1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_COMPILER_XLA_SERVICE_HEAP_SIMULATOR_H_
17 #define TENSORFLOW_COMPILER_XLA_SERVICE_HEAP_SIMULATOR_H_
18 
19 #include <memory>
20 #include <set>
21 #include <utility>
22 #include <vector>
23 
24 #include "absl/container/flat_hash_map.h"
25 #include "absl/container/flat_hash_set.h"
26 #include "tensorflow/compiler/xla/service/buffer_value.h"
27 #include "tensorflow/compiler/xla/service/buffer_value_containers.h"
28 #include "tensorflow/compiler/xla/service/hlo.pb.h"
29 #include "tensorflow/compiler/xla/service/hlo_computation.h"
30 #include "tensorflow/compiler/xla/service/hlo_instruction.h"
31 #include "tensorflow/compiler/xla/service/hlo_ordering.h"
32 #include "tensorflow/compiler/xla/service/hlo_schedule.h"
33 #include "tensorflow/compiler/xla/service/tuple_points_to_analysis.h"
34 #include "tensorflow/compiler/xla/statusor.h"
35 
36 namespace xla {
37 
38 // Forward declare classes defined below.
39 class HeapAlgorithm;
40 class NoFragmentationStatsHeap;
41 
42 // HeapSimulator assigns buffer offsets by running a simulation of a regular
43 // memory heap with Alloc and Free calls.  It only works for completely
44 // sequential instruction sequences.  Unlike regular heaps, we have the
45 // advantage that the sequence of Alloc and Free calls is known up-front; we
46 // don't need to return the assignment of buffer offsets until the very end.
47 class HeapSimulator {
48  public:
49   // Chunk represents a contiguous piece of memory.  Each BufferValue will be
50   // associated with a chunk in the assignment result.
51   struct Chunk {
52     int64 offset;
53     int64 size;
54 
chunk_endChunk55     int64 chunk_end() const { return offset + size; }
56   };
57 
58   // Result represents the result of the heap simulation.
59   struct Result {
60     // The assignment of buffers to chunks.
61     absl::flat_hash_map<const BufferValue*, Chunk> chunk_map;
62 
63     // The total size in bytes of the heap, containing all assigned chunks.
64     int64 heap_size = 0;
65 
66     // The total size in bytes of heap fragmentation.
67     int64 fragmentation_size = 0;
68 
69     // A trace of heap simulation events.
70     HeapSimulatorTrace debug_trace;
71   };
72 
73   // The different options to be passed to the Run() APIs.
74   struct Options {
OptionsOptions75     Options()
76         : may_reuse_operand_buffers(true),
77           alloc_constants(false),
78           buffers_to_assign(nullptr) {}
79 
80     // Whether a buffer about to be Free()-ed, can be recycled for a new born
81     // one, hence collapsing Free()+Alloc() calls (default true).
82     bool may_reuse_operand_buffers;
83     // Whether to issue Alloc() and Free() calls for constants (default false).
84     bool alloc_constants;
85     // If 'buffers_to_assign' is provided, only those buffers are assigned
86     // offsets, otherwise all buffers defined by the instructions are assigned.
87     const BufferValueFlatSet* buffers_to_assign;
88   };
89 
90   // Returns the minimum memory required to compute an HLO module where all
91   // computations have been scheduled (represented by the given
92   // schedule), assuming no fragmentation.
93   static StatusOr<int64> MinimumMemoryForModule(
94       const HloSchedule& schedule,
95       const LogicalBuffer::SizeFunction& size_function);
96 
97   // Returns the minimum memory required to compute the given computation,
98   // assuming no fragmentation.
99   static StatusOr<int64> MinimumMemoryForComputation(
100       const HloComputation& computation, const HloInstructionSequence& sequence,
101       const TuplePointsToAnalysis& points_to_analysis,
102       const LogicalBuffer::SizeFunction& size_function,
103       const absl::flat_hash_map<const HloComputation*, int64>*
104           memory_by_computation = nullptr);
105 
106   // Run the heap simulation with the given algorithm, assuming the given
107   // schedule, which must contain a topologically-consistent total
108   // ordering of all instructions within each computation. The result is invalid
109   // if instructions are not run in exactly this sequence.
110   //
111   // Running heap simulation on the whole module tends to save memory, compared
112   // to running on a per-computation basis, since we can re-use buffer space for
113   // called sub-computations.
114   //
115   static StatusOr<Result> Run(std::unique_ptr<HeapAlgorithm> algorithm,
116                               const HloModule& module,
117                               const HloSchedule& schedule,
118                               const TuplePointsToAnalysis& points_to_analysis,
119                               const BufferValue::SizeFunction& size_fn,
120                               const Options& options = Options());
121 
122   // Same as above, but runs on a single computation. The 'instruction_sequence'
123   // must contain a topologically-consistent total ordering of all instructions
124   // in the computation. The result is invalid if instructions are not run in
125   // exactly this sequence.
126   static StatusOr<Result> Run(
127       std::unique_ptr<HeapAlgorithm> algorithm,
128       const HloComputation& computation,
129       const HloInstructionSequence& instruction_sequence,
130       const TuplePointsToAnalysis& points_to_analysis,
131       const BufferValue::SizeFunction& size_fn,
132       const Options& options = Options(),
133       const absl::flat_hash_map<const HloComputation*, int64>*
134           memory_by_computation = nullptr);
135 
136  private:
137   // If 'schedule' is non-null, it is used to find kCall and kWhile
138   // sub-computations, and the heap simulation for those sub-computations will
139   // be run recursively. I.e. the simulation is run over the whole module.
140   HeapSimulator(std::unique_ptr<HeapAlgorithm> algorithm,
141                 const BufferValue::SizeFunction& size_fn,
142                 const Options& options, const HloSchedule* schedule = nullptr,
143                 const absl::flat_hash_map<const HloComputation*, int64>*
144                     memory_by_computation = nullptr);
145   ~HeapSimulator();
146 
147   Status RunComputation(const HloComputation& computation,
148                         const HloInstructionSequence& instruction_sequence,
149                         const TuplePointsToAnalysis& points_to_analysis);
150 
151   bool IgnoreBuffer(const BufferValue* buffer) const;
152   void Alloc(const BufferValue* buffer, const HloInstruction* instruction);
153   void Free(const BufferValue* buffer, const HloInstruction* instruction);
154   void ShareBuffer(const BufferValue* buffer, const BufferValue* shared,
155                    const HloInstruction* instruction);
156   Result Finish();
157 
158   void FillDebugTrace(HeapSimulatorTrace::Event::Kind kind,
159                       const BufferValue* buffer,
160                       const HloInstruction* instruction,
161                       const BufferValue* share_with_canonical);
162 
163   // Counterintuitive: the algorithm_ itself can be a NoFragmentationStatsHeap,
164   // in which case we are calculating the same allocs/frees twice in the
165   // simulation.
166   const std::unique_ptr<NoFragmentationStatsHeap> no_fragmentation_stats_;
167   const std::unique_ptr<HeapAlgorithm> algorithm_;
168   const BufferValue::SizeFunction size_fn_;
169   const Options options_;
170   // schedule_ is set by buffer assignment, and memory_by_computation_ is
171   // set by hlo scheduling. Then, in RunComputation, we check both in order to
172   // handle subcomputations. It would be good to unify the handling of
173   // subcomputations, but it's not clear how.
174   const HloSchedule* schedule_;
175   const absl::flat_hash_map<const HloComputation*, int64>*
176       memory_by_computation_;
177 
178   // In addition to Alloc and Free, the heap simulator exposes a concept of
179   // buffer sharing.  When ShareBuffer is called, instead of allocating new
180   // space for the buffer, it associates the buffer with a previously allocated
181   // (or shared) buffer.  Each group of mutually-shared buffers points to a
182   // single SharedGroup instance, which is a shared control block.
183   //
184   // This forced buffer sharing is hidden from the underlying heap algorithm,
185   // which only sees a regular Alloc call on the canonical buffer.  The
186   // corresponding Free call is delayed until the liveness of all shared buffers
187   // in the group has expired, which is tracked via the refcount.  The results
188   // are post-processed in Finish to add chunks for shared buffers.
189   //
190   // The shared_buffers_ map associates each shared buffer (including the
191   // canonical) to its SharedGroup control block.
192   struct SharedGroup {
193     const BufferValue* canonical = nullptr;
194     int64 refcount = 0;
195   };
196   absl::flat_hash_map<const BufferValue*, std::shared_ptr<SharedGroup>>
197       shared_buffers_;
198 
199   // Hold some sets for error-checking the sequence of Alloc and Free calls.
200   absl::flat_hash_set<const BufferValue*> allocated_buffers_;
201   absl::flat_hash_set<const BufferValue*> freed_buffers_;
202 
203   // Debugging information filled in while the heap simulator runs.
204   HeapSimulatorTrace debug_trace_;
205 };
206 
207 // Abstract base class describing a heap simulation algorithm that assigns
208 // offsets to buffers.  A sequence of Alloc / Free calls will be made, with the
209 // same semantics as a regular memory heap.  Finish will be called at the end to
210 // collect the simulation results.
211 class HeapAlgorithm {
212  public:
213   using Chunk = HeapSimulator::Chunk;
214   using Result = HeapSimulator::Result;
215 
216   virtual ~HeapAlgorithm() = default;
217 
218   // Alloc allocates a buffer of 'size' bytes.
219   virtual void Alloc(const BufferValue* buffer, int64 size) = 0;
220 
221   // Takes memory usage of subcomputations into account when calculating the
222   // memory usage of a computation. Currently, we don't handle buffer aliasing
223   // between computations entirely correctly. We are careful to not double count
224   // for the output buffers of whiles/conds/calls. But we don't take into
225   // account other aliases, such as for the while init. A more thorough solution
226   // would require something like BufferAssignment::BuildColocatedBufferSets.
227   // TODO(b/65835246):
228   // Since TuplePointsToAnalysis is being replaced with a module-aware alias
229   // analysis, it's not worth making major changes to HeapSimulator now.
AccountForSubcomputationMemory(const HloInstruction * instruction,int64 alloc_size_by_instruction,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation)230   virtual void AccountForSubcomputationMemory(
231       const HloInstruction* instruction,
232       // The total number of bytes allocated by instruction.
233       int64 alloc_size_by_instruction,
234       const absl::flat_hash_map<const HloComputation*, int64>&
235           memory_by_computation) {}
236 
237   // Free de-allocates a previously allocated buffer.
238   virtual void Free(const BufferValue* buffer, int64 size) = 0;
239 
240   // Finish collects the buffer offset assignment results.  Free may only be
241   // called once, after the Alloc and Free calls.
242   virtual Result Finish() = 0;
243 };
244 
245 // NoFragmentationStatsHeap computes the heap size assuming no fragmentation;
246 // this is the absolute minimum size for a given instruction sequence.  The
247 // result.chunk_map returned in Finish is always empty, since we only collect
248 // stats, and don't actually compute chunk assignments.
249 class NoFragmentationStatsHeap : public HeapAlgorithm {
250  public:
251   NoFragmentationStatsHeap() = default;
252   ~NoFragmentationStatsHeap() override = default;
253 
254   void Alloc(const BufferValue* buffer, int64 size) override;
255 
256   void AccountForSubcomputationMemory(
257       const HloInstruction* instruction, int64 alloc_size_by_instruction,
258       const absl::flat_hash_map<const HloComputation*, int64>&
259           memory_by_computation) override;
260 
261   void Free(const BufferValue* buffer, int64 size) override;
262 
263   Result Finish() override;
264 
265  private:
266   int64 current_heap_size_ = 0;
267   int64 max_heap_size_ = 0;
268 };
269 
270 // DecreasingSizeRunsHeap collects runs of Alloc and Free calls, sorts them by
271 // decreasing size, and delegates the actual calls to another heap algorithm.
272 // This greedy heuristic tends to reduce fragmentation for all algorithms.
273 class DecreasingSizeRunsHeap : public HeapAlgorithm {
274  public:
DecreasingSizeRunsHeap(std::unique_ptr<HeapAlgorithm> algorithm)275   DecreasingSizeRunsHeap(std::unique_ptr<HeapAlgorithm> algorithm)
276       : algorithm_(std::move(algorithm)) {}
~DecreasingSizeRunsHeap()277   ~DecreasingSizeRunsHeap() override {}
278 
279   void Alloc(const BufferValue* buffer, int64 size) override;
280   void Free(const BufferValue* buffer, int64 size) override;
281   Result Finish() override;
282 
283  private:
284   // A single Alloc or Free operation that we've buffered in run_.
285   struct Op {
286     const BufferValue* buffer;
287     int64 size;
288   };
289 
290   // Current collection mode; kInit means no ops have been collected yet.
291   enum Mode { kInit, kAlloc, kFree };
292 
293   void SetMode(Mode mode);
294   void CallAndDrainRun();
295 
296   const std::unique_ptr<HeapAlgorithm> algorithm_;
297   std::vector<Op> run_;
298   Mode mode_ = kInit;
299 };
300 
301 // LazyBestFitHeap is a variant of the traditional best-fit heap.  This is a
302 // greedy heuristic, based on the idea that delaying offset assignment helps
303 // reduce fragmentation.  Here's an example of a "bad" offset assignment, where
304 // a tiny buffer A prevents adjacent free chunks from being coalesced:
305 //    BAD: |  free  |A|  free  |
306 // If we could have delayed the assignment of A, we might have ended up with:
307 //   GOOD: |      free       |A|
308 //
309 // In general it's actually hard to say whether GOOD is better than BAD; the
310 // heuristic we use is we try to leave large contiguous chunks free, and we try
311 // to avoid growing the overall heap size unless necessary.
312 //
313 // Just like regular best-fit, in Alloc we look for the smallest free chunk that
314 // fits the requested size.  Unlike regular best-fit, we postpone offset
315 // assignment for buffers that cannot re-use existing free chunks (and force us
316 // to grow the heap); these buffers are "lazily" assigned offsets in Free.
317 class LazyBestFitHeap : public HeapAlgorithm {
318  public:
LazyBestFitHeap(int64 alignment)319   LazyBestFitHeap(int64 alignment) : alignment_(alignment) {}
~LazyBestFitHeap()320   ~LazyBestFitHeap() override {}
321 
322   void Alloc(const BufferValue* buffer, int64 size) override;
323   void Free(const BufferValue* buffer, int64 size) override;
324   Result Finish() override;
325 
326  private:
327   // Sentry value used to indicate a chunk that wasn't assigned an offset in
328   // Alloc, and will instead be assigned an offset in Free.
329   enum { kLazyAllocOffset = -1 };
330 
331   struct OrderChunkByIncreasingSize {
operatorOrderChunkByIncreasingSize332     bool operator()(const Chunk& a, const Chunk& b) const {
333       if (a.size != b.size) return a.size < b.size;
334       return a.offset < b.offset;
335     }
336   };
337 
338   void AddFreeChunk(int64 offset, int64 size);
339 
340   const int64 alignment_;
341   Result result_;
342 
343   // Maintain the set of free chunks, ordered by increasing size.
344   std::set<Chunk, OrderChunkByIncreasingSize> free_;
345 };
346 
347 // GlobalDecreasingSizeBestFitHeap collects the live intervals of all buffers,
348 // then allocates them in decreasing sizes regardless of the alloc/free time. It
349 // internally tracks the allocated buffers and their live intervals; when
350 // allocating a buffer, it finds the best-fit free chunk during its live
351 // interval.
352 class GlobalDecreasingSizeBestFitHeap : public HeapAlgorithm {
353  public:
GlobalDecreasingSizeBestFitHeap(int64 alignment)354   GlobalDecreasingSizeBestFitHeap(int64 alignment) : alignment_(alignment) {}
~GlobalDecreasingSizeBestFitHeap()355   ~GlobalDecreasingSizeBestFitHeap() override {}
356 
357   void Alloc(const BufferValue* buffer, int64 size) override;
358   void Free(const BufferValue* buffer, int64 size) override;
359   Result Finish() override;
360 
361  private:
362   int64 alignment_;
363   Result result_;
364 
365   // The current time represented as an integer. It increments by 1 at each
366   // Alloc or Free call.
367   int64 current_time_ = 0;
368 
369   // BufferInterval stores a buffer's size and time interval.
370   struct BufferInterval {
371     const BufferValue* buffer;
372     int64 size;
373     // Alloc time of the buffer.
374     int64 start;
375     // Free time of the buffer.
376     int64 end;
377   };
378   absl::flat_hash_map<const BufferValue*, BufferInterval> buffer_intervals_;
379 };
380 
381 // A heap algorithm that chooses the best results from other algorithms added to
382 // it.
383 class ChooseBestHeapAlgorithm : public HeapAlgorithm {
384  public:
ChooseBestHeapAlgorithm(std::unique_ptr<std::vector<std::unique_ptr<HeapAlgorithm>>> algorithms)385   ChooseBestHeapAlgorithm(
386       std::unique_ptr<std::vector<std::unique_ptr<HeapAlgorithm>>> algorithms)
387       : algorithms_(std::move(*algorithms)) {}
~ChooseBestHeapAlgorithm()388   ~ChooseBestHeapAlgorithm() override {}
389 
Alloc(const BufferValue * buffer,int64 size)390   void Alloc(const BufferValue* buffer, int64 size) override {
391     for (auto& algorithm : algorithms_) {
392       algorithm->Alloc(buffer, size);
393     }
394   }
395 
Free(const BufferValue * buffer,int64 size)396   void Free(const BufferValue* buffer, int64 size) override {
397     for (auto& algorithm : algorithms_) {
398       algorithm->Free(buffer, size);
399     }
400   }
401 
402   Result Finish() override;
403 
404  private:
405   std::vector<std::unique_ptr<HeapAlgorithm>> algorithms_;
406 };
407 
408 }  // namespace xla
409 
410 #endif  // TENSORFLOW_COMPILER_XLA_SERVICE_HEAP_SIMULATOR_H_
411