1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/base/utils/random-number-generator.h"
6 
7 #include <stdio.h>
8 #include <stdlib.h>
9 
10 #include <algorithm>
11 #include <new>
12 
13 #include "src/base/bits.h"
14 #include "src/base/macros.h"
15 #include "src/base/platform/mutex.h"
16 #include "src/base/platform/time.h"
17 
18 namespace v8 {
19 namespace base {
20 
21 static LazyMutex entropy_mutex = LAZY_MUTEX_INITIALIZER;
22 static RandomNumberGenerator::EntropySource entropy_source = nullptr;
23 
24 // static
SetEntropySource(EntropySource source)25 void RandomNumberGenerator::SetEntropySource(EntropySource source) {
26   LockGuard<Mutex> lock_guard(entropy_mutex.Pointer());
27   entropy_source = source;
28 }
29 
30 
RandomNumberGenerator()31 RandomNumberGenerator::RandomNumberGenerator() {
32   // Check if embedder supplied an entropy source.
33   { LockGuard<Mutex> lock_guard(entropy_mutex.Pointer());
34     if (entropy_source != nullptr) {
35       int64_t seed;
36       if (entropy_source(reinterpret_cast<unsigned char*>(&seed),
37                          sizeof(seed))) {
38         SetSeed(seed);
39         return;
40       }
41     }
42   }
43 
44 #if V8_OS_CYGWIN || V8_OS_WIN
45   // Use rand_s() to gather entropy on Windows. See:
46   // https://code.google.com/p/v8/issues/detail?id=2905
47   unsigned first_half, second_half;
48   errno_t result = rand_s(&first_half);
49   DCHECK_EQ(0, result);
50   result = rand_s(&second_half);
51   DCHECK_EQ(0, result);
52   SetSeed((static_cast<int64_t>(first_half) << 32) + second_half);
53 #else
54   // Gather entropy from /dev/urandom if available.
55   FILE* fp = fopen("/dev/urandom", "rb");
56   if (fp != nullptr) {
57     int64_t seed;
58     size_t n = fread(&seed, sizeof(seed), 1, fp);
59     fclose(fp);
60     if (n == 1) {
61       SetSeed(seed);
62       return;
63     }
64   }
65 
66   // We cannot assume that random() or rand() were seeded
67   // properly, so instead of relying on random() or rand(),
68   // we just seed our PRNG using timing data as fallback.
69   // This is weak entropy, but it's sufficient, because
70   // it is the responsibility of the embedder to install
71   // an entropy source using v8::V8::SetEntropySource(),
72   // which provides reasonable entropy, see:
73   // https://code.google.com/p/v8/issues/detail?id=2905
74   int64_t seed = Time::NowFromSystemTime().ToInternalValue() << 24;
75   seed ^= TimeTicks::HighResolutionNow().ToInternalValue() << 16;
76   seed ^= TimeTicks::Now().ToInternalValue() << 8;
77   SetSeed(seed);
78 #endif  // V8_OS_CYGWIN || V8_OS_WIN
79 }
80 
81 
NextInt(int max)82 int RandomNumberGenerator::NextInt(int max) {
83   DCHECK_LT(0, max);
84 
85   // Fast path if max is a power of 2.
86   if (bits::IsPowerOfTwo(max)) {
87     return static_cast<int>((max * static_cast<int64_t>(Next(31))) >> 31);
88   }
89 
90   while (true) {
91     int rnd = Next(31);
92     int val = rnd % max;
93     if (rnd - val + (max - 1) >= 0) {
94       return val;
95     }
96   }
97 }
98 
99 
NextDouble()100 double RandomNumberGenerator::NextDouble() {
101   XorShift128(&state0_, &state1_);
102   return ToDouble(state0_, state1_);
103 }
104 
105 
NextInt64()106 int64_t RandomNumberGenerator::NextInt64() {
107   XorShift128(&state0_, &state1_);
108   return bit_cast<int64_t>(state0_ + state1_);
109 }
110 
111 
NextBytes(void * buffer,size_t buflen)112 void RandomNumberGenerator::NextBytes(void* buffer, size_t buflen) {
113   for (size_t n = 0; n < buflen; ++n) {
114     static_cast<uint8_t*>(buffer)[n] = static_cast<uint8_t>(Next(8));
115   }
116 }
117 
ComplementSample(const std::unordered_set<uint64_t> & set,uint64_t max)118 static std::vector<uint64_t> ComplementSample(
119     const std::unordered_set<uint64_t>& set, uint64_t max) {
120   std::vector<uint64_t> result;
121   result.reserve(max - set.size());
122   for (uint64_t i = 0; i < max; i++) {
123     if (!set.count(i)) {
124       result.push_back(i);
125     }
126   }
127   return result;
128 }
129 
NextSample(uint64_t max,size_t n)130 std::vector<uint64_t> RandomNumberGenerator::NextSample(uint64_t max,
131                                                         size_t n) {
132   CHECK_LE(n, max);
133 
134   if (n == 0) {
135     return std::vector<uint64_t>();
136   }
137 
138   // Choose to select or exclude, whatever needs fewer generator calls.
139   size_t smaller_part = static_cast<size_t>(
140       std::min(max - static_cast<uint64_t>(n), static_cast<uint64_t>(n)));
141   std::unordered_set<uint64_t> selected;
142 
143   size_t counter = 0;
144   while (selected.size() != smaller_part && counter / 3 < smaller_part) {
145     uint64_t x = static_cast<uint64_t>(NextDouble() * max);
146     CHECK_LT(x, max);
147 
148     selected.insert(x);
149     counter++;
150   }
151 
152   if (selected.size() == smaller_part) {
153     if (smaller_part != n) {
154       return ComplementSample(selected, max);
155     }
156     return std::vector<uint64_t>(selected.begin(), selected.end());
157   }
158 
159   // Failed to select numbers in smaller_part * 3 steps, try different approach.
160   return NextSampleSlow(max, n, selected);
161 }
162 
NextSampleSlow(uint64_t max,size_t n,const std::unordered_set<uint64_t> & excluded)163 std::vector<uint64_t> RandomNumberGenerator::NextSampleSlow(
164     uint64_t max, size_t n, const std::unordered_set<uint64_t>& excluded) {
165   CHECK_GE(max - excluded.size(), n);
166 
167   std::vector<uint64_t> result;
168   result.reserve(max - excluded.size());
169 
170   for (uint64_t i = 0; i < max; i++) {
171     if (!excluded.count(i)) {
172       result.push_back(i);
173     }
174   }
175 
176   // Decrease result vector until it contains values to select or exclude,
177   // whatever needs fewer generator calls.
178   size_t larger_part = static_cast<size_t>(
179       std::max(max - static_cast<uint64_t>(n), static_cast<uint64_t>(n)));
180 
181   // Excluded set may cause that initial result is already smaller than
182   // larget_part.
183   while (result.size() != larger_part && result.size() > n) {
184     size_t x = static_cast<size_t>(NextDouble() * result.size());
185     CHECK_LT(x, result.size());
186 
187     std::swap(result[x], result.back());
188     result.pop_back();
189   }
190 
191   if (result.size() != n) {
192     return ComplementSample(
193         std::unordered_set<uint64_t>(result.begin(), result.end()), max);
194   }
195   return result;
196 }
197 
Next(int bits)198 int RandomNumberGenerator::Next(int bits) {
199   DCHECK_LT(0, bits);
200   DCHECK_GE(32, bits);
201   XorShift128(&state0_, &state1_);
202   return static_cast<int>((state0_ + state1_) >> (64 - bits));
203 }
204 
205 
SetSeed(int64_t seed)206 void RandomNumberGenerator::SetSeed(int64_t seed) {
207   initial_seed_ = seed;
208   state0_ = MurmurHash3(bit_cast<uint64_t>(seed));
209   state1_ = MurmurHash3(~state0_);
210   CHECK(state0_ != 0 || state1_ != 0);
211 }
212 
213 
MurmurHash3(uint64_t h)214 uint64_t RandomNumberGenerator::MurmurHash3(uint64_t h) {
215   h ^= h >> 33;
216   h *= uint64_t{0xFF51AFD7ED558CCD};
217   h ^= h >> 33;
218   h *= uint64_t{0xC4CEB9FE1A85EC53};
219   h ^= h >> 33;
220   return h;
221 }
222 
223 }  // namespace base
224 }  // namespace v8
225