1 /*
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25
26 #include "common.h"
27 #include "utils/const_time.h"
28 #include "wpabuf.h"
29 #include "dh_group5.h"
30 #include "sha1.h"
31 #include "sha256.h"
32 #include "sha384.h"
33 #include "sha512.h"
34 #include "md5.h"
35 #include "aes_wrap.h"
36 #include "crypto.h"
37
38 #if OPENSSL_VERSION_NUMBER < 0x10100000L || \
39 (defined(LIBRESSL_VERSION_NUMBER) && \
40 LIBRESSL_VERSION_NUMBER < 0x20700000L)
41 /* Compatibility wrappers for older versions. */
42
HMAC_CTX_new(void)43 static HMAC_CTX * HMAC_CTX_new(void)
44 {
45 HMAC_CTX *ctx;
46
47 ctx = os_zalloc(sizeof(*ctx));
48 if (ctx)
49 HMAC_CTX_init(ctx);
50 return ctx;
51 }
52
53
HMAC_CTX_free(HMAC_CTX * ctx)54 static void HMAC_CTX_free(HMAC_CTX *ctx)
55 {
56 if (!ctx)
57 return;
58 HMAC_CTX_cleanup(ctx);
59 bin_clear_free(ctx, sizeof(*ctx));
60 }
61
62
EVP_MD_CTX_new(void)63 static EVP_MD_CTX * EVP_MD_CTX_new(void)
64 {
65 EVP_MD_CTX *ctx;
66
67 ctx = os_zalloc(sizeof(*ctx));
68 if (ctx)
69 EVP_MD_CTX_init(ctx);
70 return ctx;
71 }
72
73
EVP_MD_CTX_free(EVP_MD_CTX * ctx)74 static void EVP_MD_CTX_free(EVP_MD_CTX *ctx)
75 {
76 if (!ctx)
77 return;
78 EVP_MD_CTX_cleanup(ctx);
79 bin_clear_free(ctx, sizeof(*ctx));
80 }
81
82 #endif /* OpenSSL version < 1.1.0 */
83
get_group5_prime(void)84 static BIGNUM * get_group5_prime(void)
85 {
86 #if OPENSSL_VERSION_NUMBER >= 0x10100000L && \
87 !(defined(LIBRESSL_VERSION_NUMBER) && \
88 LIBRESSL_VERSION_NUMBER < 0x20700000L)
89 return BN_get_rfc3526_prime_1536(NULL);
90 #elif !defined(OPENSSL_IS_BORINGSSL)
91 return get_rfc3526_prime_1536(NULL);
92 #else
93 static const unsigned char RFC3526_PRIME_1536[] = {
94 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
95 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
96 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
97 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
98 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
99 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
100 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
101 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
102 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
103 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
104 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
105 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
106 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
107 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
108 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
109 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
110 };
111 return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
112 #endif
113 }
114
115
get_group5_order(void)116 static BIGNUM * get_group5_order(void)
117 {
118 static const unsigned char RFC3526_ORDER_1536[] = {
119 0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xE4,0x87,0xED,0x51,
120 0x10,0xB4,0x61,0x1A,0x62,0x63,0x31,0x45,0xC0,0x6E,0x0E,0x68,
121 0x94,0x81,0x27,0x04,0x45,0x33,0xE6,0x3A,0x01,0x05,0xDF,0x53,
122 0x1D,0x89,0xCD,0x91,0x28,0xA5,0x04,0x3C,0xC7,0x1A,0x02,0x6E,
123 0xF7,0xCA,0x8C,0xD9,0xE6,0x9D,0x21,0x8D,0x98,0x15,0x85,0x36,
124 0xF9,0x2F,0x8A,0x1B,0xA7,0xF0,0x9A,0xB6,0xB6,0xA8,0xE1,0x22,
125 0xF2,0x42,0xDA,0xBB,0x31,0x2F,0x3F,0x63,0x7A,0x26,0x21,0x74,
126 0xD3,0x1B,0xF6,0xB5,0x85,0xFF,0xAE,0x5B,0x7A,0x03,0x5B,0xF6,
127 0xF7,0x1C,0x35,0xFD,0xAD,0x44,0xCF,0xD2,0xD7,0x4F,0x92,0x08,
128 0xBE,0x25,0x8F,0xF3,0x24,0x94,0x33,0x28,0xF6,0x72,0x2D,0x9E,
129 0xE1,0x00,0x3E,0x5C,0x50,0xB1,0xDF,0x82,0xCC,0x6D,0x24,0x1B,
130 0x0E,0x2A,0xE9,0xCD,0x34,0x8B,0x1F,0xD4,0x7E,0x92,0x67,0xAF,
131 0xC1,0xB2,0xAE,0x91,0xEE,0x51,0xD6,0xCB,0x0E,0x31,0x79,0xAB,
132 0x10,0x42,0xA9,0x5D,0xCF,0x6A,0x94,0x83,0xB8,0x4B,0x4B,0x36,
133 0xB3,0x86,0x1A,0xA7,0x25,0x5E,0x4C,0x02,0x78,0xBA,0x36,0x04,
134 0x65,0x11,0xB9,0x93,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF
135 };
136 return BN_bin2bn(RFC3526_ORDER_1536, sizeof(RFC3526_ORDER_1536), NULL);
137 }
138
139
140 #ifdef OPENSSL_NO_SHA256
141 #define NO_SHA256_WRAPPER
142 #endif
143 #ifdef OPENSSL_NO_SHA512
144 #define NO_SHA384_WRAPPER
145 #endif
146
openssl_digest_vector(const EVP_MD * type,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)147 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
148 const u8 *addr[], const size_t *len, u8 *mac)
149 {
150 EVP_MD_CTX *ctx;
151 size_t i;
152 unsigned int mac_len;
153
154 if (TEST_FAIL())
155 return -1;
156
157 ctx = EVP_MD_CTX_new();
158 if (!ctx)
159 return -1;
160 if (!EVP_DigestInit_ex(ctx, type, NULL)) {
161 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
162 ERR_error_string(ERR_get_error(), NULL));
163 EVP_MD_CTX_free(ctx);
164 return -1;
165 }
166 for (i = 0; i < num_elem; i++) {
167 if (!EVP_DigestUpdate(ctx, addr[i], len[i])) {
168 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
169 "failed: %s",
170 ERR_error_string(ERR_get_error(), NULL));
171 EVP_MD_CTX_free(ctx);
172 return -1;
173 }
174 }
175 if (!EVP_DigestFinal(ctx, mac, &mac_len)) {
176 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
177 ERR_error_string(ERR_get_error(), NULL));
178 EVP_MD_CTX_free(ctx);
179 return -1;
180 }
181 EVP_MD_CTX_free(ctx);
182
183 return 0;
184 }
185
186
187 #ifndef CONFIG_FIPS
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)188 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
189 {
190 return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
191 }
192 #endif /* CONFIG_FIPS */
193
194
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)195 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
196 {
197 u8 pkey[8], next, tmp;
198 int i;
199 DES_key_schedule ks;
200
201 /* Add parity bits to the key */
202 next = 0;
203 for (i = 0; i < 7; i++) {
204 tmp = key[i];
205 pkey[i] = (tmp >> i) | next | 1;
206 next = tmp << (7 - i);
207 }
208 pkey[i] = next | 1;
209
210 DES_set_key((DES_cblock *) &pkey, &ks);
211 DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
212 DES_ENCRYPT);
213 return 0;
214 }
215
216
217 #ifndef CONFIG_NO_RC4
rc4_skip(const u8 * key,size_t keylen,size_t skip,u8 * data,size_t data_len)218 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
219 u8 *data, size_t data_len)
220 {
221 #ifdef OPENSSL_NO_RC4
222 return -1;
223 #else /* OPENSSL_NO_RC4 */
224 EVP_CIPHER_CTX *ctx;
225 int outl;
226 int res = -1;
227 unsigned char skip_buf[16];
228
229 ctx = EVP_CIPHER_CTX_new();
230 if (!ctx ||
231 !EVP_CIPHER_CTX_set_padding(ctx, 0) ||
232 !EVP_CipherInit_ex(ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
233 !EVP_CIPHER_CTX_set_key_length(ctx, keylen) ||
234 !EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, 1))
235 goto out;
236
237 while (skip >= sizeof(skip_buf)) {
238 size_t len = skip;
239 if (len > sizeof(skip_buf))
240 len = sizeof(skip_buf);
241 if (!EVP_CipherUpdate(ctx, skip_buf, &outl, skip_buf, len))
242 goto out;
243 skip -= len;
244 }
245
246 if (EVP_CipherUpdate(ctx, data, &outl, data, data_len))
247 res = 0;
248
249 out:
250 if (ctx)
251 EVP_CIPHER_CTX_free(ctx);
252 return res;
253 #endif /* OPENSSL_NO_RC4 */
254 }
255 #endif /* CONFIG_NO_RC4 */
256
257
258 #ifndef CONFIG_FIPS
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)259 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
260 {
261 return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
262 }
263 #endif /* CONFIG_FIPS */
264
265
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)266 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
267 {
268 return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
269 }
270
271
272 #ifndef NO_SHA256_WRAPPER
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)273 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
274 u8 *mac)
275 {
276 return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
277 }
278 #endif /* NO_SHA256_WRAPPER */
279
280
281 #ifndef NO_SHA384_WRAPPER
sha384_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)282 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
283 u8 *mac)
284 {
285 return openssl_digest_vector(EVP_sha384(), num_elem, addr, len, mac);
286 }
287 #endif /* NO_SHA384_WRAPPER */
288
289
290 #ifndef NO_SHA512_WRAPPER
sha512_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)291 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
292 u8 *mac)
293 {
294 return openssl_digest_vector(EVP_sha512(), num_elem, addr, len, mac);
295 }
296 #endif /* NO_SHA512_WRAPPER */
297
298
aes_get_evp_cipher(size_t keylen)299 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
300 {
301 switch (keylen) {
302 case 16:
303 return EVP_aes_128_ecb();
304 case 24:
305 return EVP_aes_192_ecb();
306 case 32:
307 return EVP_aes_256_ecb();
308 }
309
310 return NULL;
311 }
312
313
aes_encrypt_init(const u8 * key,size_t len)314 void * aes_encrypt_init(const u8 *key, size_t len)
315 {
316 EVP_CIPHER_CTX *ctx;
317 const EVP_CIPHER *type;
318
319 if (TEST_FAIL())
320 return NULL;
321
322 type = aes_get_evp_cipher(len);
323 if (!type) {
324 wpa_printf(MSG_INFO, "%s: Unsupported len=%u",
325 __func__, (unsigned int) len);
326 return NULL;
327 }
328
329 ctx = EVP_CIPHER_CTX_new();
330 if (ctx == NULL)
331 return NULL;
332 if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
333 os_free(ctx);
334 return NULL;
335 }
336 EVP_CIPHER_CTX_set_padding(ctx, 0);
337 return ctx;
338 }
339
340
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)341 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
342 {
343 EVP_CIPHER_CTX *c = ctx;
344 int clen = 16;
345 if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
346 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
347 ERR_error_string(ERR_get_error(), NULL));
348 return -1;
349 }
350 return 0;
351 }
352
353
aes_encrypt_deinit(void * ctx)354 void aes_encrypt_deinit(void *ctx)
355 {
356 EVP_CIPHER_CTX *c = ctx;
357 u8 buf[16];
358 int len = sizeof(buf);
359 if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
360 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
361 "%s", ERR_error_string(ERR_get_error(), NULL));
362 }
363 if (len != 0) {
364 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
365 "in AES encrypt", len);
366 }
367 EVP_CIPHER_CTX_free(c);
368 }
369
370
aes_decrypt_init(const u8 * key,size_t len)371 void * aes_decrypt_init(const u8 *key, size_t len)
372 {
373 EVP_CIPHER_CTX *ctx;
374 const EVP_CIPHER *type;
375
376 if (TEST_FAIL())
377 return NULL;
378
379 type = aes_get_evp_cipher(len);
380 if (!type) {
381 wpa_printf(MSG_INFO, "%s: Unsupported len=%u",
382 __func__, (unsigned int) len);
383 return NULL;
384 }
385
386 ctx = EVP_CIPHER_CTX_new();
387 if (ctx == NULL)
388 return NULL;
389 if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
390 EVP_CIPHER_CTX_free(ctx);
391 return NULL;
392 }
393 EVP_CIPHER_CTX_set_padding(ctx, 0);
394 return ctx;
395 }
396
397
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)398 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
399 {
400 EVP_CIPHER_CTX *c = ctx;
401 int plen = 16;
402 if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
403 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
404 ERR_error_string(ERR_get_error(), NULL));
405 return -1;
406 }
407 return 0;
408 }
409
410
aes_decrypt_deinit(void * ctx)411 void aes_decrypt_deinit(void *ctx)
412 {
413 EVP_CIPHER_CTX *c = ctx;
414 u8 buf[16];
415 int len = sizeof(buf);
416 if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
417 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
418 "%s", ERR_error_string(ERR_get_error(), NULL));
419 }
420 if (len != 0) {
421 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
422 "in AES decrypt", len);
423 }
424 EVP_CIPHER_CTX_free(c);
425 }
426
427
428 #ifndef CONFIG_FIPS
429 #ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP
430
aes_wrap(const u8 * kek,size_t kek_len,int n,const u8 * plain,u8 * cipher)431 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
432 {
433 AES_KEY actx;
434 int res;
435
436 if (TEST_FAIL())
437 return -1;
438 if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
439 return -1;
440 res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
441 OPENSSL_cleanse(&actx, sizeof(actx));
442 return res <= 0 ? -1 : 0;
443 }
444
445
aes_unwrap(const u8 * kek,size_t kek_len,int n,const u8 * cipher,u8 * plain)446 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
447 u8 *plain)
448 {
449 AES_KEY actx;
450 int res;
451
452 if (TEST_FAIL())
453 return -1;
454 if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
455 return -1;
456 res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
457 OPENSSL_cleanse(&actx, sizeof(actx));
458 return res <= 0 ? -1 : 0;
459 }
460
461 #endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */
462 #endif /* CONFIG_FIPS */
463
464
aes_128_cbc_encrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)465 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
466 {
467 EVP_CIPHER_CTX *ctx;
468 int clen, len;
469 u8 buf[16];
470 int res = -1;
471
472 if (TEST_FAIL())
473 return -1;
474
475 ctx = EVP_CIPHER_CTX_new();
476 if (!ctx)
477 return -1;
478 clen = data_len;
479 len = sizeof(buf);
480 if (EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
481 EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
482 EVP_EncryptUpdate(ctx, data, &clen, data, data_len) == 1 &&
483 clen == (int) data_len &&
484 EVP_EncryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
485 res = 0;
486 EVP_CIPHER_CTX_free(ctx);
487
488 return res;
489 }
490
491
aes_128_cbc_decrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)492 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
493 {
494 EVP_CIPHER_CTX *ctx;
495 int plen, len;
496 u8 buf[16];
497 int res = -1;
498
499 if (TEST_FAIL())
500 return -1;
501
502 ctx = EVP_CIPHER_CTX_new();
503 if (!ctx)
504 return -1;
505 plen = data_len;
506 len = sizeof(buf);
507 if (EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
508 EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
509 EVP_DecryptUpdate(ctx, data, &plen, data, data_len) == 1 &&
510 plen == (int) data_len &&
511 EVP_DecryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
512 res = 0;
513 EVP_CIPHER_CTX_free(ctx);
514
515 return res;
516
517 }
518
519
crypto_dh_init(u8 generator,const u8 * prime,size_t prime_len,u8 * privkey,u8 * pubkey)520 int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
521 u8 *pubkey)
522 {
523 size_t pubkey_len, pad;
524
525 if (os_get_random(privkey, prime_len) < 0)
526 return -1;
527 if (os_memcmp(privkey, prime, prime_len) > 0) {
528 /* Make sure private value is smaller than prime */
529 privkey[0] = 0;
530 }
531
532 pubkey_len = prime_len;
533 if (crypto_mod_exp(&generator, 1, privkey, prime_len, prime, prime_len,
534 pubkey, &pubkey_len) < 0)
535 return -1;
536 if (pubkey_len < prime_len) {
537 pad = prime_len - pubkey_len;
538 os_memmove(pubkey + pad, pubkey, pubkey_len);
539 os_memset(pubkey, 0, pad);
540 }
541
542 return 0;
543 }
544
545
crypto_dh_derive_secret(u8 generator,const u8 * prime,size_t prime_len,const u8 * order,size_t order_len,const u8 * privkey,size_t privkey_len,const u8 * pubkey,size_t pubkey_len,u8 * secret,size_t * len)546 int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
547 const u8 *order, size_t order_len,
548 const u8 *privkey, size_t privkey_len,
549 const u8 *pubkey, size_t pubkey_len,
550 u8 *secret, size_t *len)
551 {
552 BIGNUM *pub, *p;
553 int res = -1;
554
555 pub = BN_bin2bn(pubkey, pubkey_len, NULL);
556 p = BN_bin2bn(prime, prime_len, NULL);
557 if (!pub || !p || BN_is_zero(pub) || BN_is_one(pub) ||
558 BN_cmp(pub, p) >= 0)
559 goto fail;
560
561 if (order) {
562 BN_CTX *ctx;
563 BIGNUM *q, *tmp;
564 int failed;
565
566 /* verify: pubkey^q == 1 mod p */
567 q = BN_bin2bn(order, order_len, NULL);
568 ctx = BN_CTX_new();
569 tmp = BN_new();
570 failed = !q || !ctx || !tmp ||
571 !BN_mod_exp(tmp, pub, q, p, ctx) ||
572 !BN_is_one(tmp);
573 BN_clear(q);
574 BN_clear(tmp);
575 BN_CTX_free(ctx);
576 if (failed)
577 goto fail;
578 }
579
580 res = crypto_mod_exp(pubkey, pubkey_len, privkey, privkey_len,
581 prime, prime_len, secret, len);
582 fail:
583 BN_clear(pub);
584 BN_clear(p);
585 return res;
586 }
587
588
crypto_mod_exp(const u8 * base,size_t base_len,const u8 * power,size_t power_len,const u8 * modulus,size_t modulus_len,u8 * result,size_t * result_len)589 int crypto_mod_exp(const u8 *base, size_t base_len,
590 const u8 *power, size_t power_len,
591 const u8 *modulus, size_t modulus_len,
592 u8 *result, size_t *result_len)
593 {
594 BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
595 int ret = -1;
596 BN_CTX *ctx;
597
598 ctx = BN_CTX_new();
599 if (ctx == NULL)
600 return -1;
601
602 bn_base = BN_bin2bn(base, base_len, NULL);
603 bn_exp = BN_bin2bn(power, power_len, NULL);
604 bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
605 bn_result = BN_new();
606
607 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
608 bn_result == NULL)
609 goto error;
610
611 if (BN_mod_exp_mont_consttime(bn_result, bn_base, bn_exp, bn_modulus,
612 ctx, NULL) != 1)
613 goto error;
614
615 *result_len = BN_bn2bin(bn_result, result);
616 ret = 0;
617
618 error:
619 BN_clear_free(bn_base);
620 BN_clear_free(bn_exp);
621 BN_clear_free(bn_modulus);
622 BN_clear_free(bn_result);
623 BN_CTX_free(ctx);
624 return ret;
625 }
626
627
628 struct crypto_cipher {
629 EVP_CIPHER_CTX *enc;
630 EVP_CIPHER_CTX *dec;
631 };
632
633
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)634 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
635 const u8 *iv, const u8 *key,
636 size_t key_len)
637 {
638 struct crypto_cipher *ctx;
639 const EVP_CIPHER *cipher;
640
641 ctx = os_zalloc(sizeof(*ctx));
642 if (ctx == NULL)
643 return NULL;
644
645 switch (alg) {
646 #ifndef CONFIG_NO_RC4
647 #ifndef OPENSSL_NO_RC4
648 case CRYPTO_CIPHER_ALG_RC4:
649 cipher = EVP_rc4();
650 break;
651 #endif /* OPENSSL_NO_RC4 */
652 #endif /* CONFIG_NO_RC4 */
653 #ifndef OPENSSL_NO_AES
654 case CRYPTO_CIPHER_ALG_AES:
655 switch (key_len) {
656 case 16:
657 cipher = EVP_aes_128_cbc();
658 break;
659 #ifndef OPENSSL_IS_BORINGSSL
660 case 24:
661 cipher = EVP_aes_192_cbc();
662 break;
663 #endif /* OPENSSL_IS_BORINGSSL */
664 case 32:
665 cipher = EVP_aes_256_cbc();
666 break;
667 default:
668 os_free(ctx);
669 return NULL;
670 }
671 break;
672 #endif /* OPENSSL_NO_AES */
673 #ifndef OPENSSL_NO_DES
674 case CRYPTO_CIPHER_ALG_3DES:
675 cipher = EVP_des_ede3_cbc();
676 break;
677 case CRYPTO_CIPHER_ALG_DES:
678 cipher = EVP_des_cbc();
679 break;
680 #endif /* OPENSSL_NO_DES */
681 #ifndef OPENSSL_NO_RC2
682 case CRYPTO_CIPHER_ALG_RC2:
683 cipher = EVP_rc2_ecb();
684 break;
685 #endif /* OPENSSL_NO_RC2 */
686 default:
687 os_free(ctx);
688 return NULL;
689 }
690
691 if (!(ctx->enc = EVP_CIPHER_CTX_new()) ||
692 !EVP_CIPHER_CTX_set_padding(ctx->enc, 0) ||
693 !EVP_EncryptInit_ex(ctx->enc, cipher, NULL, NULL, NULL) ||
694 !EVP_CIPHER_CTX_set_key_length(ctx->enc, key_len) ||
695 !EVP_EncryptInit_ex(ctx->enc, NULL, NULL, key, iv)) {
696 if (ctx->enc)
697 EVP_CIPHER_CTX_free(ctx->enc);
698 os_free(ctx);
699 return NULL;
700 }
701
702 if (!(ctx->dec = EVP_CIPHER_CTX_new()) ||
703 !EVP_CIPHER_CTX_set_padding(ctx->dec, 0) ||
704 !EVP_DecryptInit_ex(ctx->dec, cipher, NULL, NULL, NULL) ||
705 !EVP_CIPHER_CTX_set_key_length(ctx->dec, key_len) ||
706 !EVP_DecryptInit_ex(ctx->dec, NULL, NULL, key, iv)) {
707 EVP_CIPHER_CTX_free(ctx->enc);
708 if (ctx->dec)
709 EVP_CIPHER_CTX_free(ctx->dec);
710 os_free(ctx);
711 return NULL;
712 }
713
714 return ctx;
715 }
716
717
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)718 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
719 u8 *crypt, size_t len)
720 {
721 int outl;
722 if (!EVP_EncryptUpdate(ctx->enc, crypt, &outl, plain, len))
723 return -1;
724 return 0;
725 }
726
727
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)728 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
729 u8 *plain, size_t len)
730 {
731 int outl;
732 outl = len;
733 if (!EVP_DecryptUpdate(ctx->dec, plain, &outl, crypt, len))
734 return -1;
735 return 0;
736 }
737
738
crypto_cipher_deinit(struct crypto_cipher * ctx)739 void crypto_cipher_deinit(struct crypto_cipher *ctx)
740 {
741 EVP_CIPHER_CTX_free(ctx->enc);
742 EVP_CIPHER_CTX_free(ctx->dec);
743 os_free(ctx);
744 }
745
746
dh5_init(struct wpabuf ** priv,struct wpabuf ** publ)747 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
748 {
749 #if OPENSSL_VERSION_NUMBER < 0x10100000L || \
750 (defined(LIBRESSL_VERSION_NUMBER) && \
751 LIBRESSL_VERSION_NUMBER < 0x20700000L)
752 DH *dh;
753 struct wpabuf *pubkey = NULL, *privkey = NULL;
754 size_t publen, privlen;
755
756 *priv = NULL;
757 wpabuf_free(*publ);
758 *publ = NULL;
759
760 dh = DH_new();
761 if (dh == NULL)
762 return NULL;
763
764 dh->g = BN_new();
765 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
766 goto err;
767
768 dh->p = get_group5_prime();
769 if (dh->p == NULL)
770 goto err;
771
772 dh->q = get_group5_order();
773 if (!dh->q)
774 goto err;
775
776 if (DH_generate_key(dh) != 1)
777 goto err;
778
779 publen = BN_num_bytes(dh->pub_key);
780 pubkey = wpabuf_alloc(publen);
781 if (pubkey == NULL)
782 goto err;
783 privlen = BN_num_bytes(dh->priv_key);
784 privkey = wpabuf_alloc(privlen);
785 if (privkey == NULL)
786 goto err;
787
788 BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
789 BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
790
791 *priv = privkey;
792 *publ = pubkey;
793 return dh;
794
795 err:
796 wpabuf_clear_free(pubkey);
797 wpabuf_clear_free(privkey);
798 DH_free(dh);
799 return NULL;
800 #else
801 DH *dh;
802 struct wpabuf *pubkey = NULL, *privkey = NULL;
803 size_t publen, privlen;
804 BIGNUM *p, *g, *q;
805 const BIGNUM *priv_key = NULL, *pub_key = NULL;
806
807 *priv = NULL;
808 wpabuf_free(*publ);
809 *publ = NULL;
810
811 dh = DH_new();
812 if (dh == NULL)
813 return NULL;
814
815 g = BN_new();
816 p = get_group5_prime();
817 q = get_group5_order();
818 if (!g || BN_set_word(g, 2) != 1 || !p || !q ||
819 DH_set0_pqg(dh, p, q, g) != 1)
820 goto err;
821 p = NULL;
822 q = NULL;
823 g = NULL;
824
825 if (DH_generate_key(dh) != 1)
826 goto err;
827
828 DH_get0_key(dh, &pub_key, &priv_key);
829 publen = BN_num_bytes(pub_key);
830 pubkey = wpabuf_alloc(publen);
831 if (!pubkey)
832 goto err;
833 privlen = BN_num_bytes(priv_key);
834 privkey = wpabuf_alloc(privlen);
835 if (!privkey)
836 goto err;
837
838 BN_bn2bin(pub_key, wpabuf_put(pubkey, publen));
839 BN_bn2bin(priv_key, wpabuf_put(privkey, privlen));
840
841 *priv = privkey;
842 *publ = pubkey;
843 return dh;
844
845 err:
846 BN_free(p);
847 BN_free(q);
848 BN_free(g);
849 wpabuf_clear_free(pubkey);
850 wpabuf_clear_free(privkey);
851 DH_free(dh);
852 return NULL;
853 #endif
854 }
855
856
dh5_init_fixed(const struct wpabuf * priv,const struct wpabuf * publ)857 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
858 {
859 #if OPENSSL_VERSION_NUMBER < 0x10100000L || \
860 (defined(LIBRESSL_VERSION_NUMBER) && \
861 LIBRESSL_VERSION_NUMBER < 0x20700000L)
862 DH *dh;
863
864 dh = DH_new();
865 if (dh == NULL)
866 return NULL;
867
868 dh->g = BN_new();
869 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
870 goto err;
871
872 dh->p = get_group5_prime();
873 if (dh->p == NULL)
874 goto err;
875
876 dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
877 if (dh->priv_key == NULL)
878 goto err;
879
880 dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
881 if (dh->pub_key == NULL)
882 goto err;
883
884 if (DH_generate_key(dh) != 1)
885 goto err;
886
887 return dh;
888
889 err:
890 DH_free(dh);
891 return NULL;
892 #else
893 DH *dh;
894 BIGNUM *p = NULL, *g, *priv_key = NULL, *pub_key = NULL;
895
896 dh = DH_new();
897 if (dh == NULL)
898 return NULL;
899
900 g = BN_new();
901 p = get_group5_prime();
902 if (!g || BN_set_word(g, 2) != 1 || !p ||
903 DH_set0_pqg(dh, p, NULL, g) != 1)
904 goto err;
905 p = NULL;
906 g = NULL;
907
908 priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
909 pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
910 if (!priv_key || !pub_key || DH_set0_key(dh, pub_key, priv_key) != 1)
911 goto err;
912 pub_key = NULL;
913 priv_key = NULL;
914
915 if (DH_generate_key(dh) != 1)
916 goto err;
917
918 return dh;
919
920 err:
921 BN_free(p);
922 BN_free(g);
923 BN_free(pub_key);
924 BN_clear_free(priv_key);
925 DH_free(dh);
926 return NULL;
927 #endif
928 }
929
930
dh5_derive_shared(void * ctx,const struct wpabuf * peer_public,const struct wpabuf * own_private)931 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
932 const struct wpabuf *own_private)
933 {
934 BIGNUM *pub_key;
935 struct wpabuf *res = NULL;
936 size_t rlen;
937 DH *dh = ctx;
938 int keylen;
939
940 if (ctx == NULL)
941 return NULL;
942
943 pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
944 NULL);
945 if (pub_key == NULL)
946 return NULL;
947
948 rlen = DH_size(dh);
949 res = wpabuf_alloc(rlen);
950 if (res == NULL)
951 goto err;
952
953 keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
954 if (keylen < 0)
955 goto err;
956 wpabuf_put(res, keylen);
957 BN_clear_free(pub_key);
958
959 return res;
960
961 err:
962 BN_clear_free(pub_key);
963 wpabuf_clear_free(res);
964 return NULL;
965 }
966
967
dh5_free(void * ctx)968 void dh5_free(void *ctx)
969 {
970 DH *dh;
971 if (ctx == NULL)
972 return;
973 dh = ctx;
974 DH_free(dh);
975 }
976
977
978 struct crypto_hash {
979 HMAC_CTX *ctx;
980 };
981
982
crypto_hash_init(enum crypto_hash_alg alg,const u8 * key,size_t key_len)983 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
984 size_t key_len)
985 {
986 struct crypto_hash *ctx;
987 const EVP_MD *md;
988
989 switch (alg) {
990 #ifndef OPENSSL_NO_MD5
991 case CRYPTO_HASH_ALG_HMAC_MD5:
992 md = EVP_md5();
993 break;
994 #endif /* OPENSSL_NO_MD5 */
995 #ifndef OPENSSL_NO_SHA
996 case CRYPTO_HASH_ALG_HMAC_SHA1:
997 md = EVP_sha1();
998 break;
999 #endif /* OPENSSL_NO_SHA */
1000 #ifndef OPENSSL_NO_SHA256
1001 #ifdef CONFIG_SHA256
1002 case CRYPTO_HASH_ALG_HMAC_SHA256:
1003 md = EVP_sha256();
1004 break;
1005 #endif /* CONFIG_SHA256 */
1006 #endif /* OPENSSL_NO_SHA256 */
1007 default:
1008 return NULL;
1009 }
1010
1011 ctx = os_zalloc(sizeof(*ctx));
1012 if (ctx == NULL)
1013 return NULL;
1014 ctx->ctx = HMAC_CTX_new();
1015 if (!ctx->ctx) {
1016 os_free(ctx);
1017 return NULL;
1018 }
1019
1020 if (HMAC_Init_ex(ctx->ctx, key, key_len, md, NULL) != 1) {
1021 HMAC_CTX_free(ctx->ctx);
1022 bin_clear_free(ctx, sizeof(*ctx));
1023 return NULL;
1024 }
1025
1026 return ctx;
1027 }
1028
1029
crypto_hash_update(struct crypto_hash * ctx,const u8 * data,size_t len)1030 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
1031 {
1032 if (ctx == NULL)
1033 return;
1034 HMAC_Update(ctx->ctx, data, len);
1035 }
1036
1037
crypto_hash_finish(struct crypto_hash * ctx,u8 * mac,size_t * len)1038 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
1039 {
1040 unsigned int mdlen;
1041 int res;
1042
1043 if (ctx == NULL)
1044 return -2;
1045
1046 if (mac == NULL || len == NULL) {
1047 HMAC_CTX_free(ctx->ctx);
1048 bin_clear_free(ctx, sizeof(*ctx));
1049 return 0;
1050 }
1051
1052 mdlen = *len;
1053 res = HMAC_Final(ctx->ctx, mac, &mdlen);
1054 HMAC_CTX_free(ctx->ctx);
1055 bin_clear_free(ctx, sizeof(*ctx));
1056
1057 if (TEST_FAIL())
1058 return -1;
1059
1060 if (res == 1) {
1061 *len = mdlen;
1062 return 0;
1063 }
1064
1065 return -1;
1066 }
1067
1068
openssl_hmac_vector(const EVP_MD * type,const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac,unsigned int mdlen)1069 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
1070 size_t key_len, size_t num_elem,
1071 const u8 *addr[], const size_t *len, u8 *mac,
1072 unsigned int mdlen)
1073 {
1074 HMAC_CTX *ctx;
1075 size_t i;
1076 int res;
1077
1078 if (TEST_FAIL())
1079 return -1;
1080
1081 ctx = HMAC_CTX_new();
1082 if (!ctx)
1083 return -1;
1084 res = HMAC_Init_ex(ctx, key, key_len, type, NULL);
1085 if (res != 1)
1086 goto done;
1087
1088 for (i = 0; i < num_elem; i++)
1089 HMAC_Update(ctx, addr[i], len[i]);
1090
1091 res = HMAC_Final(ctx, mac, &mdlen);
1092 done:
1093 HMAC_CTX_free(ctx);
1094
1095 return res == 1 ? 0 : -1;
1096 }
1097
1098
1099 #ifndef CONFIG_FIPS
1100
hmac_md5_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1101 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
1102 const u8 *addr[], const size_t *len, u8 *mac)
1103 {
1104 return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
1105 mac, 16);
1106 }
1107
1108
hmac_md5(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1109 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
1110 u8 *mac)
1111 {
1112 return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
1113 }
1114
1115 #endif /* CONFIG_FIPS */
1116
1117
pbkdf2_sha1(const char * passphrase,const u8 * ssid,size_t ssid_len,int iterations,u8 * buf,size_t buflen)1118 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
1119 int iterations, u8 *buf, size_t buflen)
1120 {
1121 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
1122 ssid_len, iterations, buflen, buf) != 1)
1123 return -1;
1124 return 0;
1125 }
1126
1127
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1128 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
1129 const u8 *addr[], const size_t *len, u8 *mac)
1130 {
1131 return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
1132 len, mac, 20);
1133 }
1134
1135
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1136 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
1137 u8 *mac)
1138 {
1139 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
1140 }
1141
1142
1143 #ifdef CONFIG_SHA256
1144
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1145 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
1146 const u8 *addr[], const size_t *len, u8 *mac)
1147 {
1148 return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
1149 len, mac, 32);
1150 }
1151
1152
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1153 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
1154 size_t data_len, u8 *mac)
1155 {
1156 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
1157 }
1158
1159 #endif /* CONFIG_SHA256 */
1160
1161
1162 #ifdef CONFIG_SHA384
1163
hmac_sha384_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1164 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
1165 const u8 *addr[], const size_t *len, u8 *mac)
1166 {
1167 return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
1168 len, mac, 48);
1169 }
1170
1171
hmac_sha384(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1172 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
1173 size_t data_len, u8 *mac)
1174 {
1175 return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
1176 }
1177
1178 #endif /* CONFIG_SHA384 */
1179
1180
1181 #ifdef CONFIG_SHA512
1182
hmac_sha512_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1183 int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem,
1184 const u8 *addr[], const size_t *len, u8 *mac)
1185 {
1186 return openssl_hmac_vector(EVP_sha512(), key, key_len, num_elem, addr,
1187 len, mac, 64);
1188 }
1189
1190
hmac_sha512(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1191 int hmac_sha512(const u8 *key, size_t key_len, const u8 *data,
1192 size_t data_len, u8 *mac)
1193 {
1194 return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac);
1195 }
1196
1197 #endif /* CONFIG_SHA512 */
1198
1199
crypto_get_random(void * buf,size_t len)1200 int crypto_get_random(void *buf, size_t len)
1201 {
1202 if (RAND_bytes(buf, len) != 1)
1203 return -1;
1204 return 0;
1205 }
1206
1207
1208 #ifdef CONFIG_OPENSSL_CMAC
omac1_aes_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1209 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
1210 const u8 *addr[], const size_t *len, u8 *mac)
1211 {
1212 CMAC_CTX *ctx;
1213 int ret = -1;
1214 size_t outlen, i;
1215
1216 if (TEST_FAIL())
1217 return -1;
1218
1219 ctx = CMAC_CTX_new();
1220 if (ctx == NULL)
1221 return -1;
1222
1223 if (key_len == 32) {
1224 if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
1225 goto fail;
1226 } else if (key_len == 16) {
1227 if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
1228 goto fail;
1229 } else {
1230 goto fail;
1231 }
1232 for (i = 0; i < num_elem; i++) {
1233 if (!CMAC_Update(ctx, addr[i], len[i]))
1234 goto fail;
1235 }
1236 if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
1237 goto fail;
1238
1239 ret = 0;
1240 fail:
1241 CMAC_CTX_free(ctx);
1242 return ret;
1243 }
1244
1245
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1246 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
1247 const u8 *addr[], const size_t *len, u8 *mac)
1248 {
1249 return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
1250 }
1251
1252
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)1253 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
1254 {
1255 return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
1256 }
1257
1258
omac1_aes_256(const u8 * key,const u8 * data,size_t data_len,u8 * mac)1259 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
1260 {
1261 return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
1262 }
1263 #endif /* CONFIG_OPENSSL_CMAC */
1264
1265
crypto_bignum_init(void)1266 struct crypto_bignum * crypto_bignum_init(void)
1267 {
1268 if (TEST_FAIL())
1269 return NULL;
1270 return (struct crypto_bignum *) BN_new();
1271 }
1272
1273
crypto_bignum_init_set(const u8 * buf,size_t len)1274 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
1275 {
1276 BIGNUM *bn;
1277
1278 if (TEST_FAIL())
1279 return NULL;
1280
1281 bn = BN_bin2bn(buf, len, NULL);
1282 return (struct crypto_bignum *) bn;
1283 }
1284
1285
crypto_bignum_deinit(struct crypto_bignum * n,int clear)1286 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
1287 {
1288 if (clear)
1289 BN_clear_free((BIGNUM *) n);
1290 else
1291 BN_free((BIGNUM *) n);
1292 }
1293
1294
crypto_bignum_to_bin(const struct crypto_bignum * a,u8 * buf,size_t buflen,size_t padlen)1295 int crypto_bignum_to_bin(const struct crypto_bignum *a,
1296 u8 *buf, size_t buflen, size_t padlen)
1297 {
1298 int num_bytes, offset;
1299
1300 if (TEST_FAIL())
1301 return -1;
1302
1303 if (padlen > buflen)
1304 return -1;
1305
1306 num_bytes = BN_num_bytes((const BIGNUM *) a);
1307 if ((size_t) num_bytes > buflen)
1308 return -1;
1309 if (padlen > (size_t) num_bytes)
1310 offset = padlen - num_bytes;
1311 else
1312 offset = 0;
1313
1314 os_memset(buf, 0, offset);
1315 BN_bn2bin((const BIGNUM *) a, buf + offset);
1316
1317 return num_bytes + offset;
1318 }
1319
1320
crypto_bignum_rand(struct crypto_bignum * r,const struct crypto_bignum * m)1321 int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m)
1322 {
1323 if (TEST_FAIL())
1324 return -1;
1325 return BN_rand_range((BIGNUM *) r, (const BIGNUM *) m) == 1 ? 0 : -1;
1326 }
1327
1328
crypto_bignum_add(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1329 int crypto_bignum_add(const struct crypto_bignum *a,
1330 const struct crypto_bignum *b,
1331 struct crypto_bignum *c)
1332 {
1333 return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1334 0 : -1;
1335 }
1336
1337
crypto_bignum_mod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1338 int crypto_bignum_mod(const struct crypto_bignum *a,
1339 const struct crypto_bignum *b,
1340 struct crypto_bignum *c)
1341 {
1342 int res;
1343 BN_CTX *bnctx;
1344
1345 bnctx = BN_CTX_new();
1346 if (bnctx == NULL)
1347 return -1;
1348 res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
1349 bnctx);
1350 BN_CTX_free(bnctx);
1351
1352 return res ? 0 : -1;
1353 }
1354
1355
crypto_bignum_exptmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1356 int crypto_bignum_exptmod(const struct crypto_bignum *a,
1357 const struct crypto_bignum *b,
1358 const struct crypto_bignum *c,
1359 struct crypto_bignum *d)
1360 {
1361 int res;
1362 BN_CTX *bnctx;
1363
1364 if (TEST_FAIL())
1365 return -1;
1366
1367 bnctx = BN_CTX_new();
1368 if (bnctx == NULL)
1369 return -1;
1370 res = BN_mod_exp_mont_consttime((BIGNUM *) d, (const BIGNUM *) a,
1371 (const BIGNUM *) b, (const BIGNUM *) c,
1372 bnctx, NULL);
1373 BN_CTX_free(bnctx);
1374
1375 return res ? 0 : -1;
1376 }
1377
1378
crypto_bignum_inverse(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1379 int crypto_bignum_inverse(const struct crypto_bignum *a,
1380 const struct crypto_bignum *b,
1381 struct crypto_bignum *c)
1382 {
1383 BIGNUM *res;
1384 BN_CTX *bnctx;
1385
1386 if (TEST_FAIL())
1387 return -1;
1388 bnctx = BN_CTX_new();
1389 if (bnctx == NULL)
1390 return -1;
1391 #ifdef OPENSSL_IS_BORINGSSL
1392 /* TODO: use BN_mod_inverse_blinded() ? */
1393 #else /* OPENSSL_IS_BORINGSSL */
1394 BN_set_flags((BIGNUM *) a, BN_FLG_CONSTTIME);
1395 #endif /* OPENSSL_IS_BORINGSSL */
1396 res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
1397 (const BIGNUM *) b, bnctx);
1398 BN_CTX_free(bnctx);
1399
1400 return res ? 0 : -1;
1401 }
1402
1403
crypto_bignum_sub(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1404 int crypto_bignum_sub(const struct crypto_bignum *a,
1405 const struct crypto_bignum *b,
1406 struct crypto_bignum *c)
1407 {
1408 if (TEST_FAIL())
1409 return -1;
1410 return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1411 0 : -1;
1412 }
1413
1414
crypto_bignum_div(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1415 int crypto_bignum_div(const struct crypto_bignum *a,
1416 const struct crypto_bignum *b,
1417 struct crypto_bignum *c)
1418 {
1419 int res;
1420
1421 BN_CTX *bnctx;
1422
1423 if (TEST_FAIL())
1424 return -1;
1425
1426 bnctx = BN_CTX_new();
1427 if (bnctx == NULL)
1428 return -1;
1429 #ifndef OPENSSL_IS_BORINGSSL
1430 BN_set_flags((BIGNUM *) a, BN_FLG_CONSTTIME);
1431 #endif /* OPENSSL_IS_BORINGSSL */
1432 res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
1433 (const BIGNUM *) b, bnctx);
1434 BN_CTX_free(bnctx);
1435
1436 return res ? 0 : -1;
1437 }
1438
1439
crypto_bignum_mulmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1440 int crypto_bignum_mulmod(const struct crypto_bignum *a,
1441 const struct crypto_bignum *b,
1442 const struct crypto_bignum *c,
1443 struct crypto_bignum *d)
1444 {
1445 int res;
1446
1447 BN_CTX *bnctx;
1448
1449 if (TEST_FAIL())
1450 return -1;
1451
1452 bnctx = BN_CTX_new();
1453 if (bnctx == NULL)
1454 return -1;
1455 res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1456 (const BIGNUM *) c, bnctx);
1457 BN_CTX_free(bnctx);
1458
1459 return res ? 0 : -1;
1460 }
1461
1462
crypto_bignum_rshift(const struct crypto_bignum * a,int n,struct crypto_bignum * r)1463 int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
1464 struct crypto_bignum *r)
1465 {
1466 /* Note: BN_rshift() does not modify the first argument even though it
1467 * has not been marked const. */
1468 return BN_rshift((BIGNUM *) a, (BIGNUM *) r, n) == 1 ? 0 : -1;
1469 }
1470
1471
crypto_bignum_cmp(const struct crypto_bignum * a,const struct crypto_bignum * b)1472 int crypto_bignum_cmp(const struct crypto_bignum *a,
1473 const struct crypto_bignum *b)
1474 {
1475 return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
1476 }
1477
1478
crypto_bignum_bits(const struct crypto_bignum * a)1479 int crypto_bignum_bits(const struct crypto_bignum *a)
1480 {
1481 return BN_num_bits((const BIGNUM *) a);
1482 }
1483
1484
crypto_bignum_is_zero(const struct crypto_bignum * a)1485 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1486 {
1487 return BN_is_zero((const BIGNUM *) a);
1488 }
1489
1490
crypto_bignum_is_one(const struct crypto_bignum * a)1491 int crypto_bignum_is_one(const struct crypto_bignum *a)
1492 {
1493 return BN_is_one((const BIGNUM *) a);
1494 }
1495
1496
crypto_bignum_is_odd(const struct crypto_bignum * a)1497 int crypto_bignum_is_odd(const struct crypto_bignum *a)
1498 {
1499 return BN_is_odd((const BIGNUM *) a);
1500 }
1501
1502
crypto_bignum_legendre(const struct crypto_bignum * a,const struct crypto_bignum * p)1503 int crypto_bignum_legendre(const struct crypto_bignum *a,
1504 const struct crypto_bignum *p)
1505 {
1506 BN_CTX *bnctx;
1507 BIGNUM *exp = NULL, *tmp = NULL;
1508 int res = -2;
1509 unsigned int mask;
1510
1511 if (TEST_FAIL())
1512 return -2;
1513
1514 bnctx = BN_CTX_new();
1515 if (bnctx == NULL)
1516 return -2;
1517
1518 exp = BN_new();
1519 tmp = BN_new();
1520 if (!exp || !tmp ||
1521 /* exp = (p-1) / 2 */
1522 !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
1523 !BN_rshift1(exp, exp) ||
1524 !BN_mod_exp_mont_consttime(tmp, (const BIGNUM *) a, exp,
1525 (const BIGNUM *) p, bnctx, NULL))
1526 goto fail;
1527
1528 /* Return 1 if tmp == 1, 0 if tmp == 0, or -1 otherwise. Need to use
1529 * constant time selection to avoid branches here. */
1530 res = -1;
1531 mask = const_time_eq(BN_is_word(tmp, 1), 1);
1532 res = const_time_select_int(mask, 1, res);
1533 mask = const_time_eq(BN_is_zero(tmp), 1);
1534 res = const_time_select_int(mask, 0, res);
1535
1536 fail:
1537 BN_clear_free(tmp);
1538 BN_clear_free(exp);
1539 BN_CTX_free(bnctx);
1540 return res;
1541 }
1542
1543
1544 #ifdef CONFIG_ECC
1545
1546 struct crypto_ec {
1547 EC_GROUP *group;
1548 int nid;
1549 BN_CTX *bnctx;
1550 BIGNUM *prime;
1551 BIGNUM *order;
1552 BIGNUM *a;
1553 BIGNUM *b;
1554 };
1555
crypto_ec_init(int group)1556 struct crypto_ec * crypto_ec_init(int group)
1557 {
1558 struct crypto_ec *e;
1559 int nid;
1560
1561 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1562 switch (group) {
1563 case 19:
1564 nid = NID_X9_62_prime256v1;
1565 break;
1566 case 20:
1567 nid = NID_secp384r1;
1568 break;
1569 case 21:
1570 nid = NID_secp521r1;
1571 break;
1572 case 25:
1573 nid = NID_X9_62_prime192v1;
1574 break;
1575 case 26:
1576 nid = NID_secp224r1;
1577 break;
1578 #ifdef NID_brainpoolP224r1
1579 case 27:
1580 nid = NID_brainpoolP224r1;
1581 break;
1582 #endif /* NID_brainpoolP224r1 */
1583 #ifdef NID_brainpoolP256r1
1584 case 28:
1585 nid = NID_brainpoolP256r1;
1586 break;
1587 #endif /* NID_brainpoolP256r1 */
1588 #ifdef NID_brainpoolP384r1
1589 case 29:
1590 nid = NID_brainpoolP384r1;
1591 break;
1592 #endif /* NID_brainpoolP384r1 */
1593 #ifdef NID_brainpoolP512r1
1594 case 30:
1595 nid = NID_brainpoolP512r1;
1596 break;
1597 #endif /* NID_brainpoolP512r1 */
1598 default:
1599 return NULL;
1600 }
1601
1602 e = os_zalloc(sizeof(*e));
1603 if (e == NULL)
1604 return NULL;
1605
1606 e->nid = nid;
1607 e->bnctx = BN_CTX_new();
1608 e->group = EC_GROUP_new_by_curve_name(nid);
1609 e->prime = BN_new();
1610 e->order = BN_new();
1611 e->a = BN_new();
1612 e->b = BN_new();
1613 if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1614 e->order == NULL || e->a == NULL || e->b == NULL ||
1615 !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
1616 !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1617 crypto_ec_deinit(e);
1618 e = NULL;
1619 }
1620
1621 return e;
1622 }
1623
1624
crypto_ec_deinit(struct crypto_ec * e)1625 void crypto_ec_deinit(struct crypto_ec *e)
1626 {
1627 if (e == NULL)
1628 return;
1629 BN_clear_free(e->b);
1630 BN_clear_free(e->a);
1631 BN_clear_free(e->order);
1632 BN_clear_free(e->prime);
1633 EC_GROUP_free(e->group);
1634 BN_CTX_free(e->bnctx);
1635 os_free(e);
1636 }
1637
1638
crypto_ec_point_init(struct crypto_ec * e)1639 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1640 {
1641 if (TEST_FAIL())
1642 return NULL;
1643 if (e == NULL)
1644 return NULL;
1645 return (struct crypto_ec_point *) EC_POINT_new(e->group);
1646 }
1647
1648
crypto_ec_prime_len(struct crypto_ec * e)1649 size_t crypto_ec_prime_len(struct crypto_ec *e)
1650 {
1651 return BN_num_bytes(e->prime);
1652 }
1653
1654
crypto_ec_prime_len_bits(struct crypto_ec * e)1655 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1656 {
1657 return BN_num_bits(e->prime);
1658 }
1659
1660
crypto_ec_order_len(struct crypto_ec * e)1661 size_t crypto_ec_order_len(struct crypto_ec *e)
1662 {
1663 return BN_num_bytes(e->order);
1664 }
1665
1666
crypto_ec_get_prime(struct crypto_ec * e)1667 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1668 {
1669 return (const struct crypto_bignum *) e->prime;
1670 }
1671
1672
crypto_ec_get_order(struct crypto_ec * e)1673 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1674 {
1675 return (const struct crypto_bignum *) e->order;
1676 }
1677
1678
crypto_ec_point_deinit(struct crypto_ec_point * p,int clear)1679 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1680 {
1681 if (clear)
1682 EC_POINT_clear_free((EC_POINT *) p);
1683 else
1684 EC_POINT_free((EC_POINT *) p);
1685 }
1686
1687
crypto_ec_point_x(struct crypto_ec * e,const struct crypto_ec_point * p,struct crypto_bignum * x)1688 int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p,
1689 struct crypto_bignum *x)
1690 {
1691 return EC_POINT_get_affine_coordinates_GFp(e->group,
1692 (const EC_POINT *) p,
1693 (BIGNUM *) x, NULL,
1694 e->bnctx) == 1 ? 0 : -1;
1695 }
1696
1697
crypto_ec_point_to_bin(struct crypto_ec * e,const struct crypto_ec_point * point,u8 * x,u8 * y)1698 int crypto_ec_point_to_bin(struct crypto_ec *e,
1699 const struct crypto_ec_point *point, u8 *x, u8 *y)
1700 {
1701 BIGNUM *x_bn, *y_bn;
1702 int ret = -1;
1703 int len = BN_num_bytes(e->prime);
1704
1705 if (TEST_FAIL())
1706 return -1;
1707
1708 x_bn = BN_new();
1709 y_bn = BN_new();
1710
1711 if (x_bn && y_bn &&
1712 EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1713 x_bn, y_bn, e->bnctx)) {
1714 if (x) {
1715 crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1716 x, len, len);
1717 }
1718 if (y) {
1719 crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1720 y, len, len);
1721 }
1722 ret = 0;
1723 }
1724
1725 BN_clear_free(x_bn);
1726 BN_clear_free(y_bn);
1727 return ret;
1728 }
1729
1730
crypto_ec_point_from_bin(struct crypto_ec * e,const u8 * val)1731 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1732 const u8 *val)
1733 {
1734 BIGNUM *x, *y;
1735 EC_POINT *elem;
1736 int len = BN_num_bytes(e->prime);
1737
1738 if (TEST_FAIL())
1739 return NULL;
1740
1741 x = BN_bin2bn(val, len, NULL);
1742 y = BN_bin2bn(val + len, len, NULL);
1743 elem = EC_POINT_new(e->group);
1744 if (x == NULL || y == NULL || elem == NULL) {
1745 BN_clear_free(x);
1746 BN_clear_free(y);
1747 EC_POINT_clear_free(elem);
1748 return NULL;
1749 }
1750
1751 if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1752 e->bnctx)) {
1753 EC_POINT_clear_free(elem);
1754 elem = NULL;
1755 }
1756
1757 BN_clear_free(x);
1758 BN_clear_free(y);
1759
1760 return (struct crypto_ec_point *) elem;
1761 }
1762
1763
crypto_ec_point_add(struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b,struct crypto_ec_point * c)1764 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1765 const struct crypto_ec_point *b,
1766 struct crypto_ec_point *c)
1767 {
1768 if (TEST_FAIL())
1769 return -1;
1770 return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1771 (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1772 }
1773
1774
crypto_ec_point_mul(struct crypto_ec * e,const struct crypto_ec_point * p,const struct crypto_bignum * b,struct crypto_ec_point * res)1775 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1776 const struct crypto_bignum *b,
1777 struct crypto_ec_point *res)
1778 {
1779 if (TEST_FAIL())
1780 return -1;
1781 return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1782 (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1783 ? 0 : -1;
1784 }
1785
1786
crypto_ec_point_invert(struct crypto_ec * e,struct crypto_ec_point * p)1787 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1788 {
1789 if (TEST_FAIL())
1790 return -1;
1791 return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1792 }
1793
1794
crypto_ec_point_solve_y_coord(struct crypto_ec * e,struct crypto_ec_point * p,const struct crypto_bignum * x,int y_bit)1795 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1796 struct crypto_ec_point *p,
1797 const struct crypto_bignum *x, int y_bit)
1798 {
1799 if (TEST_FAIL())
1800 return -1;
1801 if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1802 (const BIGNUM *) x, y_bit,
1803 e->bnctx) ||
1804 !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1805 return -1;
1806 return 0;
1807 }
1808
1809
1810 struct crypto_bignum *
crypto_ec_point_compute_y_sqr(struct crypto_ec * e,const struct crypto_bignum * x)1811 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
1812 const struct crypto_bignum *x)
1813 {
1814 BIGNUM *tmp, *tmp2, *y_sqr = NULL;
1815
1816 if (TEST_FAIL())
1817 return NULL;
1818
1819 tmp = BN_new();
1820 tmp2 = BN_new();
1821
1822 /* y^2 = x^3 + ax + b */
1823 if (tmp && tmp2 &&
1824 BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1825 BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1826 BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
1827 BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
1828 BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
1829 y_sqr = tmp2;
1830 tmp2 = NULL;
1831 }
1832
1833 BN_clear_free(tmp);
1834 BN_clear_free(tmp2);
1835
1836 return (struct crypto_bignum *) y_sqr;
1837 }
1838
1839
crypto_ec_point_is_at_infinity(struct crypto_ec * e,const struct crypto_ec_point * p)1840 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1841 const struct crypto_ec_point *p)
1842 {
1843 return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1844 }
1845
1846
crypto_ec_point_is_on_curve(struct crypto_ec * e,const struct crypto_ec_point * p)1847 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1848 const struct crypto_ec_point *p)
1849 {
1850 return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
1851 e->bnctx) == 1;
1852 }
1853
1854
crypto_ec_point_cmp(const struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b)1855 int crypto_ec_point_cmp(const struct crypto_ec *e,
1856 const struct crypto_ec_point *a,
1857 const struct crypto_ec_point *b)
1858 {
1859 return EC_POINT_cmp(e->group, (const EC_POINT *) a,
1860 (const EC_POINT *) b, e->bnctx);
1861 }
1862
1863
1864 struct crypto_ecdh {
1865 struct crypto_ec *ec;
1866 EVP_PKEY *pkey;
1867 };
1868
crypto_ecdh_init(int group)1869 struct crypto_ecdh * crypto_ecdh_init(int group)
1870 {
1871 struct crypto_ecdh *ecdh;
1872 EVP_PKEY *params = NULL;
1873 EC_KEY *ec_params;
1874 EVP_PKEY_CTX *kctx = NULL;
1875
1876 ecdh = os_zalloc(sizeof(*ecdh));
1877 if (!ecdh)
1878 goto fail;
1879
1880 ecdh->ec = crypto_ec_init(group);
1881 if (!ecdh->ec)
1882 goto fail;
1883
1884 ec_params = EC_KEY_new_by_curve_name(ecdh->ec->nid);
1885 if (!ec_params) {
1886 wpa_printf(MSG_ERROR,
1887 "OpenSSL: Failed to generate EC_KEY parameters");
1888 goto fail;
1889 }
1890 EC_KEY_set_asn1_flag(ec_params, OPENSSL_EC_NAMED_CURVE);
1891 params = EVP_PKEY_new();
1892 if (!params || EVP_PKEY_set1_EC_KEY(params, ec_params) != 1) {
1893 wpa_printf(MSG_ERROR,
1894 "OpenSSL: Failed to generate EVP_PKEY parameters");
1895 goto fail;
1896 }
1897
1898 kctx = EVP_PKEY_CTX_new(params, NULL);
1899 if (!kctx)
1900 goto fail;
1901
1902 if (EVP_PKEY_keygen_init(kctx) != 1) {
1903 wpa_printf(MSG_ERROR,
1904 "OpenSSL: EVP_PKEY_keygen_init failed: %s",
1905 ERR_error_string(ERR_get_error(), NULL));
1906 goto fail;
1907 }
1908
1909 if (EVP_PKEY_keygen(kctx, &ecdh->pkey) != 1) {
1910 wpa_printf(MSG_ERROR, "OpenSSL: EVP_PKEY_keygen failed: %s",
1911 ERR_error_string(ERR_get_error(), NULL));
1912 goto fail;
1913 }
1914
1915 done:
1916 EVP_PKEY_free(params);
1917 EVP_PKEY_CTX_free(kctx);
1918
1919 return ecdh;
1920 fail:
1921 crypto_ecdh_deinit(ecdh);
1922 ecdh = NULL;
1923 goto done;
1924 }
1925
1926
crypto_ecdh_get_pubkey(struct crypto_ecdh * ecdh,int inc_y)1927 struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y)
1928 {
1929 struct wpabuf *buf = NULL;
1930 EC_KEY *eckey;
1931 const EC_POINT *pubkey;
1932 BIGNUM *x, *y = NULL;
1933 int len = BN_num_bytes(ecdh->ec->prime);
1934 int res;
1935
1936 eckey = EVP_PKEY_get1_EC_KEY(ecdh->pkey);
1937 if (!eckey)
1938 return NULL;
1939
1940 pubkey = EC_KEY_get0_public_key(eckey);
1941 if (!pubkey)
1942 return NULL;
1943
1944 x = BN_new();
1945 if (inc_y) {
1946 y = BN_new();
1947 if (!y)
1948 goto fail;
1949 }
1950 buf = wpabuf_alloc(inc_y ? 2 * len : len);
1951 if (!x || !buf)
1952 goto fail;
1953
1954 if (EC_POINT_get_affine_coordinates_GFp(ecdh->ec->group, pubkey,
1955 x, y, ecdh->ec->bnctx) != 1) {
1956 wpa_printf(MSG_ERROR,
1957 "OpenSSL: EC_POINT_get_affine_coordinates_GFp failed: %s",
1958 ERR_error_string(ERR_get_error(), NULL));
1959 goto fail;
1960 }
1961
1962 res = crypto_bignum_to_bin((struct crypto_bignum *) x,
1963 wpabuf_put(buf, len), len, len);
1964 if (res < 0)
1965 goto fail;
1966
1967 if (inc_y) {
1968 res = crypto_bignum_to_bin((struct crypto_bignum *) y,
1969 wpabuf_put(buf, len), len, len);
1970 if (res < 0)
1971 goto fail;
1972 }
1973
1974 done:
1975 BN_clear_free(x);
1976 BN_clear_free(y);
1977 EC_KEY_free(eckey);
1978
1979 return buf;
1980 fail:
1981 wpabuf_free(buf);
1982 buf = NULL;
1983 goto done;
1984 }
1985
1986
crypto_ecdh_set_peerkey(struct crypto_ecdh * ecdh,int inc_y,const u8 * key,size_t len)1987 struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
1988 const u8 *key, size_t len)
1989 {
1990 BIGNUM *x, *y = NULL;
1991 EVP_PKEY_CTX *ctx = NULL;
1992 EVP_PKEY *peerkey = NULL;
1993 struct wpabuf *secret = NULL;
1994 size_t secret_len;
1995 EC_POINT *pub;
1996 EC_KEY *eckey = NULL;
1997
1998 x = BN_bin2bn(key, inc_y ? len / 2 : len, NULL);
1999 pub = EC_POINT_new(ecdh->ec->group);
2000 if (!x || !pub)
2001 goto fail;
2002
2003 if (inc_y) {
2004 y = BN_bin2bn(key + len / 2, len / 2, NULL);
2005 if (!y)
2006 goto fail;
2007 if (!EC_POINT_set_affine_coordinates_GFp(ecdh->ec->group, pub,
2008 x, y,
2009 ecdh->ec->bnctx)) {
2010 wpa_printf(MSG_ERROR,
2011 "OpenSSL: EC_POINT_set_affine_coordinates_GFp failed: %s",
2012 ERR_error_string(ERR_get_error(), NULL));
2013 goto fail;
2014 }
2015 } else if (!EC_POINT_set_compressed_coordinates_GFp(ecdh->ec->group,
2016 pub, x, 0,
2017 ecdh->ec->bnctx)) {
2018 wpa_printf(MSG_ERROR,
2019 "OpenSSL: EC_POINT_set_compressed_coordinates_GFp failed: %s",
2020 ERR_error_string(ERR_get_error(), NULL));
2021 goto fail;
2022 }
2023
2024 if (!EC_POINT_is_on_curve(ecdh->ec->group, pub, ecdh->ec->bnctx)) {
2025 wpa_printf(MSG_ERROR,
2026 "OpenSSL: ECDH peer public key is not on curve");
2027 goto fail;
2028 }
2029
2030 eckey = EC_KEY_new_by_curve_name(ecdh->ec->nid);
2031 if (!eckey || EC_KEY_set_public_key(eckey, pub) != 1) {
2032 wpa_printf(MSG_ERROR,
2033 "OpenSSL: EC_KEY_set_public_key failed: %s",
2034 ERR_error_string(ERR_get_error(), NULL));
2035 goto fail;
2036 }
2037
2038 peerkey = EVP_PKEY_new();
2039 if (!peerkey || EVP_PKEY_set1_EC_KEY(peerkey, eckey) != 1)
2040 goto fail;
2041
2042 ctx = EVP_PKEY_CTX_new(ecdh->pkey, NULL);
2043 if (!ctx || EVP_PKEY_derive_init(ctx) != 1 ||
2044 EVP_PKEY_derive_set_peer(ctx, peerkey) != 1 ||
2045 EVP_PKEY_derive(ctx, NULL, &secret_len) != 1) {
2046 wpa_printf(MSG_ERROR,
2047 "OpenSSL: EVP_PKEY_derive(1) failed: %s",
2048 ERR_error_string(ERR_get_error(), NULL));
2049 goto fail;
2050 }
2051
2052 secret = wpabuf_alloc(secret_len);
2053 if (!secret)
2054 goto fail;
2055 if (EVP_PKEY_derive(ctx, wpabuf_put(secret, secret_len),
2056 &secret_len) != 1) {
2057 wpa_printf(MSG_ERROR,
2058 "OpenSSL: EVP_PKEY_derive(2) failed: %s",
2059 ERR_error_string(ERR_get_error(), NULL));
2060 goto fail;
2061 }
2062
2063 done:
2064 BN_free(x);
2065 BN_free(y);
2066 EC_KEY_free(eckey);
2067 EC_POINT_free(pub);
2068 EVP_PKEY_CTX_free(ctx);
2069 EVP_PKEY_free(peerkey);
2070 return secret;
2071 fail:
2072 wpabuf_free(secret);
2073 secret = NULL;
2074 goto done;
2075 }
2076
2077
crypto_ecdh_deinit(struct crypto_ecdh * ecdh)2078 void crypto_ecdh_deinit(struct crypto_ecdh *ecdh)
2079 {
2080 if (ecdh) {
2081 crypto_ec_deinit(ecdh->ec);
2082 EVP_PKEY_free(ecdh->pkey);
2083 os_free(ecdh);
2084 }
2085 }
2086
2087 #endif /* CONFIG_ECC */
2088