1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // filter estimation
11 //
12 // Author: Urvang (urvang@google.com)
13 
14 #include "src/utils/filters_utils.h"
15 #include <stdlib.h>
16 #include <string.h>
17 
18 // -----------------------------------------------------------------------------
19 // Quick estimate of a potentially interesting filter mode to try.
20 
21 #define SMAX 16
22 #define SDIFF(a, b) (abs((a) - (b)) >> 4)   // Scoring diff, in [0..SMAX)
23 
GradientPredictor(uint8_t a,uint8_t b,uint8_t c)24 static WEBP_INLINE int GradientPredictor(uint8_t a, uint8_t b, uint8_t c) {
25   const int g = a + b - c;
26   return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255;  // clip to 8bit
27 }
28 
WebPEstimateBestFilter(const uint8_t * data,int width,int height,int stride)29 WEBP_FILTER_TYPE WebPEstimateBestFilter(const uint8_t* data,
30                                         int width, int height, int stride) {
31   int i, j;
32   int bins[WEBP_FILTER_LAST][SMAX];
33   memset(bins, 0, sizeof(bins));
34 
35   // We only sample every other pixels. That's enough.
36   for (j = 2; j < height - 1; j += 2) {
37     const uint8_t* const p = data + j * stride;
38     int mean = p[0];
39     for (i = 2; i < width - 1; i += 2) {
40       const int diff0 = SDIFF(p[i], mean);
41       const int diff1 = SDIFF(p[i], p[i - 1]);
42       const int diff2 = SDIFF(p[i], p[i - width]);
43       const int grad_pred =
44           GradientPredictor(p[i - 1], p[i - width], p[i - width - 1]);
45       const int diff3 = SDIFF(p[i], grad_pred);
46       bins[WEBP_FILTER_NONE][diff0] = 1;
47       bins[WEBP_FILTER_HORIZONTAL][diff1] = 1;
48       bins[WEBP_FILTER_VERTICAL][diff2] = 1;
49       bins[WEBP_FILTER_GRADIENT][diff3] = 1;
50       mean = (3 * mean + p[i] + 2) >> 2;
51     }
52   }
53   {
54     int filter;
55     WEBP_FILTER_TYPE best_filter = WEBP_FILTER_NONE;
56     int best_score = 0x7fffffff;
57     for (filter = WEBP_FILTER_NONE; filter < WEBP_FILTER_LAST; ++filter) {
58       int score = 0;
59       for (i = 0; i < SMAX; ++i) {
60         if (bins[filter][i] > 0) {
61           score += i;
62         }
63       }
64       if (score < best_score) {
65         best_score = score;
66         best_filter = (WEBP_FILTER_TYPE)filter;
67       }
68     }
69     return best_filter;
70   }
71 }
72 
73 #undef SMAX
74 #undef SDIFF
75 
76 //------------------------------------------------------------------------------
77