1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_CORE_FRAMEWORK_FUNCTION_H_
17 #define TENSORFLOW_CORE_FRAMEWORK_FUNCTION_H_
18 
19 #include <vector>
20 #include "tensorflow/core/framework/attr_value.pb.h"
21 #include "tensorflow/core/framework/attr_value_util.h"
22 #include "tensorflow/core/framework/function.pb.h"
23 #include "tensorflow/core/framework/node_def_util.h"
24 #include "tensorflow/core/framework/op.h"
25 #include "tensorflow/core/framework/op_kernel.h"
26 #include "tensorflow/core/framework/selective_registration.h"
27 #include "tensorflow/core/framework/types.h"
28 #include "tensorflow/core/lib/gtl/flatmap.h"
29 #include "tensorflow/core/lib/hash/hash.h"
30 #include "tensorflow/core/platform/env.h"
31 #include "tensorflow/core/platform/macros.h"
32 #include "tensorflow/core/platform/mutex.h"
33 #include "tensorflow/core/platform/protobuf.h"
34 #include "tensorflow/core/protobuf/config.pb.h"
35 
36 namespace tensorflow {
37 
38 class CancellationManager;
39 class CollectiveExecutor;
40 class DeviceSet;
41 class Graph;
42 class GraphDef;
43 class OpKernel;
44 class ProcessFunctionLibraryRuntime;
45 class ResourceMgr;
46 class Rendezvous;
47 class ScopedStepContainer;
48 class StepStatsCollectorInterface;
49 class Node;
50 
51 // FunctionDefHelper::Create is a convenient helper to construct a
52 // FunctionDef proto.
53 // E.g.,
54 //   FunctionDef my_func = FunctionDefHelper::Create(
55 //     "my_func_name",
56 //     {"x:T", "y:T" /* one string per argument */},
57 //     {"z:T" /* one string per return value */},
58 //     {"T: {float, double}" /* one string per attribute  */},
59 //     {
60 //        {{"o"}, "Mul", {"x", "y"}, {{"T", "$T"}}}
61 //        /* one entry per function node */
62 //     },
63 //     /* Mapping between function returns and function node outputs. */
64 //     {{"z", "o:z"}});
65 //
66 // For the old Function::Node approach, use FunctionDefHelper::Define()
67 // E.g.,
68 //   FunctionDef my_func = FunctionDefHelper::Define(
69 //     "my_func_name",
70 //     {"x:T", "y:T" /* one string per argument */},
71 //     {"z:T" /* one string per return value */},
72 //     {"T: {float, double}" /* one string per attribute  */},
73 //     {
74 //        {{"z"}, "Mul", {"x", "y"}, {{"T", "$T"}}}
75 //        /* one entry per function node */
76 //     });
77 class FunctionDefHelper {
78  public:
79   // AttrValueWrapper has copy constructors for the type T so that
80   // it's easy to construct a simple AttrValue proto.
81   //
82   // If T is a string type (const char*, string, or StringPiece), and
83   // it starts with "$", we construct a AttrValue of "placeholder".
84   //
85   // E.g.,
86   //   std::<string, AttrValueWrapper> x = {"T", "$T"}
87   // is a named attr value placeholder.
88   struct AttrValueWrapper {
89     AttrValue proto;
90 
AttrValueWrapperAttrValueWrapper91     AttrValueWrapper() {}
92 
93     template <typename T>
AttrValueWrapperAttrValueWrapper94     AttrValueWrapper(T val) {  // NOLINT(runtime/explicit)
95       SetAttrValue(val, &proto);
96     }
97 
98    private:
99     void InitFromString(StringPiece val);
100   };
101 
102   // Constructs an AttrValue.func given the "name" and "attrs".
103   static AttrValueWrapper FunctionRef(
104       const string& name,
105       gtl::ArraySlice<std::pair<string, AttrValueWrapper>> attrs);
FunctionRef(const string & name)106   static AttrValueWrapper FunctionRef(const string& name) {
107     return FunctionRef(name, {});
108   }
109 
110   // Node is used to construct FunctionDef.Node using initialization
111   // lists. E.g.,
112   //  Node n = {{"z"}, "Mul", {"x", "y"}, {{"T", "$T"}}};  // z = x * y
113   struct Node {
114     // When constructing a NodeDef, the first entry in ret is used as
115     // the node name, the remaining values are ignored.
116     std::vector<string> ret;
117     string op;
118     std::vector<string> arg;
119     std::vector<std::pair<string, AttrValueWrapper>> attr;
120     std::vector<string> dep;
121     string device;
122 
123     NodeDef ToNodeDef() const;
124   };
125 
126   // Creates a FunctionDef from the given parameters. Node inputs must use
127   // function encoding (node_name:output_name[:output_index]).
128   // - `ret_def` holds a mapping from the function output names from `out_def`
129   //   to the node outputs from `node_def`.
130   // - `control_ret_def` holds a mapping from the function control
131   //   output names to the nodes from `node_def`.
132   static FunctionDef Create(
133       const string& function_name, gtl::ArraySlice<string> in_def,
134       gtl::ArraySlice<string> out_def, gtl::ArraySlice<string> attr_def,
135       gtl::ArraySlice<Node> node_def,
136       gtl::ArraySlice<std::pair<string, string>> ret_def,
137       gtl::ArraySlice<std::pair<string, string>> control_ret_def);
138 
139   // Creates a FunctionDef from the given parameters. Node inputs must use
140   // function encoding (node_name:output_name[:output_index]).
141   // - `ret_def` holds a mapping from the function output names from `out_def`
142   //   to the node outputs from `node_def`.
143   static FunctionDef Create(const string& function_name,
144                             gtl::ArraySlice<string> in_def,
145                             gtl::ArraySlice<string> out_def,
146                             gtl::ArraySlice<string> attr_def,
147                             gtl::ArraySlice<Node> node_def,
148                             gtl::ArraySlice<std::pair<string, string>> ret_def);
149 
150   // TODO(josh11b): Get rid of these and transition to the one above.
151   static FunctionDef Define(const string& function_name,
152                             gtl::ArraySlice<string> arg_def,
153                             gtl::ArraySlice<string> ret_def,
154                             gtl::ArraySlice<string> attr_def,
155                             gtl::ArraySlice<Node> node_def);
156 
157   // Defines an anonymous function. I.e., its name is not relevant.
158   static FunctionDef Define(gtl::ArraySlice<string> arg_def,
159                             gtl::ArraySlice<string> ret_def,
160                             gtl::ArraySlice<string> attr_def,
161                             gtl::ArraySlice<Node> node_def);
162 
163   // Helpers to construct a constant scalar.
164   template <typename T>
Const(const string & name,const T & val)165   static Node Const(const string& name, const T& val) {
166     Node n = {{name}, "Const"};
167     const DataType dtype = DataTypeToEnum<T>::value;
168     n.attr.push_back({"dtype", dtype});
169     Tensor t(dtype, TensorShape({}));
170     t.scalar<T>()() = val;
171     n.attr.push_back({"value", t});
172     return n;
173   }
174 
175   template <typename T>
Const(const string & name,gtl::ArraySlice<T> vals)176   static Node Const(const string& name, gtl::ArraySlice<T> vals) {
177     Node n = {{name}, "Const"};
178     const DataType dtype = DataTypeToEnum<T>::value;
179     n.attr.push_back({"dtype", dtype});
180     int64 num = vals.size();
181     Tensor t(dtype, TensorShape({num}));
182     for (size_t i = 0; i < vals.size(); ++i) {
183       t.flat<T>()(i) = vals[i];
184     }
185     n.attr.push_back({"value", t});
186     return n;
187   }
188 };
189 
190 template <>
AttrValueWrapper(const char * val)191 inline FunctionDefHelper::AttrValueWrapper::AttrValueWrapper(const char* val) {
192   InitFromString(val);
193 }
194 
195 template <>
AttrValueWrapper(const string & val)196 inline FunctionDefHelper::AttrValueWrapper::AttrValueWrapper(
197     const string& val) {
198   InitFromString(val);
199 }
200 
201 template <>
AttrValueWrapper(StringPiece val)202 inline FunctionDefHelper::AttrValueWrapper::AttrValueWrapper(StringPiece val) {
203   InitFromString(val);
204 }
205 
206 // Instantiate a function.
207 //
208 // "fdef" encodes a TF function with some attrs in fdef.signature.attr
209 // containing placeholders.  InstantiateFunction binds these
210 // placeholders and produces an instantiated function encoded in
211 // "result.gdef". The value to substitute a placeholder is given by
212 // "attr_values", which is a map from a placeholder name to an attr
213 // value.
214 //
215 // InstantiateFunction calls "get_function" to find signatures of other
216 // functions and primitive ops.
217 
218 // GetFunctionSignature(func name, opdef) returns OK if the func name is found
219 // and opdef is filled with a pointer to the corresponding signature
220 // (a OpDef proto). Otherwise, returns an error.
221 typedef std::function<Status(const string&, const OpDef**)>
222     GetFunctionSignature;
223 
224 struct InstantiationResult {
225   DataTypeVector arg_types;
226   DataTypeVector ret_types;
227   std::vector<NodeDef> nodes;
228 };
229 Status InstantiateFunction(const FunctionDef& fdef, AttrSlice attr_values,
230                            GetFunctionSignature get_function,
231                            InstantiationResult* result);
232 
233 // Returns a debug string for a function definition.
234 //
235 // The returned text is multiple-line. It is intended to be
236 // human-readable rather than being friendly to parsers. It is _NOT_
237 // intended to be the canonical string representation of "func_def".
238 // Particularly, it may not include all information presented in
239 // "func_def" (e.g., comments, description of the function arguments,
240 // etc.)
241 string DebugString(const FunctionDef& func_def);
242 string DebugString(const GraphDef& instantiated_func_def);
243 string DebugString(gtl::ArraySlice<NodeDef> instantiated_func_nodes);
244 
245 // Returns a debug string for a top level graph (the main program and
246 // its supporting functions defined in its library).
247 string DebugStringWhole(const GraphDef& gdef);
248 
249 // Returns true if f1 == f2. Compares all fields, including descriptions. Order
250 // of NodeDefs doesn't matter.
251 bool FunctionDefsEqual(const FunctionDef& f1, const FunctionDef& f2);
252 
253 // Return a hash of `fdef` that is consistent with FunctionDefsEqual method.
254 // In other words, if two fdefs compare equal, their hash values will be the
255 // same.
256 uint64 FunctionDefHash(const FunctionDef& fdef);
257 
258 class CallFrameInterface {
259  public:
~CallFrameInterface()260   virtual ~CallFrameInterface() {}
261 
262   virtual size_t num_args() const = 0;
263   virtual size_t num_retvals() const = 0;
264 
265   virtual Status GetArg(int index, Tensor* val) const = 0;
266   virtual Status SetRetval(int index, const Tensor& val) = 0;
267 };
268 
269 // Represents a function call frame. I.e., the data structure used to
270 // pass arguments to a function and retrieve its results.
271 //
272 // Runtime must arrange accesses to one FunctionCallFrame s.t.
273 //   1. SetArgs() happens before any GetArg();
274 //   2. GetRetvals happens after all SetRetval();
275 class FunctionCallFrame : public CallFrameInterface {
276  public:
277   FunctionCallFrame(DataTypeSlice arg_types, DataTypeSlice ret_types);
278   ~FunctionCallFrame();
279 
280   // Caller methods.
281   Status SetArgs(gtl::ArraySlice<Tensor> args);
282   Status GetRetvals(std::vector<Tensor>* rets) const;
283 
284   // Moves the return values from the frame to rets. If allow_dead_tensors is
285   // false it will fail if any of the retvals do not have a value.
286   Status ConsumeRetvals(std::vector<Tensor>* rets, bool allow_dead_tensors);
287 
num_args()288   size_t num_args() const override { return arg_types_.size(); }
num_retvals()289   size_t num_retvals() const override { return ret_types_.size(); }
290 
291   // Callee methods.
292   Status GetArg(int index, Tensor* val) const override;
293   Status SetRetval(int index, const Tensor& val) override;
294 
295  private:
296   DataTypeVector arg_types_;
297   DataTypeVector ret_types_;
298   gtl::InlinedVector<Tensor, 4> args_;
299   struct Retval {
300     bool has_val = false;
301     Tensor val;
302   };
303   gtl::InlinedVector<Retval, 4> rets_;
304 
305   TF_DISALLOW_COPY_AND_ASSIGN(FunctionCallFrame);
306 };
307 
308 // Helper to maintain a map between function names in a given
309 // FunctionDefLibrary and function definitions.
310 //
311 // This class is thread-safe.
312 class FunctionLibraryDefinition : public OpRegistryInterface {
313  public:
314   // Note: This constructor grabs `lib_def`'s lock in shared mode.
315   FunctionLibraryDefinition(const FunctionLibraryDefinition& lib_def);
316   FunctionLibraryDefinition(const OpRegistryInterface* default_registry,
317                             const FunctionDefLibrary& lib_def);
318   ~FunctionLibraryDefinition() override;
319 
320   FunctionLibraryDefinition& operator=(const FunctionLibraryDefinition&) =
321       delete;
322 
323   // Returns True if the library contains `func`, False otherwise.
324   bool Contains(const string& func) const;
325 
326   // Returns nullptr if "func" is not defined in "lib_def". Otherwise,
327   // returns its definition proto.
328   //
329   // NB: This function returns a borrowed pointer, which can be invalidated by a
330   // subsequent call to `ReplaceFunction()` with the given name.
331   const FunctionDef* Find(const string& func) const LOCKS_EXCLUDED(mu_);
332 
333   // Adds function definition 'fdef' to this function library.
334   // Returns status 'ok' on success, or error otherwise. This is a no-op if
335   // 'fdef' already exists in this function library.
336   // If 'fdef' is successfully added to the library, it will be accessible
337   // from 'LookUp' and included in the proto returned by 'ToProto'.
338   // This operation is atomic.
339   Status AddFunctionDef(const FunctionDef& fdef) LOCKS_EXCLUDED(mu_);
340 
341   // Adds gradient definition 'grad' to this function library.
342   // This is a no-op if 'grad' already exists in this function library.
343   // If 'grad' is successfully added, it will be accessible via 'FindGradient'
344   // and included in the proto returned by 'ToProto'.
345   // This operation is atomic.
346   Status AddGradientDef(const GradientDef& grad) LOCKS_EXCLUDED(mu_);
347 
348   // Replaces the function corresponding to `func` with `fdef`. Returns
349   // a non-OK status if "func" was not found in the library, OK otherwise.
350   // Please be careful when replacing function: make sure all previous pointers
351   // returned by `Find()` are no longer in use.
352   Status ReplaceFunction(const string& func, const FunctionDef& fdef);
353 
354   // Replaces the gradient corresponding to `grad.function_name()`. Returns
355   // a non-OK status if "grad.function_name()" was not found in the library, OK
356   // otherwise.
357   Status ReplaceGradient(const GradientDef& grad);
358 
359   // Removes the function corresponding to 'func'. Returns a non-OK status if
360   // 'func' was not found in the library, OK otherwise.
361   // Please be careful when removing function: make sure there are no other
362   // nodes using the function, and all previous pointers returned by `Find()`
363   // are no longer in use.
364   Status RemoveFunction(const string& func);
365 
366   // Adds the functions and gradients in 'other' to this function library.
367   // Duplicate functions and gradients are ignored.
368   // This operation is atomic.
369   Status AddLibrary(const FunctionLibraryDefinition& other) LOCKS_EXCLUDED(mu_);
370 
371   // Adds the functions and gradients in 'lib_def' to this function library.
372   // Duplicate functions and gradients are ignored.
373   // This operation is atomic.
374   Status AddLibrary(const FunctionDefLibrary& lib_def) LOCKS_EXCLUDED(mu_);
375 
376   // If the gradient function for 'func' is specified explicitly in
377   // the library, returns the gradient function name.  Otherwise,
378   // returns an empty string.
379   string FindGradient(const string& func) const LOCKS_EXCLUDED(mu_);
380 
381   // OpRegistryInterface method. Useful for constructing a Graph.
382   //
383   // If "op" is defined in the library, returns its signature.
384   // Otherwise, assume "op" is a primitive op and returns its op
385   // signature and shape inference function.
386   //
387   // NB: This function outputs a borrowed pointer, which can be invalidated by a
388   // subsequent call to `ReplaceFunction()` with the given name.
389   Status LookUp(const string& op_type_name,
390                 const OpRegistrationData** op_reg_data) const override
391       LOCKS_EXCLUDED(mu_);
392 
393   // Generates new function name with the specified prefix that is unique
394   // across this library.
395   string UniqueFunctionName(StringPiece prefix) const LOCKS_EXCLUDED(mu_);
396 
397   // Ops created for function arguments bear the name given by `kArgOp`; those
398   // created for return values bear the name given by `kRetOp`.
399   static constexpr const char* const kArgOp = "_Arg";
400   static constexpr const char* const kDeviceArgOp = "_DeviceArg";
401   static constexpr const char* const kRetOp = "_Retval";
402   static constexpr const char* const kDeviceRetOp = "_DeviceRetval";
403   static constexpr const char* const kIntsOnDeviceAttr =
404       "experimental_ints_on_device";
405 
406   static constexpr const char* const kGradientOp = "SymbolicGradient";
407   static constexpr const char* const kFuncAttr = "f";
408 
409   // Given a node def 'ndef', inspects attributes of the callee
410   // function to derive the attribute 'value' for 'attr'. Returns OK
411   // iff the attribute is given by the function's definition.
412   // TODO(irving): Remove; keep only the const Node& version.
413   template <typename T>
414   Status GetAttr(const NodeDef& ndef, const string& attr, T* value) const;
415 
416   // Given a node, inspects attributes of the callee function to derive the
417   // attribute 'value' for 'attr'. Returns OK iff the attribute is given by the
418   // function's definition.
419   template <typename T>
420   Status GetAttr(const Node& node, const string& attr, T* value) const;
421 
422   // Returns a proto representation of the state of this function library.
423   FunctionDefLibrary ToProto() const LOCKS_EXCLUDED(mu_);
424 
num_functions()425   size_t num_functions() const {
426     tf_shared_lock l(mu_);
427     return function_defs_.size();
428   }
429 
430   // Returns all the function names in the FunctionLibraryDefinition.
431   std::vector<string> ListFunctionNames() const LOCKS_EXCLUDED(mu_);
432 
default_registry()433   const OpRegistryInterface* default_registry() const {
434     return default_registry_;
435   }
436 
437   // Returns a copy of `*this` with only the subset of functions that are
438   // reachable from the nodes of `graph` or `func`.
439   FunctionLibraryDefinition ReachableDefinitions(const GraphDef& graph) const;
440   FunctionLibraryDefinition ReachableDefinitions(const FunctionDef& func) const;
441 
442  private:
443   // Shape inference for functions is handled separately by ShapeRefiner.
444 
445   struct FunctionDefAndOpRegistration {
446     FunctionDefAndOpRegistration(const FunctionDef& fdef_in);
447 
448     FunctionDef fdef;
449     OpRegistrationData op_registration_data;
450   };
451 
452   const FunctionDef* FindHelper(const string& func) const
453       SHARED_LOCKS_REQUIRED(mu_);
454   string FindGradientHelper(const string& func) const
455       SHARED_LOCKS_REQUIRED(mu_);
456 
457   // Same as AddFunctionDef/AddGradientDef except these methods set
458   // `added` to true if the `fdef`/`grad` were actually added to this.
459   Status AddFunctionDefHelper(const FunctionDef& fdef, bool* added)
460       EXCLUSIVE_LOCKS_REQUIRED(mu_);
461   Status AddGradientDefHelper(const GradientDef& grad, bool* added)
462       EXCLUSIVE_LOCKS_REQUIRED(mu_);
463 
464   mutable mutex mu_;
465   const OpRegistryInterface* const default_registry_;
466   gtl::FlatMap<string, std::unique_ptr<FunctionDefAndOpRegistration>>
467       function_defs_ GUARDED_BY(mu_);
468   gtl::FlatMap<string, string> func_grad_ GUARDED_BY(mu_);
469 
470   // Helper function for GetAttr. Returns the FunctionDef* to get the
471   // attr from.
472   const FunctionDef* GetAttrImpl(const NodeDef& ndef) const LOCKS_EXCLUDED(mu_);
473 
474   // Remove all functions in `funcs` and all gradients of functions in
475   // `funcs_with_grads` from this library.
476   void Remove(const std::vector<string>& funcs,
477               const std::vector<string>& funcs_with_grads)
478       EXCLUSIVE_LOCKS_REQUIRED(mu_);
479 
480   // Remove `func` from the library. Returns non-OK Status unless `func` is in
481   // the library. This should only be called when there is a guarantee that the
482   // function being removed hasn't been retrieved with `Find`.
483   Status RemoveFunctionHelper(const string& func) EXCLUSIVE_LOCKS_REQUIRED(mu_);
484 
485   // Remove gradient of function `func` from the library. Returns non-OK Status
486   // unless `func` has a gradient.
487   Status RemoveGradient(const string& func) EXCLUSIVE_LOCKS_REQUIRED(mu_);
488 };
489 
490 // Forward declare. Defined in common_runtime/function.h
491 struct FunctionBody;
492 
493 // Forward declare. Defined in common_runtime/device.h
494 class Device;
495 // Forward declare. Defined in common_runtime/device_mgr.h
496 class DeviceMgr;
497 
498 class FunctionLibraryRuntime {
499  public:
~FunctionLibraryRuntime()500   virtual ~FunctionLibraryRuntime() {}
501 
502   // Instantiate a function with the given "attrs".
503   //
504   // Returns OK and fills in "handle" if the instantiation succeeds.
505   // Otherwise returns an error and "handle" is undefined.
506   struct InstantiateOptions {
507     // The canonical device name of the device on which the function
508     // should be instantiated. If empty, the function will be
509     // instantiated on the local device.
510     string target;
511 
512     // Should the function be instantiated as a multi-device function?
513     bool is_multi_device_function = false;
514 
515     // For multi-device functions, a vector of canonical device names for
516     // function's inputs. The device of resource inputs must be the device
517     // backing the resource, not the CPU device backing the resource handle.
518     // Must have the same length as number of inputs to the function.
519     std::vector<string> input_devices;
520 
521     // For multi-device functions, a vector of canonical device names for
522     // function's outputs. The device of resource outputs should be the CPU
523     // device, not the device backing the resource.
524     // If specified, must have the same length as the number of function
525     // outputs.
526     // If not specified, output devices are picked automatically. If operations
527     // producing the output tensors have explicit device specification, they
528     // will be respected. These device specifications must identify a unique
529     // device, i.e.  a general specification like "job:foo" matching multiple
530     // devices will result in an error.
531     std::vector<string> output_devices;
532 
533     // This interface is EXPERIMENTAL and subject to change.
534     //
535     // If non-null, the runtime will use `overlay_lib` to resolve
536     // function(s) named in `function_name` and `attrs`. Otherwise,
537     // the runtime will use its internal library.
538     // NOTE(mrry): If provided, all functions defined in `overlay_lib`
539     // must be self-contained, and cannot refer to functions defined
540     // in other libraries.
541     // TODO(mrry): Provide a mechanism for sharing core functions
542     // between a set of libraries (e.g. by allowing a
543     // `FunctionLibraryDefinition` to store an `outer_scope` pointer
544     // and implementing name resolution across libraries).
545     const FunctionLibraryDefinition* overlay_lib = nullptr;
546 
547     // This interface is EXPERIMENTAL and subject to change.
548     //
549     // If non-empty, the runtime will use `state_handle` to identify
550     // cached state related the instantiated function. Two functions
551     // of the same name and attrs, instantiated with the same
552     // `state_handle` will have the same handle and share the same
553     // state (in stateful kernels); and two functions with different
554     // values for `state_handle` will have independent state.
555     string state_handle;
556 
557     // This interface is EXPERIMENTAL and subject to change.
558     //
559     // Instantiates the function using an executor of the given type. If empty,
560     // the default TensorFlow executor will be used.
561     string executor_type;
562 
563     // If true, the runtime will attempt to create kernels for the function at
564     // instantiation time, rather than on the first run. This can be used to
565     // surface errors earlier.
566     bool create_kernels_eagerly = false;
567 
568     // This interface is EXPERIMENTAL and subject to change.
569     //
570     // Instantiates the function with the provided config_proto.
571     ConfigProto config_proto;
572 
573     // If provided, this optimization function will be invoked before
574     // the placer for multi-device functions.
575     std::function<Status(std::vector<string> /*ret_node_names*/,
576                          std::vector<string> /*keep_node_names*/,
577                          FunctionLibraryDefinition*, const DeviceSet&,
578                          Device* /*cpu_device*/, std::unique_ptr<Graph>*)>
579         optimize_graph_fn;
580 
581     // If set, partitioned functions will be added to `graph_collector`.
582     // `graph_collector` must be alive during the call to Instantiate.
583     GraphCollector* graph_collector = nullptr;
584   };
585   typedef uint64 Handle;
586   virtual Status Instantiate(const string& function_name, AttrSlice attrs,
587                              const InstantiateOptions& options,
588                              Handle* handle) = 0;
Instantiate(const string & function_name,AttrSlice attrs,Handle * handle)589   Status Instantiate(const string& function_name, AttrSlice attrs,
590                      Handle* handle) {
591     return Instantiate(function_name, attrs, {}, handle);
592   }
593 
594   // Releases state associated with the handle.
595   virtual Status ReleaseHandle(Handle handle) = 0;
596 
597   // Returns the function body for the instantiated function given its
598   // handle 'h'. Returns nullptr if "h" is not found.
599   //
600   // *this keeps the ownership of the returned object, which remains alive
601   // as long as *this.
602   virtual const FunctionBody* GetFunctionBody(Handle h) = 0;
603 
604   // Asynchronously invokes the instantiated function identified by
605   // "handle".
606   //
607   // If function execution succeeds, "done" is called with OK and
608   // "*rets" is filled with the function's return values. Otheriwse,
609   // "done" is called with an error status.
610   //
611   // Does not take ownership of "rets".
612   // In the cross-process scenario, runner isn't used for making the Async
613   // RPC calls.
614   struct Options {
615     // The id of the step that is calling this function.
616     int64 step_id = 0;
617     Rendezvous* rendezvous = nullptr;
618     CancellationManager* cancellation_manager = nullptr;
619     CollectiveExecutor* collective_executor = nullptr;
620     ScopedStepContainer* step_container = nullptr;
621     StepStatsCollectorInterface* stats_collector = nullptr;
622 
623     std::function<void(std::function<void()>)>* runner = nullptr;
624 
625     // Parameters for remote function execution.
626     bool remote_execution = false;
627     string source_device = "";  // Fully specified device name.
628 
629     // Allocator attributes specifying where the args are / rets should be put.
630     // These should either be {} or match the length of args / retvals. If {},
631     // the default allocator attributes will be assumed for all args / retvals.
632     std::vector<AllocatorAttributes> args_alloc_attrs;
633     std::vector<AllocatorAttributes> rets_alloc_attrs;
634 
635     // If true, we create a new IntraProcessRendezvous, else use the existing
636     // one.
637     bool create_rendezvous = false;
638 
639     // If True, allow returning dead tensors.
640     bool allow_dead_tensors = false;
641   };
642   typedef std::function<void(const Status&)> DoneCallback;
643   virtual void Run(const Options& opts, Handle handle,
644                    gtl::ArraySlice<Tensor> args, std::vector<Tensor>* rets,
645                    DoneCallback done) = 0;
646   virtual void Run(const Options& opts, Handle handle,
647                    CallFrameInterface* call_frame, DoneCallback done) = 0;
648 
649   // Creates a "kernel" for the given node def "ndef".
650   //
651   // If succeeds, returns OK and the caller takes the ownership of the
652   // returned "*kernel". Otherwise, returns an error.
653   virtual Status CreateKernel(const NodeDef& ndef, OpKernel** kernel) = 0;
654 
655   // Returns true iff the function named `function_name` is stateful.
656   // NOTE(mrry): This method assumes that the runtime is associated with a
657   // default function library, and looks up `function_name` in that library.
658   // It does not support overlay libraries.
659   virtual bool IsStateful(const string& function_name) = 0;
660 
661   // Returns the device on which the function executes.
662   virtual Device* device() = 0;
663 
664   // Returns the default runner in which the ops should be launched. If the
665   // device on which the function executes has a private thread pool, return
666   // runner on the device local thread pool.
667   virtual std::function<void(std::function<void()>)>* runner() = 0;
668 
669   // Get the DeviceMgr from which the device was obtained.
670   virtual const DeviceMgr* device_mgr() const = 0;
671 
672   // Returns the function library definition that backs this runtime.
673   // NOTE(mrry): The returned library definition is the default function library
674   // for this runtime. The runtime may instantiate functions from separate
675   // overlay libraries, which are not returned by this function.
676   virtual const FunctionLibraryDefinition* GetFunctionLibraryDefinition()
677       const = 0;
678 
679   // Returns the environment on which the function executes.
680   virtual Env* env() = 0;
681 
682   // Returns a debug string showing the definition of the function of
683   // 'handle'.
684   virtual string DebugString(Handle handle) = 0;
685 
686   // Returns the graph version number.
687   virtual int graph_def_version() = 0;
688 
689   typedef uint64 LocalHandle;
690 
691   virtual Status Clone(std::unique_ptr<FunctionLibraryDefinition>* out_lib_def,
692                        std::unique_ptr<ProcessFunctionLibraryRuntime>* out_pflr,
693                        FunctionLibraryRuntime** out_flr) = 0;
694 
695   // Returns the name of the executor class (in the sense of
696   // `ExecutorFactory::GetFactory()`) that will be used based on the given
697   // dynamic `options` and static `attrs`. If none is specified, this method
698   // will return an empty string, which leaves the decision up to the runtime.
699   static string ExecutorType(const InstantiateOptions& options,
700                              AttrSlice attrs);
701 };
702 
703 // Returns a canonicalized string for the instantiation of the
704 // function of the given "name", attributes "attrs", and "options".
705 //
706 // The returned string is guaranteed to be stable within one address
707 // space. But it may be change as the implementation
708 // evolves. Therefore, it should not be persisted or compared across
709 // address spaces.
710 string Canonicalize(const string& funcname, AttrSlice attrs,
711                     const FunctionLibraryRuntime::InstantiateOptions& options);
Canonicalize(const string & funcname,AttrSlice attrs)712 inline string Canonicalize(const string& funcname, AttrSlice attrs) {
713   return Canonicalize(funcname, attrs, {});
714 }
715 
716 const FunctionLibraryRuntime::Handle kInvalidHandle = -1;
717 const FunctionLibraryRuntime::LocalHandle kInvalidLocalHandle = -1;
718 typedef std::function<Status(FunctionLibraryRuntime*, const NodeDef&,
719                              std::unique_ptr<OpKernel>*)>
720     CustomKernelCreator;
721 
722 // Used to instantiate and run functions in a distributed system.
723 class DistributedFunctionLibraryRuntime {
724  public:
~DistributedFunctionLibraryRuntime()725   virtual ~DistributedFunctionLibraryRuntime() {}
726 
727   // The _target attr in attrs determines where the function is instantiated.
728   virtual Status Instantiate(
729       const string& function_name, const FunctionLibraryDefinition& lib_def,
730       AttrSlice attrs,
731       const FunctionLibraryRuntime::InstantiateOptions& options,
732       FunctionLibraryRuntime::LocalHandle* handle) = 0;
733 
734   // opts.runner isn't used for execution.
735   virtual void Run(const FunctionLibraryRuntime::Options& opts,
736                    FunctionLibraryRuntime::LocalHandle handle,
737                    gtl::ArraySlice<Tensor> args, std::vector<Tensor>* rets,
738                    FunctionLibraryRuntime::DoneCallback done) = 0;
739 };
740 
741 // Extracts the actual type from "attr_values" based on its definition
742 // "arg_def".
743 //
744 // If "arg_def" is a N*T type, *is_type_list is set to false, and
745 // *dtypes is set to be a vector of size N and each element is T.
746 //
747 // If "arg_def" is a list(type), *is_type_list is set to true, and
748 // *dtypes is set to be a vector of types specified in attrs for
749 // arg_def.
750 //
751 // Otherwise (arg_def is a simple type T), *is_type_list is set to
752 // false, and *dtypes is set to a single element vector, whose only
753 // element is T.
754 Status ArgNumType(AttrSlice attrs, const OpDef::ArgDef& arg_def,
755                   bool* is_type_list, DataTypeVector* dtypes);
756 
757 // To register a gradient function for a builtin op, one should use
758 //   REGISTER_OP_GRADIENT(<op_name>, <c++ grad factory>);
759 //
760 // Typically, the c++ grad factory is a plan function that can be
761 // converted into ::tensorflow::gradient::Creator, which is
762 //   std::function<Status(const AttrSlice&, FunctionDef*)>.
763 //
764 // A ::tensorflow::gradient::Creator should populate in FunctionDef* with a
765 // definition of a brain function which compute the gradient for the
766 // <op_name> when the <op_name> is instantiated with the given attrs.
767 //
768 // E.g.,
769 //
770 // Status MatMulGrad(const AttrSlice& attrs, FunctionDef* g) {
771 //   bool transpose_a;
772 //   TF_RETURN_IF_ERROR(attrs.Get("transpose_a", &transpose_a));
773 //   bool transpose_b;
774 //   TF_RETURN_IF_ERROR(attrs.Get("transpose_b", &transpose_b));
775 //   DataType dtype;
776 //   TF_RETURN_IF_ERROR(attrs.Get("dtype", &dtype));
777 //   if (!transpose_a && !transpose_b) {
778 //     *g = FunctionDefHelper::Define(
779 //       "MatMulGrad",
780 //       {"x:T ", "y:T", "dz:T"},    // Inputs to this function
781 //       {"dx:T", "dy:T"},           // Outputs from this function
782 //       {"T: {float, double}"},     // Attributes needed by this function
783 //       {
784 //         {{"x_t"}, "Transpose", {"x"}, {{"T", "$T"}}},
785 //         {{"y_t"}, "Transpose", {"y"}, {{"T", "$T"}}},
786 //         {{"dx"}, "MatMul", {"dz", "y_t"}, {{"T", "$T"}}},
787 //         {{"dy"}, "MatMul", {"x_", "dz"}, {{"T", "$T"}}},
788 //       });
789 //   } else {
790 //     ... ...
791 //   }
792 //   return Status::OK();
793 // }
794 //
795 // NOTE: $T is substituted with the type variable "T" when the
796 // gradient function MatMul is instantiated.
797 //
798 // TODO(zhifengc): Better documentation somewhere.
799 
800 // Macros to define a gradient function factory for a primitive
801 // operation.
802 #define REGISTER_OP_GRADIENT(name, fn) \
803   REGISTER_OP_GRADIENT_UNIQ_HELPER(__COUNTER__, name, fn)
804 
805 #define REGISTER_OP_NO_GRADIENT(name) \
806   REGISTER_OP_GRADIENT_UNIQ_HELPER(__COUNTER__, name, nullptr)
807 
808 #define REGISTER_OP_GRADIENT_UNIQ_HELPER(ctr, name, fn) \
809   REGISTER_OP_GRADIENT_UNIQ(ctr, name, fn)
810 
811 #define REGISTER_OP_GRADIENT_UNIQ(ctr, name, fn)      \
812   static bool unused_grad_##ctr TF_ATTRIBUTE_UNUSED = \
813       SHOULD_REGISTER_OP_GRADIENT &&                  \
814       ::tensorflow::gradient::RegisterOp(name, fn)
815 
816 namespace gradient {
817 // Register a gradient creator for the "op".
818 typedef std::function<Status(const AttrSlice& attrs, FunctionDef*)> Creator;
819 bool RegisterOp(const string& op, Creator func);
820 
821 // Returns OK the gradient creator for the "op" is found (may be
822 // nullptr if REGISTER_OP_NO_GRADIENT is used.
823 Status GetOpGradientCreator(const string& op, Creator* creator);
824 };  // namespace gradient
825 
826 // Declare explicit instantiations of GetAttr
827 #define GET_ATTR(T)                                          \
828   extern template Status FunctionLibraryDefinition::GetAttr( \
829       const Node&, const string&, T*) const;                 \
830   extern template Status FunctionLibraryDefinition::GetAttr( \
831       const NodeDef&, const string&, T*) const;
832 GET_ATTR(string)
833 GET_ATTR(bool)
834 #undef GET_ATTR
835 
836 }  // end namespace tensorflow
837 
838 #endif  // TENSORFLOW_CORE_FRAMEWORK_FUNCTION_H_
839