1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Declares a Simulator for ARM instructions if we are not generating a native
6 // ARM binary. This Simulator allows us to run and debug ARM code generation on
7 // regular desktop machines.
8 // V8 calls into generated code by using the GeneratedCode class,
9 // which will start execution in the Simulator or forwards to the real entry
10 // on a ARM HW platform.
11 
12 #ifndef V8_ARM_SIMULATOR_ARM_H_
13 #define V8_ARM_SIMULATOR_ARM_H_
14 
15 #include "src/allocation.h"
16 #include "src/base/lazy-instance.h"
17 #include "src/base/platform/mutex.h"
18 #include "src/boxed-float.h"
19 
20 #if defined(USE_SIMULATOR)
21 // Running with a simulator.
22 
23 #include "src/arm/constants-arm.h"
24 #include "src/assembler.h"
25 #include "src/base/hashmap.h"
26 #include "src/simulator-base.h"
27 
28 namespace v8 {
29 namespace internal {
30 
31 class CachePage {
32  public:
33   static const int LINE_VALID = 0;
34   static const int LINE_INVALID = 1;
35 
36   static const int kPageShift = 12;
37   static const int kPageSize = 1 << kPageShift;
38   static const int kPageMask = kPageSize - 1;
39   static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
40   static const int kLineLength = 1 << kLineShift;
41   static const int kLineMask = kLineLength - 1;
42 
CachePage()43   CachePage() {
44     memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
45   }
46 
ValidityByte(int offset)47   char* ValidityByte(int offset) {
48     return &validity_map_[offset >> kLineShift];
49   }
50 
CachedData(int offset)51   char* CachedData(int offset) {
52     return &data_[offset];
53   }
54 
55  private:
56   char data_[kPageSize];   // The cached data.
57   static const int kValidityMapSize = kPageSize >> kLineShift;
58   char validity_map_[kValidityMapSize];  // One byte per line.
59 };
60 
61 class Simulator : public SimulatorBase {
62  public:
63   friend class ArmDebugger;
64   enum Register {
65     no_reg = -1,
66     r0 = 0, r1, r2, r3, r4, r5, r6, r7,
67     r8, r9, r10, r11, r12, r13, r14, r15,
68     num_registers,
69     sp = 13,
70     lr = 14,
71     pc = 15,
72     s0 = 0, s1, s2, s3, s4, s5, s6, s7,
73     s8, s9, s10, s11, s12, s13, s14, s15,
74     s16, s17, s18, s19, s20, s21, s22, s23,
75     s24, s25, s26, s27, s28, s29, s30, s31,
76     num_s_registers = 32,
77     d0 = 0, d1, d2, d3, d4, d5, d6, d7,
78     d8, d9, d10, d11, d12, d13, d14, d15,
79     d16, d17, d18, d19, d20, d21, d22, d23,
80     d24, d25, d26, d27, d28, d29, d30, d31,
81     num_d_registers = 32,
82     q0 = 0, q1, q2, q3, q4, q5, q6, q7,
83     q8, q9, q10, q11, q12, q13, q14, q15,
84     num_q_registers = 16
85   };
86 
87   explicit Simulator(Isolate* isolate);
88   ~Simulator();
89 
90   // The currently executing Simulator instance. Potentially there can be one
91   // for each native thread.
92   V8_EXPORT_PRIVATE static Simulator* current(v8::internal::Isolate* isolate);
93 
94   // Accessors for register state. Reading the pc value adheres to the ARM
95   // architecture specification and is off by a 8 from the currently executing
96   // instruction.
97   void set_register(int reg, int32_t value);
98   int32_t get_register(int reg) const;
99   double get_double_from_register_pair(int reg);
100   void set_register_pair_from_double(int reg, double* value);
101   void set_dw_register(int dreg, const int* dbl);
102 
103   // Support for VFP.
104   void get_d_register(int dreg, uint64_t* value);
105   void set_d_register(int dreg, const uint64_t* value);
106   void get_d_register(int dreg, uint32_t* value);
107   void set_d_register(int dreg, const uint32_t* value);
108   // Support for NEON.
109   template <typename T, int SIZE = kSimd128Size>
110   void get_neon_register(int reg, T (&value)[SIZE / sizeof(T)]);
111   template <typename T, int SIZE = kSimd128Size>
112   void set_neon_register(int reg, const T (&value)[SIZE / sizeof(T)]);
113 
114   void set_s_register(int reg, unsigned int value);
115   unsigned int get_s_register(int reg) const;
116 
set_d_register_from_double(int dreg,const Float64 dbl)117   void set_d_register_from_double(int dreg, const Float64 dbl) {
118     SetVFPRegister<Float64, 2>(dreg, dbl);
119   }
set_d_register_from_double(int dreg,const double dbl)120   void set_d_register_from_double(int dreg, const double dbl) {
121     SetVFPRegister<double, 2>(dreg, dbl);
122   }
123 
get_double_from_d_register(int dreg)124   Float64 get_double_from_d_register(int dreg) {
125     return GetFromVFPRegister<Float64, 2>(dreg);
126   }
127 
set_s_register_from_float(int sreg,const Float32 flt)128   void set_s_register_from_float(int sreg, const Float32 flt) {
129     SetVFPRegister<Float32, 1>(sreg, flt);
130   }
set_s_register_from_float(int sreg,const float flt)131   void set_s_register_from_float(int sreg, const float flt) {
132     SetVFPRegister<float, 1>(sreg, flt);
133   }
134 
get_float_from_s_register(int sreg)135   Float32 get_float_from_s_register(int sreg) {
136     return GetFromVFPRegister<Float32, 1>(sreg);
137   }
138 
set_s_register_from_sinteger(int sreg,const int sint)139   void set_s_register_from_sinteger(int sreg, const int sint) {
140     SetVFPRegister<int, 1>(sreg, sint);
141   }
142 
get_sinteger_from_s_register(int sreg)143   int get_sinteger_from_s_register(int sreg) {
144     return GetFromVFPRegister<int, 1>(sreg);
145   }
146 
147   // Special case of set_register and get_register to access the raw PC value.
148   void set_pc(int32_t value);
149   int32_t get_pc() const;
150 
get_sp()151   Address get_sp() const { return static_cast<Address>(get_register(sp)); }
152 
153   // Accessor to the internal simulator stack area.
154   uintptr_t StackLimit(uintptr_t c_limit) const;
155 
156   // Executes ARM instructions until the PC reaches end_sim_pc.
157   void Execute();
158 
159   template <typename Return, typename... Args>
Call(Address entry,Args...args)160   Return Call(Address entry, Args... args) {
161     return VariadicCall<Return>(this, &Simulator::CallImpl, entry, args...);
162   }
163 
164   // Alternative: call a 2-argument double function.
165   template <typename Return>
CallFP(Address entry,double d0,double d1)166   Return CallFP(Address entry, double d0, double d1) {
167     return ConvertReturn<Return>(CallFPImpl(entry, d0, d1));
168   }
169 
170   // Push an address onto the JS stack.
171   uintptr_t PushAddress(uintptr_t address);
172 
173   // Pop an address from the JS stack.
174   uintptr_t PopAddress();
175 
176   // Debugger input.
177   void set_last_debugger_input(char* input);
last_debugger_input()178   char* last_debugger_input() { return last_debugger_input_; }
179 
180   // Redirection support.
181   static void SetRedirectInstruction(Instruction* instruction);
182 
183   // ICache checking.
184   static bool ICacheMatch(void* one, void* two);
185   static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start,
186                           size_t size);
187 
188   // Returns true if pc register contains one of the 'special_values' defined
189   // below (bad_lr, end_sim_pc).
190   bool has_bad_pc() const;
191 
192   // EABI variant for double arguments in use.
use_eabi_hardfloat()193   bool use_eabi_hardfloat() {
194 #if USE_EABI_HARDFLOAT
195     return true;
196 #else
197     return false;
198 #endif
199   }
200 
201  private:
202   enum special_values {
203     // Known bad pc value to ensure that the simulator does not execute
204     // without being properly setup.
205     bad_lr = -1,
206     // A pc value used to signal the simulator to stop execution.  Generally
207     // the lr is set to this value on transition from native C code to
208     // simulated execution, so that the simulator can "return" to the native
209     // C code.
210     end_sim_pc = -2
211   };
212 
213   V8_EXPORT_PRIVATE intptr_t CallImpl(Address entry, int argument_count,
214                                       const intptr_t* arguments);
215   intptr_t CallFPImpl(Address entry, double d0, double d1);
216 
217   // Unsupported instructions use Format to print an error and stop execution.
218   void Format(Instruction* instr, const char* format);
219 
220   // Checks if the current instruction should be executed based on its
221   // condition bits.
222   inline bool ConditionallyExecute(Instruction* instr);
223 
224   // Helper functions to set the conditional flags in the architecture state.
225   void SetNZFlags(int32_t val);
226   void SetCFlag(bool val);
227   void SetVFlag(bool val);
228   bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
229   bool BorrowFrom(int32_t left, int32_t right, int32_t carry = 1);
230   bool OverflowFrom(int32_t alu_out,
231                     int32_t left,
232                     int32_t right,
233                     bool addition);
234 
GetCarry()235   inline int GetCarry() {
236     return c_flag_ ? 1 : 0;
237   }
238 
239   // Support for VFP.
240   void Compute_FPSCR_Flags(float val1, float val2);
241   void Compute_FPSCR_Flags(double val1, double val2);
242   void Copy_FPSCR_to_APSR();
243   inline float canonicalizeNaN(float value);
244   inline double canonicalizeNaN(double value);
245   inline Float32 canonicalizeNaN(Float32 value);
246   inline Float64 canonicalizeNaN(Float64 value);
247 
248   // Helper functions to decode common "addressing" modes
249   int32_t GetShiftRm(Instruction* instr, bool* carry_out);
250   int32_t GetImm(Instruction* instr, bool* carry_out);
251   int32_t ProcessPU(Instruction* instr,
252                     int num_regs,
253                     int operand_size,
254                     intptr_t* start_address,
255                     intptr_t* end_address);
256   void HandleRList(Instruction* instr, bool load);
257   void HandleVList(Instruction* inst);
258   void SoftwareInterrupt(Instruction* instr);
259 
260   // Stop helper functions.
261   inline bool isStopInstruction(Instruction* instr);
262   inline bool isWatchedStop(uint32_t bkpt_code);
263   inline bool isEnabledStop(uint32_t bkpt_code);
264   inline void EnableStop(uint32_t bkpt_code);
265   inline void DisableStop(uint32_t bkpt_code);
266   inline void IncreaseStopCounter(uint32_t bkpt_code);
267   void PrintStopInfo(uint32_t code);
268 
269   // Read and write memory.
270   // The *Ex functions are exclusive access. The writes return the strex status:
271   // 0 if the write succeeds, and 1 if the write fails.
272   inline uint8_t ReadBU(int32_t addr);
273   inline int8_t ReadB(int32_t addr);
274   uint8_t ReadExBU(int32_t addr);
275   inline void WriteB(int32_t addr, uint8_t value);
276   inline void WriteB(int32_t addr, int8_t value);
277   int WriteExB(int32_t addr, uint8_t value);
278 
279   inline uint16_t ReadHU(int32_t addr);
280   inline int16_t ReadH(int32_t addr);
281   uint16_t ReadExHU(int32_t addr);
282   // Note: Overloaded on the sign of the value.
283   inline void WriteH(int32_t addr, uint16_t value);
284   inline void WriteH(int32_t addr, int16_t value);
285   int WriteExH(int32_t addr, uint16_t value);
286 
287   inline int ReadW(int32_t addr);
288   int ReadExW(int32_t addr);
289   inline void WriteW(int32_t addr, int value);
290   int WriteExW(int32_t addr, int value);
291 
292   int32_t* ReadDW(int32_t addr);
293   void WriteDW(int32_t addr, int32_t value1, int32_t value2);
294   int32_t* ReadExDW(int32_t addr);
295   int WriteExDW(int32_t addr, int32_t value1, int32_t value2);
296 
297   // Executing is handled based on the instruction type.
298   // Both type 0 and type 1 rolled into one.
299   void DecodeType01(Instruction* instr);
300   void DecodeType2(Instruction* instr);
301   void DecodeType3(Instruction* instr);
302   void DecodeType4(Instruction* instr);
303   void DecodeType5(Instruction* instr);
304   void DecodeType6(Instruction* instr);
305   void DecodeType7(Instruction* instr);
306 
307   // CP15 coprocessor instructions.
308   void DecodeTypeCP15(Instruction* instr);
309 
310   // Support for VFP.
311   void DecodeTypeVFP(Instruction* instr);
312   void DecodeType6CoprocessorIns(Instruction* instr);
313   void DecodeSpecialCondition(Instruction* instr);
314 
315   void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
316   void DecodeVCMP(Instruction* instr);
317   void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
318   int32_t ConvertDoubleToInt(double val, bool unsigned_integer,
319                              VFPRoundingMode mode);
320   void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
321 
322   // Executes one instruction.
323   void InstructionDecode(Instruction* instr);
324 
325   // ICache.
326   static void CheckICache(base::CustomMatcherHashMap* i_cache,
327                           Instruction* instr);
328   static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start,
329                            int size);
330   static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache,
331                                  void* page);
332 
333   // Handle arguments and return value for runtime FP functions.
334   void GetFpArgs(double* x, double* y, int32_t* z);
335   void SetFpResult(const double& result);
336   void TrashCallerSaveRegisters();
337 
338   template<class ReturnType, int register_size>
339       ReturnType GetFromVFPRegister(int reg_index);
340 
341   template<class InputType, int register_size>
342       void SetVFPRegister(int reg_index, const InputType& value);
343 
344   void SetSpecialRegister(SRegisterFieldMask reg_and_mask, uint32_t value);
345   uint32_t GetFromSpecialRegister(SRegister reg);
346 
347   void CallInternal(Address entry);
348 
349   // Architecture state.
350   // Saturating instructions require a Q flag to indicate saturation.
351   // There is currently no way to read the CPSR directly, and thus read the Q
352   // flag, so this is left unimplemented.
353   int32_t registers_[16];
354   bool n_flag_;
355   bool z_flag_;
356   bool c_flag_;
357   bool v_flag_;
358 
359   // VFP architecture state.
360   unsigned int vfp_registers_[num_d_registers * 2];
361   bool n_flag_FPSCR_;
362   bool z_flag_FPSCR_;
363   bool c_flag_FPSCR_;
364   bool v_flag_FPSCR_;
365 
366   // VFP rounding mode. See ARM DDI 0406B Page A2-29.
367   VFPRoundingMode FPSCR_rounding_mode_;
368   bool FPSCR_default_NaN_mode_;
369 
370   // VFP FP exception flags architecture state.
371   bool inv_op_vfp_flag_;
372   bool div_zero_vfp_flag_;
373   bool overflow_vfp_flag_;
374   bool underflow_vfp_flag_;
375   bool inexact_vfp_flag_;
376 
377   // Simulator support.
378   char* stack_;
379   bool pc_modified_;
380   int icount_;
381 
382   // Debugger input.
383   char* last_debugger_input_;
384 
385   // Registered breakpoints.
386   Instruction* break_pc_;
387   Instr break_instr_;
388 
389   v8::internal::Isolate* isolate_;
390 
391   // A stop is watched if its code is less than kNumOfWatchedStops.
392   // Only watched stops support enabling/disabling and the counter feature.
393   static const uint32_t kNumOfWatchedStops = 256;
394 
395   // Breakpoint is disabled if bit 31 is set.
396   static const uint32_t kStopDisabledBit = 1 << 31;
397 
398   // A stop is enabled, meaning the simulator will stop when meeting the
399   // instruction, if bit 31 of watched_stops_[code].count is unset.
400   // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
401   // the breakpoint was hit or gone through.
402   struct StopCountAndDesc {
403     uint32_t count;
404     char* desc;
405   };
406   StopCountAndDesc watched_stops_[kNumOfWatchedStops];
407 
408   // Synchronization primitives. See ARM DDI 0406C.b, A2.9.
409   enum class MonitorAccess {
410     Open,
411     Exclusive,
412   };
413 
414   enum class TransactionSize {
415     None = 0,
416     Byte = 1,
417     HalfWord = 2,
418     Word = 4,
419     DoubleWord = 8,
420   };
421 
422   // The least-significant bits of the address are ignored. The number of bits
423   // is implementation-defined, between 3 and 11. See ARM DDI 0406C.b, A3.4.3.
424   static const int32_t kExclusiveTaggedAddrMask = ~((1 << 11) - 1);
425 
426   class LocalMonitor {
427    public:
428     LocalMonitor();
429 
430     // These functions manage the state machine for the local monitor, but do
431     // not actually perform loads and stores. NotifyStoreExcl only returns
432     // true if the exclusive store is allowed; the global monitor will still
433     // have to be checked to see whether the memory should be updated.
434     void NotifyLoad(int32_t addr);
435     void NotifyLoadExcl(int32_t addr, TransactionSize size);
436     void NotifyStore(int32_t addr);
437     bool NotifyStoreExcl(int32_t addr, TransactionSize size);
438 
439    private:
440     void Clear();
441 
442     MonitorAccess access_state_;
443     int32_t tagged_addr_;
444     TransactionSize size_;
445   };
446 
447   class GlobalMonitor {
448    public:
449     GlobalMonitor();
450 
451     class Processor {
452      public:
453       Processor();
454 
455      private:
456       friend class GlobalMonitor;
457       // These functions manage the state machine for the global monitor, but do
458       // not actually perform loads and stores.
459       void Clear_Locked();
460       void NotifyLoadExcl_Locked(int32_t addr);
461       void NotifyStore_Locked(int32_t addr, bool is_requesting_processor);
462       bool NotifyStoreExcl_Locked(int32_t addr, bool is_requesting_processor);
463 
464       MonitorAccess access_state_;
465       int32_t tagged_addr_;
466       Processor* next_;
467       Processor* prev_;
468       // A strex can fail due to background cache evictions. Rather than
469       // simulating this, we'll just occasionally introduce cases where an
470       // exclusive store fails. This will happen once after every
471       // kMaxFailureCounter exclusive stores.
472       static const int kMaxFailureCounter = 5;
473       int failure_counter_;
474     };
475 
476     // Exposed so it can be accessed by Simulator::{Read,Write}Ex*.
477     base::Mutex mutex;
478 
479     void NotifyLoadExcl_Locked(int32_t addr, Processor* processor);
480     void NotifyStore_Locked(int32_t addr, Processor* processor);
481     bool NotifyStoreExcl_Locked(int32_t addr, Processor* processor);
482 
483     // Called when the simulator is destroyed.
484     void RemoveProcessor(Processor* processor);
485 
486    private:
487     bool IsProcessorInLinkedList_Locked(Processor* processor) const;
488     void PrependProcessor_Locked(Processor* processor);
489 
490     Processor* head_;
491   };
492 
493   LocalMonitor local_monitor_;
494   GlobalMonitor::Processor global_monitor_processor_;
495   static base::LazyInstance<GlobalMonitor>::type global_monitor_;
496 };
497 
498 }  // namespace internal
499 }  // namespace v8
500 
501 #endif  // defined(USE_SIMULATOR)
502 #endif  // V8_ARM_SIMULATOR_ARM_H_
503