(stderr, "__");
1903 	}
1904 	o += fprintf(stderr, ".");
1905 	o += print_swizzle(alu->dst.chan);
1906 	return o;
1907 }
1908 
print_src(struct r600_bytecode_alu * alu,unsigned idx)1909 static int print_src(struct r600_bytecode_alu *alu, unsigned idx)
1910 {
1911 	int o = 0;
1912 	struct r600_bytecode_alu_src *src = &alu->src[idx];
1913 	unsigned sel = src->sel, need_sel = 1, need_chan = 1, need_brackets = 0;
1914 
1915 	if (src->neg)
1916 		o += fprintf(stderr,"-");
1917 	if (src->abs)
1918 		o += fprintf(stderr,"|");
1919 
1920 	if (sel < 128 - 4) {
1921 		o += fprintf(stderr, "R");
1922 	} else if (sel < 128) {
1923 		o += fprintf(stderr, "T");
1924 		sel -= 128 - 4;
1925 	} else if (sel < 160) {
1926 		o += fprintf(stderr, "KC0");
1927 		need_brackets = 1;
1928 		sel -= 128;
1929 	} else if (sel < 192) {
1930 		o += fprintf(stderr, "KC1");
1931 		need_brackets = 1;
1932 		sel -= 160;
1933 	} else if (sel >= 512) {
1934 		o += fprintf(stderr, "C%d", src->kc_bank);
1935 		need_brackets = 1;
1936 		sel -= 512;
1937 	} else if (sel >= 448) {
1938 		o += fprintf(stderr, "Param");
1939 		sel -= 448;
1940 		need_chan = 0;
1941 	} else if (sel >= 288) {
1942 		o += fprintf(stderr, "KC3");
1943 		need_brackets = 1;
1944 		sel -= 288;
1945 	} else if (sel >= 256) {
1946 		o += fprintf(stderr, "KC2");
1947 		need_brackets = 1;
1948 		sel -= 256;
1949 	} else {
1950 		need_sel = 0;
1951 		need_chan = 0;
1952 		switch (sel) {
1953 		case EG_V_SQ_ALU_SRC_LDS_DIRECT_A:
1954 			o += fprintf(stderr, "LDS_A[0x%08X]", src->value);
1955 			break;
1956 		case EG_V_SQ_ALU_SRC_LDS_DIRECT_B:
1957 			o += fprintf(stderr, "LDS_B[0x%08X]", src->value);
1958 			break;
1959 		case EG_V_SQ_ALU_SRC_LDS_OQ_A:
1960 			o += fprintf(stderr, "LDS_OQ_A");
1961 			need_chan = 1;
1962 			break;
1963 		case EG_V_SQ_ALU_SRC_LDS_OQ_B:
1964 			o += fprintf(stderr, "LDS_OQ_B");
1965 			need_chan = 1;
1966 			break;
1967 		case EG_V_SQ_ALU_SRC_LDS_OQ_A_POP:
1968 			o += fprintf(stderr, "LDS_OQ_A_POP");
1969 			need_chan = 1;
1970 			break;
1971 		case EG_V_SQ_ALU_SRC_LDS_OQ_B_POP:
1972 			o += fprintf(stderr, "LDS_OQ_B_POP");
1973 			need_chan = 1;
1974 			break;
1975 		case EG_V_SQ_ALU_SRC_SE_ID:
1976 			o += fprintf(stderr, "SE_ID");
1977 			break;
1978 		case EG_V_SQ_ALU_SRC_SIMD_ID:
1979 			o += fprintf(stderr, "SIMD_ID");
1980 			break;
1981 		case EG_V_SQ_ALU_SRC_HW_WAVE_ID:
1982 			o += fprintf(stderr, "HW_WAVE_ID");
1983 			break;
1984 		case V_SQ_ALU_SRC_PS:
1985 			o += fprintf(stderr, "PS");
1986 			break;
1987 		case V_SQ_ALU_SRC_PV:
1988 			o += fprintf(stderr, "PV");
1989 			need_chan = 1;
1990 			break;
1991 		case V_SQ_ALU_SRC_LITERAL:
1992 			o += fprintf(stderr, "[0x%08X %f]", src->value, u_bitcast_u2f(src->value));
1993 			break;
1994 		case V_SQ_ALU_SRC_0_5:
1995 			o += fprintf(stderr, "0.5");
1996 			break;
1997 		case V_SQ_ALU_SRC_M_1_INT:
1998 			o += fprintf(stderr, "-1");
1999 			break;
2000 		case V_SQ_ALU_SRC_1_INT:
2001 			o += fprintf(stderr, "1");
2002 			break;
2003 		case V_SQ_ALU_SRC_1:
2004 			o += fprintf(stderr, "1.0");
2005 			break;
2006 		case V_SQ_ALU_SRC_0:
2007 			o += fprintf(stderr, "0");
2008 			break;
2009 		default:
2010 			o += fprintf(stderr, "??IMM_%d", sel);
2011 			break;
2012 		}
2013 	}
2014 
2015 	if (need_sel)
2016 		o += print_sel(sel, src->rel, alu->index_mode, need_brackets);
2017 
2018 	if (need_chan) {
2019 		o += fprintf(stderr, ".");
2020 		o += print_swizzle(src->chan);
2021 	}
2022 
2023 	if (src->abs)
2024 		o += fprintf(stderr,"|");
2025 
2026 	return o;
2027 }
2028 
print_indent(int p,int c)2029 static int print_indent(int p, int c)
2030 {
2031 	int o = 0;
2032 	while (p++ < c)
2033 		o += fprintf(stderr, " ");
2034 	return o;
2035 }
2036 
r600_bytecode_disasm(struct r600_bytecode * bc)2037 void r600_bytecode_disasm(struct r600_bytecode *bc)
2038 {
2039 	const char *index_mode[] = {"CF_INDEX_NONE", "CF_INDEX_0", "CF_INDEX_1"};
2040 	static int index = 0;
2041 	struct r600_bytecode_cf *cf = NULL;
2042 	struct r600_bytecode_alu *alu = NULL;
2043 	struct r600_bytecode_vtx *vtx = NULL;
2044 	struct r600_bytecode_tex *tex = NULL;
2045 	struct r600_bytecode_gds *gds = NULL;
2046 
2047 	unsigned i, id, ngr = 0, last;
2048 	uint32_t literal[4];
2049 	unsigned nliteral;
2050 	char chip = '6';
2051 
2052 	switch (bc->chip_class) {
2053 	case R700:
2054 		chip = '7';
2055 		break;
2056 	case EVERGREEN:
2057 		chip = 'E';
2058 		break;
2059 	case CAYMAN:
2060 		chip = 'C';
2061 		break;
2062 	case R600:
2063 	default:
2064 		chip = '6';
2065 		break;
2066 	}
2067 	fprintf(stderr, "bytecode %d dw -- %d gprs -- %d nstack -------------\n",
2068 	        bc->ndw, bc->ngpr, bc->nstack);
2069 	fprintf(stderr, "shader %d -- %c\n", index++, chip);
2070 
2071 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
2072 		id = cf->id;
2073 		if (cf->op == CF_NATIVE) {
2074 			fprintf(stderr, "%04d %08X %08X CF_NATIVE\n", id, bc->bytecode[id],
2075 					bc->bytecode[id + 1]);
2076 		} else {
2077 			const struct cf_op_info *cfop = r600_isa_cf(cf->op);
2078 			if (cfop->flags & CF_ALU) {
2079 				if (cf->eg_alu_extended) {
2080 					fprintf(stderr, "%04d %08X %08X  %s\n", id, bc->bytecode[id],
2081 							bc->bytecode[id + 1], "ALU_EXT");
2082 					id += 2;
2083 				}
2084 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2085 						bc->bytecode[id + 1], cfop->name);
2086 				fprintf(stderr, "%d @%d ", cf->ndw / 2, cf->addr);
2087 				for (i = 0; i < 4; ++i) {
2088 					if (cf->kcache[i].mode) {
2089 						int c_start = (cf->kcache[i].addr << 4);
2090 						int c_end = c_start + (cf->kcache[i].mode << 4);
2091 						fprintf(stderr, "KC%d[CB%d:%d-%d%s%s] ",
2092 						        i, cf->kcache[i].bank, c_start, c_end,
2093 						        cf->kcache[i].index_mode ? " " : "",
2094 						        cf->kcache[i].index_mode ? index_mode[cf->kcache[i].index_mode] : "");
2095 					}
2096 				}
2097 				fprintf(stderr, "\n");
2098 			} else if (cfop->flags & CF_FETCH) {
2099 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2100 						bc->bytecode[id + 1], cfop->name);
2101 				fprintf(stderr, "%d @%d ", cf->ndw / 4, cf->addr);
2102 				fprintf(stderr, "\n");
2103 				if (cf->end_of_program)
2104 					fprintf(stderr, "EOP ");
2105 			} else if (cfop->flags & CF_EXP) {
2106 				int o = 0;
2107 				const char *exp_type[] = {"PIXEL", "POS  ", "PARAM"};
2108 				o += fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2109 						bc->bytecode[id + 1], cfop->name);
2110 				o += print_indent(o, 43);
2111 				o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2112 				if (cf->output.burst_count > 1) {
2113 					o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2114 							cf->output.array_base + cf->output.burst_count - 1);
2115 
2116 					o += print_indent(o, 55);
2117 					o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2118 							cf->output.gpr + cf->output.burst_count - 1);
2119 				} else {
2120 					o += fprintf(stderr, "%d ", cf->output.array_base);
2121 					o += print_indent(o, 55);
2122 					o += fprintf(stderr, "R%d.", cf->output.gpr);
2123 				}
2124 
2125 				o += print_swizzle(cf->output.swizzle_x);
2126 				o += print_swizzle(cf->output.swizzle_y);
2127 				o += print_swizzle(cf->output.swizzle_z);
2128 				o += print_swizzle(cf->output.swizzle_w);
2129 
2130 				print_indent(o, 67);
2131 
2132 				fprintf(stderr, " ES:%X ", cf->output.elem_size);
2133 				if (cf->mark)
2134 					fprintf(stderr, "MARK ");
2135 				if (!cf->barrier)
2136 					fprintf(stderr, "NO_BARRIER ");
2137 				if (cf->end_of_program)
2138 					fprintf(stderr, "EOP ");
2139 				fprintf(stderr, "\n");
2140 			} else if (r600_isa_cf(cf->op)->flags & CF_MEM) {
2141 				int o = 0;
2142 				const char *exp_type[] = {"WRITE", "WRITE_IND", "WRITE_ACK",
2143 						"WRITE_IND_ACK"};
2144 				o += fprintf(stderr, "%04d %08X %08X  %s ", id,
2145 						bc->bytecode[id], bc->bytecode[id + 1], cfop->name);
2146 				o += print_indent(o, 43);
2147 				o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2148 
2149 				if (r600_isa_cf(cf->op)->flags & CF_RAT) {
2150 					o += fprintf(stderr, "RAT%d", cf->rat.id);
2151 					if (cf->rat.index_mode) {
2152 						o += fprintf(stderr, "[IDX%d]", cf->rat.index_mode - 1);
2153 					}
2154 					o += fprintf(stderr, " INST: %d ", cf->rat.inst);
2155 				}
2156 
2157 				if (cf->output.burst_count > 1) {
2158 					o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2159 							cf->output.array_base + cf->output.burst_count - 1);
2160 					o += print_indent(o, 55);
2161 					o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2162 							cf->output.gpr + cf->output.burst_count - 1);
2163 				} else {
2164 					o += fprintf(stderr, "%d ", cf->output.array_base);
2165 					o += print_indent(o, 55);
2166 					o += fprintf(stderr, "R%d.", cf->output.gpr);
2167 				}
2168 				for (i = 0; i < 4; ++i) {
2169 					if (cf->output.comp_mask & (1 << i))
2170 						o += print_swizzle(i);
2171 					else
2172 						o += print_swizzle(7);
2173 				}
2174 
2175 				if (cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND ||
2176 				    cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_READ_IND)
2177 					o += fprintf(stderr, " R%d", cf->output.index_gpr);
2178 
2179 				o += print_indent(o, 67);
2180 
2181 				fprintf(stderr, " ES:%i ", cf->output.elem_size);
2182 				if (cf->output.array_size != 0xFFF)
2183 					fprintf(stderr, "AS:%i ", cf->output.array_size);
2184 				if (cf->mark)
2185 					fprintf(stderr, "MARK ");
2186 				if (!cf->barrier)
2187 					fprintf(stderr, "NO_BARRIER ");
2188 				if (cf->end_of_program)
2189 					fprintf(stderr, "EOP ");
2190 				fprintf(stderr, "\n");
2191 			} else {
2192 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2193 						bc->bytecode[id + 1], cfop->name);
2194 				fprintf(stderr, "@%d ", cf->cf_addr);
2195 				if (cf->cond)
2196 					fprintf(stderr, "CND:%X ", cf->cond);
2197 				if (cf->pop_count)
2198 					fprintf(stderr, "POP:%X ", cf->pop_count);
2199 				if (cf->count && (cfop->flags & CF_EMIT))
2200 					fprintf(stderr, "STREAM%d ", cf->count);
2201 				if (cf->end_of_program)
2202 					fprintf(stderr, "EOP ");
2203 				fprintf(stderr, "\n");
2204 			}
2205 		}
2206 
2207 		id = cf->addr;
2208 		nliteral = 0;
2209 		last = 1;
2210 		LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2211 			const char *omod_str[] = {"","*2","*4","/2"};
2212 			const struct alu_op_info *aop = r600_isa_alu(alu->op);
2213 			int o = 0;
2214 
2215 			r600_bytecode_alu_nliterals(alu, literal, &nliteral);
2216 			o += fprintf(stderr, " %04d %08X %08X  ", id, bc->bytecode[id], bc->bytecode[id+1]);
2217 			if (last)
2218 				o += fprintf(stderr, "%4d ", ++ngr);
2219 			else
2220 				o += fprintf(stderr, "     ");
2221 			o += fprintf(stderr, "%c%c %c ", alu->execute_mask ? 'M':' ',
2222 					alu->update_pred ? 'P':' ',
2223 					alu->pred_sel ? alu->pred_sel==2 ? '0':'1':' ');
2224 
2225 			o += fprintf(stderr, "%s%s%s ", aop->name,
2226 					omod_str[alu->omod], alu->dst.clamp ? "_sat":"");
2227 
2228 			o += print_indent(o,60);
2229 			o += print_dst(alu);
2230 			for (i = 0; i < aop->src_count; ++i) {
2231 				o += fprintf(stderr, i == 0 ? ",  ": ", ");
2232 				o += print_src(alu, i);
2233 			}
2234 
2235 			if (alu->bank_swizzle) {
2236 				o += print_indent(o,75);
2237 				o += fprintf(stderr, "  BS:%d", alu->bank_swizzle);
2238 			}
2239 
2240 			fprintf(stderr, "\n");
2241 			id += 2;
2242 
2243 			if (alu->last) {
2244 				for (i = 0; i < nliteral; i++, id++) {
2245 					float *f = (float*)(bc->bytecode + id);
2246 					o = fprintf(stderr, " %04d %08X", id, bc->bytecode[id]);
2247 					print_indent(o, 60);
2248 					fprintf(stderr, " %f (%d)\n", *f, *(bc->bytecode + id));
2249 				}
2250 				id += nliteral & 1;
2251 				nliteral = 0;
2252 			}
2253 			last = alu->last;
2254 		}
2255 
2256 		LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2257 			int o = 0;
2258 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
2259 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
2260 
2261 			o += fprintf(stderr, "%s ", r600_isa_fetch(tex->op)->name);
2262 
2263 			o += print_indent(o, 50);
2264 
2265 			o += fprintf(stderr, "R%d.", tex->dst_gpr);
2266 			o += print_swizzle(tex->dst_sel_x);
2267 			o += print_swizzle(tex->dst_sel_y);
2268 			o += print_swizzle(tex->dst_sel_z);
2269 			o += print_swizzle(tex->dst_sel_w);
2270 
2271 			o += fprintf(stderr, ", R%d.", tex->src_gpr);
2272 			o += print_swizzle(tex->src_sel_x);
2273 			o += print_swizzle(tex->src_sel_y);
2274 			o += print_swizzle(tex->src_sel_z);
2275 			o += print_swizzle(tex->src_sel_w);
2276 
2277 			o += fprintf(stderr, ",  RID:%d", tex->resource_id);
2278 			o += fprintf(stderr, ", SID:%d  ", tex->sampler_id);
2279 
2280 			if (tex->sampler_index_mode)
2281 				fprintf(stderr, "SQ_%s ", index_mode[tex->sampler_index_mode]);
2282 
2283 			if (tex->lod_bias)
2284 				fprintf(stderr, "LB:%d ", tex->lod_bias);
2285 
2286 			fprintf(stderr, "CT:%c%c%c%c ",
2287 					tex->coord_type_x ? 'N' : 'U',
2288 					tex->coord_type_y ? 'N' : 'U',
2289 					tex->coord_type_z ? 'N' : 'U',
2290 					tex->coord_type_w ? 'N' : 'U');
2291 
2292 			if (tex->offset_x)
2293 				fprintf(stderr, "OX:%d ", tex->offset_x);
2294 			if (tex->offset_y)
2295 				fprintf(stderr, "OY:%d ", tex->offset_y);
2296 			if (tex->offset_z)
2297 				fprintf(stderr, "OZ:%d ", tex->offset_z);
2298 
2299 			id += 4;
2300 			fprintf(stderr, "\n");
2301 		}
2302 
2303 		LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2304 			int o = 0;
2305 			const char * fetch_type[] = {"VERTEX", "INSTANCE", ""};
2306 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
2307 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
2308 
2309 			o += fprintf(stderr, "%s ", r600_isa_fetch(vtx->op)->name);
2310 
2311 			o += print_indent(o, 50);
2312 
2313 			o += fprintf(stderr, "R%d.", vtx->dst_gpr);
2314 			o += print_swizzle(vtx->dst_sel_x);
2315 			o += print_swizzle(vtx->dst_sel_y);
2316 			o += print_swizzle(vtx->dst_sel_z);
2317 			o += print_swizzle(vtx->dst_sel_w);
2318 
2319 			o += fprintf(stderr, ", R%d.", vtx->src_gpr);
2320 			o += print_swizzle(vtx->src_sel_x);
2321 
2322 			if (vtx->offset)
2323 				fprintf(stderr, " +%db", vtx->offset);
2324 
2325 			o += print_indent(o, 55);
2326 
2327 			fprintf(stderr, ",  RID:%d ", vtx->buffer_id);
2328 
2329 			fprintf(stderr, "%s ", fetch_type[vtx->fetch_type]);
2330 
2331 			if (bc->chip_class < CAYMAN && vtx->mega_fetch_count)
2332 				fprintf(stderr, "MFC:%d ", vtx->mega_fetch_count);
2333 
2334 			if (bc->chip_class >= EVERGREEN && vtx->buffer_index_mode)
2335 				fprintf(stderr, "SQ_%s ", index_mode[vtx->buffer_index_mode]);
2336 
2337 			fprintf(stderr, "UCF:%d ", vtx->use_const_fields);
2338 			fprintf(stderr, "FMT(DTA:%d ", vtx->data_format);
2339 			fprintf(stderr, "NUM:%d ", vtx->num_format_all);
2340 			fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
2341 			fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
2342 
2343 			id += 4;
2344 		}
2345 
2346 		LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
2347 			int o = 0;
2348 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
2349 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
2350 
2351 			o += fprintf(stderr, "%s ", r600_isa_fetch(gds->op)->name);
2352 
2353 			if (gds->op != FETCH_OP_TF_WRITE) {
2354 				o += fprintf(stderr, "R%d.", gds->dst_gpr);
2355 				o += print_swizzle(gds->dst_sel_x);
2356 				o += print_swizzle(gds->dst_sel_y);
2357 				o += print_swizzle(gds->dst_sel_z);
2358 				o += print_swizzle(gds->dst_sel_w);
2359 			}
2360 
2361 			o += fprintf(stderr, ", R%d.", gds->src_gpr);
2362 			o += print_swizzle(gds->src_sel_x);
2363 			o += print_swizzle(gds->src_sel_y);
2364 			o += print_swizzle(gds->src_sel_z);
2365 
2366 			if (gds->op != FETCH_OP_TF_WRITE) {
2367 				o += fprintf(stderr, ", R%d.", gds->src_gpr2);
2368 			}
2369 			if (gds->alloc_consume) {
2370 				o += fprintf(stderr, " UAV: %d", gds->uav_id);
2371 				if (gds->uav_index_mode)
2372 					o += fprintf(stderr, "[%s]", index_mode[gds->uav_index_mode]);
2373 			}
2374 			fprintf(stderr, "\n");
2375 			id += 4;
2376 		}
2377 	}
2378 
2379 	fprintf(stderr, "--------------------------------------\n");
2380 }
2381 
r600_vertex_data_type(enum pipe_format pformat,unsigned * format,unsigned * num_format,unsigned * format_comp,unsigned * endian)2382 void r600_vertex_data_type(enum pipe_format pformat,
2383 				  unsigned *format,
2384 				  unsigned *num_format, unsigned *format_comp, unsigned *endian)
2385 {
2386 	const struct util_format_description *desc;
2387 	unsigned i;
2388 
2389 	*format = 0;
2390 	*num_format = 0;
2391 	*format_comp = 0;
2392 	*endian = ENDIAN_NONE;
2393 
2394 	if (pformat == PIPE_FORMAT_R11G11B10_FLOAT) {
2395 		*format = FMT_10_11_11_FLOAT;
2396 		*endian = r600_endian_swap(32);
2397 		return;
2398 	}
2399 
2400 	if (pformat == PIPE_FORMAT_B5G6R5_UNORM) {
2401 		*format = FMT_5_6_5;
2402 		*endian = r600_endian_swap(16);
2403 		return;
2404 	}
2405 
2406 	if (pformat == PIPE_FORMAT_B5G5R5A1_UNORM) {
2407 		*format = FMT_1_5_5_5;
2408 		*endian = r600_endian_swap(16);
2409 		return;
2410 	}
2411 
2412 	desc = util_format_description(pformat);
2413 	if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
2414 		goto out_unknown;
2415 	}
2416 
2417 	/* Find the first non-VOID channel. */
2418 	for (i = 0; i < 4; i++) {
2419 		if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) {
2420 			break;
2421 		}
2422 	}
2423 
2424 	*endian = r600_endian_swap(desc->channel[i].size);
2425 
2426 	switch (desc->channel[i].type) {
2427 	/* Half-floats, floats, ints */
2428 	case UTIL_FORMAT_TYPE_FLOAT:
2429 		switch (desc->channel[i].size) {
2430 		case 16:
2431 			switch (desc->nr_channels) {
2432 			case 1:
2433 				*format = FMT_16_FLOAT;
2434 				break;
2435 			case 2:
2436 				*format = FMT_16_16_FLOAT;
2437 				break;
2438 			case 3:
2439 			case 4:
2440 				*format = FMT_16_16_16_16_FLOAT;
2441 				break;
2442 			}
2443 			break;
2444 		case 32:
2445 			switch (desc->nr_channels) {
2446 			case 1:
2447 				*format = FMT_32_FLOAT;
2448 				break;
2449 			case 2:
2450 				*format = FMT_32_32_FLOAT;
2451 				break;
2452 			case 3:
2453 				*format = FMT_32_32_32_FLOAT;
2454 				break;
2455 			case 4:
2456 				*format = FMT_32_32_32_32_FLOAT;
2457 				break;
2458 			}
2459 			break;
2460 		default:
2461 			goto out_unknown;
2462 		}
2463 		break;
2464 		/* Unsigned ints */
2465 	case UTIL_FORMAT_TYPE_UNSIGNED:
2466 		/* Signed ints */
2467 	case UTIL_FORMAT_TYPE_SIGNED:
2468 		switch (desc->channel[i].size) {
2469 		case 8:
2470 			switch (desc->nr_channels) {
2471 			case 1:
2472 				*format = FMT_8;
2473 				break;
2474 			case 2:
2475 				*format = FMT_8_8;
2476 				break;
2477 			case 3:
2478 			case 4:
2479 				*format = FMT_8_8_8_8;
2480 				break;
2481 			}
2482 			break;
2483 		case 10:
2484 			if (desc->nr_channels != 4)
2485 				goto out_unknown;
2486 
2487 			*format = FMT_2_10_10_10;
2488 			break;
2489 		case 16:
2490 			switch (desc->nr_channels) {
2491 			case 1:
2492 				*format = FMT_16;
2493 				break;
2494 			case 2:
2495 				*format = FMT_16_16;
2496 				break;
2497 			case 3:
2498 			case 4:
2499 				*format = FMT_16_16_16_16;
2500 				break;
2501 			}
2502 			break;
2503 		case 32:
2504 			switch (desc->nr_channels) {
2505 			case 1:
2506 				*format = FMT_32;
2507 				break;
2508 			case 2:
2509 				*format = FMT_32_32;
2510 				break;
2511 			case 3:
2512 				*format = FMT_32_32_32;
2513 				break;
2514 			case 4:
2515 				*format = FMT_32_32_32_32;
2516 				break;
2517 			}
2518 			break;
2519 		default:
2520 			goto out_unknown;
2521 		}
2522 		break;
2523 	default:
2524 		goto out_unknown;
2525 	}
2526 
2527 	if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2528 		*format_comp = 1;
2529 	}
2530 
2531 	*num_format = 0;
2532 	if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
2533 	    desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2534 		if (!desc->channel[i].normalized) {
2535 			if (desc->channel[i].pure_integer)
2536 				*num_format = 1;
2537 			else
2538 				*num_format = 2;
2539 		}
2540 	}
2541 	return;
2542 out_unknown:
2543 	R600_ERR("unsupported vertex format %s\n", util_format_name(pformat));
2544 }
2545 
r600_create_vertex_fetch_shader(struct pipe_context * ctx,unsigned count,const struct pipe_vertex_element * elements)2546 void *r600_create_vertex_fetch_shader(struct pipe_context *ctx,
2547 				      unsigned count,
2548 				      const struct pipe_vertex_element *elements)
2549 {
2550 	struct r600_context *rctx = (struct r600_context *)ctx;
2551 	struct r600_bytecode bc;
2552 	struct r600_bytecode_vtx vtx;
2553 	const struct util_format_description *desc;
2554 	unsigned fetch_resource_start = rctx->b.chip_class >= EVERGREEN ? 0 : 160;
2555 	unsigned format, num_format, format_comp, endian;
2556 	uint32_t *bytecode;
2557 	int i, j, r, fs_size;
2558 	struct r600_fetch_shader *shader;
2559 	unsigned no_sb = rctx->screen->b.debug_flags & DBG_NO_SB;
2560 	unsigned sb_disasm = !no_sb || (rctx->screen->b.debug_flags & DBG_SB_DISASM);
2561 
2562 	assert(count < 32);
2563 
2564 	memset(&bc, 0, sizeof(bc));
2565 	r600_bytecode_init(&bc, rctx->b.chip_class, rctx->b.family,
2566 			   rctx->screen->has_compressed_msaa_texturing);
2567 
2568 	bc.isa = rctx->isa;
2569 
2570 	for (i = 0; i < count; i++) {
2571 		if (elements[i].instance_divisor > 1) {
2572 			if (rctx->b.chip_class == CAYMAN) {
2573 				for (j = 0; j < 4; j++) {
2574 					struct r600_bytecode_alu alu;
2575 					memset(&alu, 0, sizeof(alu));
2576 					alu.op = ALU_OP2_MULHI_UINT;
2577 					alu.src[0].sel = 0;
2578 					alu.src[0].chan = 3;
2579 					alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2580 					alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2581 					alu.dst.sel = i + 1;
2582 					alu.dst.chan = j;
2583 					alu.dst.write = j == 3;
2584 					alu.last = j == 3;
2585 					if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2586 						r600_bytecode_clear(&bc);
2587 						return NULL;
2588 					}
2589 				}
2590 			} else {
2591 				struct r600_bytecode_alu alu;
2592 				memset(&alu, 0, sizeof(alu));
2593 				alu.op = ALU_OP2_MULHI_UINT;
2594 				alu.src[0].sel = 0;
2595 				alu.src[0].chan = 3;
2596 				alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2597 				alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2598 				alu.dst.sel = i + 1;
2599 				alu.dst.chan = 3;
2600 				alu.dst.write = 1;
2601 				alu.last = 1;
2602 				if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2603 					r600_bytecode_clear(&bc);
2604 					return NULL;
2605 				}
2606 			}
2607 		}
2608 	}
2609 
2610 	for (i = 0; i < count; i++) {
2611 		r600_vertex_data_type(elements[i].src_format,
2612 				      &format, &num_format, &format_comp, &endian);
2613 
2614 		desc = util_format_description(elements[i].src_format);
2615 		if (!desc) {
2616 			r600_bytecode_clear(&bc);
2617 			R600_ERR("unknown format %d\n", elements[i].src_format);
2618 			return NULL;
2619 		}
2620 
2621 		if (elements[i].src_offset > 65535) {
2622 			r600_bytecode_clear(&bc);
2623 			R600_ERR("too big src_offset: %u\n", elements[i].src_offset);
2624 			return NULL;
2625 		}
2626 
2627 		memset(&vtx, 0, sizeof(vtx));
2628 		vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start;
2629 		vtx.fetch_type = elements[i].instance_divisor ? SQ_VTX_FETCH_INSTANCE_DATA : SQ_VTX_FETCH_VERTEX_DATA;
2630 		vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0;
2631 		vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0;
2632 		vtx.mega_fetch_count = 0x1F;
2633 		vtx.dst_gpr = i + 1;
2634 		vtx.dst_sel_x = desc->swizzle[0];
2635 		vtx.dst_sel_y = desc->swizzle[1];
2636 		vtx.dst_sel_z = desc->swizzle[2];
2637 		vtx.dst_sel_w = desc->swizzle[3];
2638 		vtx.data_format = format;
2639 		vtx.num_format_all = num_format;
2640 		vtx.format_comp_all = format_comp;
2641 		vtx.offset = elements[i].src_offset;
2642 		vtx.endian = endian;
2643 
2644 		if ((r = r600_bytecode_add_vtx(&bc, &vtx))) {
2645 			r600_bytecode_clear(&bc);
2646 			return NULL;
2647 		}
2648 	}
2649 
2650 	r600_bytecode_add_cfinst(&bc, CF_OP_RET);
2651 
2652 	if ((r = r600_bytecode_build(&bc))) {
2653 		r600_bytecode_clear(&bc);
2654 		return NULL;
2655 	}
2656 
2657 	if (rctx->screen->b.debug_flags & DBG_FS) {
2658 		fprintf(stderr, "--------------------------------------------------------------\n");
2659 		fprintf(stderr, "Vertex elements state:\n");
2660 		for (i = 0; i < count; i++) {
2661 			fprintf(stderr, "   ");
2662 			util_dump_vertex_element(stderr, elements+i);
2663 			fprintf(stderr, "\n");
2664 		}
2665 
2666 		if (!sb_disasm) {
2667 			r600_bytecode_disasm(&bc);
2668 
2669 			fprintf(stderr, "______________________________________________________________\n");
2670 		} else {
2671 			r600_sb_bytecode_process(rctx, &bc, NULL, 1 /*dump*/, 0 /*optimize*/);
2672 		}
2673 	}
2674 
2675 	fs_size = bc.ndw*4;
2676 
2677 	/* Allocate the CSO. */
2678 	shader = CALLOC_STRUCT(r600_fetch_shader);
2679 	if (!shader) {
2680 		r600_bytecode_clear(&bc);
2681 		return NULL;
2682 	}
2683 
2684 	u_suballocator_alloc(rctx->allocator_fetch_shader, fs_size, 256,
2685 			     &shader->offset,
2686 			     (struct pipe_resource**)&shader->buffer);
2687 	if (!shader->buffer) {
2688 		r600_bytecode_clear(&bc);
2689 		FREE(shader);
2690 		return NULL;
2691 	}
2692 
2693 	bytecode = r600_buffer_map_sync_with_rings(&rctx->b, shader->buffer, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_UNSYNCHRONIZED);
2694 	bytecode += shader->offset / 4;
2695 
2696 	if (R600_BIG_ENDIAN) {
2697 		for (i = 0; i < fs_size / 4; ++i) {
2698 			bytecode[i] = util_cpu_to_le32(bc.bytecode[i]);
2699 		}
2700 	} else {
2701 		memcpy(bytecode, bc.bytecode, fs_size);
2702 	}
2703 	rctx->b.ws->buffer_unmap(shader->buffer->buf);
2704 
2705 	r600_bytecode_clear(&bc);
2706 	return shader;
2707 }
2708 
r600_bytecode_alu_read(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,uint32_t word0,uint32_t word1)2709 void r600_bytecode_alu_read(struct r600_bytecode *bc,
2710 		struct r600_bytecode_alu *alu, uint32_t word0, uint32_t word1)
2711 {
2712 	/* WORD0 */
2713 	alu->src[0].sel = G_SQ_ALU_WORD0_SRC0_SEL(word0);
2714 	alu->src[0].rel = G_SQ_ALU_WORD0_SRC0_REL(word0);
2715 	alu->src[0].chan = G_SQ_ALU_WORD0_SRC0_CHAN(word0);
2716 	alu->src[0].neg = G_SQ_ALU_WORD0_SRC0_NEG(word0);
2717 	alu->src[1].sel = G_SQ_ALU_WORD0_SRC1_SEL(word0);
2718 	alu->src[1].rel = G_SQ_ALU_WORD0_SRC1_REL(word0);
2719 	alu->src[1].chan = G_SQ_ALU_WORD0_SRC1_CHAN(word0);
2720 	alu->src[1].neg = G_SQ_ALU_WORD0_SRC1_NEG(word0);
2721 	alu->index_mode = G_SQ_ALU_WORD0_INDEX_MODE(word0);
2722 	alu->pred_sel = G_SQ_ALU_WORD0_PRED_SEL(word0);
2723 	alu->last = G_SQ_ALU_WORD0_LAST(word0);
2724 
2725 	/* WORD1 */
2726 	alu->bank_swizzle = G_SQ_ALU_WORD1_BANK_SWIZZLE(word1);
2727 	if (alu->bank_swizzle)
2728 		alu->bank_swizzle_force = alu->bank_swizzle;
2729 	alu->dst.sel = G_SQ_ALU_WORD1_DST_GPR(word1);
2730 	alu->dst.rel = G_SQ_ALU_WORD1_DST_REL(word1);
2731 	alu->dst.chan = G_SQ_ALU_WORD1_DST_CHAN(word1);
2732 	alu->dst.clamp = G_SQ_ALU_WORD1_CLAMP(word1);
2733 	if (G_SQ_ALU_WORD1_ENCODING(word1)) /*ALU_DWORD1_OP3*/
2734 	{
2735 		alu->is_op3 = 1;
2736 		alu->src[2].sel = G_SQ_ALU_WORD1_OP3_SRC2_SEL(word1);
2737 		alu->src[2].rel = G_SQ_ALU_WORD1_OP3_SRC2_REL(word1);
2738 		alu->src[2].chan = G_SQ_ALU_WORD1_OP3_SRC2_CHAN(word1);
2739 		alu->src[2].neg = G_SQ_ALU_WORD1_OP3_SRC2_NEG(word1);
2740 		alu->op = r600_isa_alu_by_opcode(bc->isa,
2741 				G_SQ_ALU_WORD1_OP3_ALU_INST(word1), /* is_op3 = */ 1);
2742 
2743 	}
2744 	else /*ALU_DWORD1_OP2*/
2745 	{
2746 		alu->src[0].abs = G_SQ_ALU_WORD1_OP2_SRC0_ABS(word1);
2747 		alu->src[1].abs = G_SQ_ALU_WORD1_OP2_SRC1_ABS(word1);
2748 		alu->op = r600_isa_alu_by_opcode(bc->isa,
2749 				G_SQ_ALU_WORD1_OP2_ALU_INST(word1), /* is_op3 = */ 0);
2750 		alu->omod = G_SQ_ALU_WORD1_OP2_OMOD(word1);
2751 		alu->dst.write = G_SQ_ALU_WORD1_OP2_WRITE_MASK(word1);
2752 		alu->update_pred = G_SQ_ALU_WORD1_OP2_UPDATE_PRED(word1);
2753 		alu->execute_mask =
2754 			G_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(word1);
2755 	}
2756 }
2757 
2758 #if 0
2759 void r600_bytecode_export_read(struct r600_bytecode *bc,
2760 		struct r600_bytecode_output *output, uint32_t word0, uint32_t word1)
2761 {
2762 	output->array_base = G_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(word0);
2763 	output->type = G_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(word0);
2764 	output->gpr = G_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(word0);
2765 	output->elem_size = G_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(word0);
2766 
2767 	output->swizzle_x = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(word1);
2768 	output->swizzle_y = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(word1);
2769 	output->swizzle_z = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(word1);
2770 	output->swizzle_w = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(word1);
2771 	output->burst_count = G_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(word1);
2772 	output->end_of_program = G_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(word1);
2773     output->op = r600_isa_cf_by_opcode(bc->isa,
2774 			G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(word1), 0);
2775 	output->barrier = G_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(word1);
2776 	output->array_size = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(word1);
2777 	output->comp_mask = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(word1);
2778 }
2779 #endif
2780