1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_CORE_COMMON_RUNTIME_PLACER_H_
17 #define TENSORFLOW_CORE_COMMON_RUNTIME_PLACER_H_
18 
19 #include <string>
20 #include <unordered_map>
21 
22 #include "tensorflow/core/common_runtime/device_set.h"
23 #include "tensorflow/core/graph/graph.h"
24 #include "tensorflow/core/lib/core/status.h"
25 #include "tensorflow/core/platform/macros.h"
26 #include "tensorflow/core/platform/types.h"
27 #include "tensorflow/core/public/session_options.h"
28 #include "tensorflow/core/util/device_name_utils.h"
29 
30 namespace tensorflow {
31 
32 // A placement algorithm that assigns the nodes of the given Graph to
33 // devices the given DeviceSet, respecting the following constraints:
34 //
35 // 1. Existing device assignments remain unchanged.
36 // 2. Requested (partial or complete) device specifications given by device name
37 //    for each node are granted.
38 // 3. Nodes connected by edges of a reference type are colocated on
39 //    the same device.
40 // 4. Given nodes "A" and "B", if node "B" has a colocation group
41 //    "@loc:A", nodes "A" and "B" will be colocated on the same device.
42 //
43 // The implementation builds a constraint graph with the same set of
44 // nodes, and edges that represent colocation constraints between
45 // nodes.  Each connected component in the resulting constraint graph
46 // is then assigned to a set of valid devices.
47 //
48 // Run() will finally assign the device to each node given the list of
49 // possible devices.
50 //
51 // TODO(mrry): "Soft" constraints, such as "place node 'x' as close as
52 // possible to node 'y' while respecting the other constraints"?
53 // TODO(mrry): Create a common interface for this and the other
54 // placement algorithms so that they may be injected into the graph
55 // builder.
56 class Placer {
57  public:
58   // A map from graph node names to numerical IDs (in a Graph object).
59   typedef std::unordered_map<string, int> NodeNameToIdMap;
60 
61   // Creates an instance of the Placer algorithm for the given
62   // Graph "graph" (nodes in which may or may not be assigned) on the
63   // given DeviceSet "devices".
64   //
65   // If non-null, default_device is used where possible as a placement for nodes
66   // which do not have a device specified, ahead of other devices which would
67   // otherwise be higher priority.
68   //
69   // The "graph", "devices", and "default_device" pointer arguments are borrowed
70   // by this Placer, and must outlive it.
71   Placer(Graph* graph, const DeviceSet* devices, const Device* default_device,
72          bool allow_soft_placement, bool log_device_placement);
73 
74   Placer(Graph* graph, const DeviceSet* devices, const Device* default_device);
75 
76   Placer(Graph* graph, const DeviceSet* devices);
77 
78   ~Placer();
79 
80   // Assigns each node in this Placer's graph to a device in its
81   // set of devices.
82   //
83   // This method is not thread-safe.
84   // Run() may be invoked at most once.
85   Status Run();
86 
87  private:
88   // Returns true if the device type of 'candidate_device_name' is
89   // found in 'devices'.
90   bool CanAssignToDevice(const string& candidate_device_name,
91                          const std::vector<Device*>& devices) const;
92 
93   Graph* const graph_;              // Not owned.
94   const DeviceSet* const devices_;  // Not owned.
95   const Device* default_device_;    // Not owned.
96   const bool allow_soft_placement_;
97   const bool log_device_placement_;
98 
99   TF_DISALLOW_COPY_AND_ASSIGN(Placer);
100 };
101 
102 }  // namespace tensorflow
103 
104 #endif  // TENSORFLOW_CORE_COMMON_RUNTIME_PLACER_H_
105