1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_CORE_GRAPPLER_COSTS_GRAPH_PROPERTIES_H_
17 #define TENSORFLOW_CORE_GRAPPLER_COSTS_GRAPH_PROPERTIES_H_
18 
19 #include <unordered_map>
20 #include <vector>
21 #include "tensorflow/core/framework/shape_inference.h"
22 #include "tensorflow/core/grappler/clusters/cluster.h"
23 #include "tensorflow/core/grappler/costs/op_performance_data.pb.h"
24 #include "tensorflow/core/grappler/grappler_item.h"
25 
26 namespace tensorflow {
27 
28 namespace grappler {
29 
30 // Optional attributes that tell about node output information.
31 // We use these side information, if provided, for static shape inference
32 // and VirtualScheduler scheduling.
33 
34 // Switch op attribute as a vector of int that tells which branch the
35 // Switch output is taken on every round of execution.
36 // Used for scheduling ops after Switch correctly (e.g., While loop).
37 ABSL_CONST_INIT const char kOutputSlots[] = "_output_slot_vector";
38 
39 // Example:
40 // Assume a node has two outputs and iterated for three times. Then it has:
41 // _execution_count = 3
42 // _output_sizes_vector = [2, 2, 2]
43 // _output_dtype_vector.size = 6
44 // _output_shape_vector.size = 6
45 
46 // If all the iterations have same output shapes, then
47 // _execution_count = 3
48 // _same_output_for_iterations = true
49 // _output_sizes_vector = [2]
50 // _output_dtype_vector.size = 2
51 // _output_shape_vector.size = 2
52 
53 // How many times this node has been executed.
54 ABSL_CONST_INIT const char kExecutionCount[] = "_execution_count";
55 
56 // Records the output sizes for each round of execution.
57 ABSL_CONST_INIT const char kOutputSizes[] = "_output_sizes_vector";
58 
59 // The node has been scheduled multiple times with outputs that have the same
60 // shape.
61 ABSL_CONST_INIT const char kOutputSame[] = "_same_output_for_iterations";
62 
63 // Outputs DataType vector.
64 ABSL_CONST_INIT const char kOutputTypes[] = "_output_dtype_vector";
65 
66 // Outputs TensorShapeProto vector.
67 ABSL_CONST_INIT const char kOutputShapes[] = "_output_shape_vector";
68 
69 class SymbolicShapeRefiner;
70 class TopoQueue;
71 
72 // Infer OpInfo::TensorProperties for graph nodes inputs/outputs.
73 //
74 // Typical use case, is to infer tensor properties from a graph, before doing
75 // optimization pass. Nodes modified during optimization pass have to be
76 // invalidated, to prevent further incorrect optimizations based on wrong shape
77 // and data type properties.
78 class GraphProperties {
79  public:
80   // The item must outlive the properties
GraphProperties(const GrapplerItem & item)81   explicit GraphProperties(const GrapplerItem& item) : item_(item) {}
82 
83   // Infer the shapes through abstract interpretation. Feed information can be
84   // incorrect so it should be discarded to ensure correctness of the analysis.
85   // However, it can help infer shapes in the fanout of fed nodes (even though
86   // the correctness of these shapes can't be guaranteed), so in some cases
87   // (such as simulation or scheduling) it makes sense of keep these shapes.
88   // aggressive_shape_inference option executes nodes on the host to identify
89   // output values when possible and does other aggressive strategies.
90   // Similar to assuming_valid_feeds, this may cause incorrectness in graph
91   // analyses, but is useful for simulation or scheduling.
92   Status InferStatically(bool assume_valid_feeds,
93                          bool aggressive_shape_inference);
InferStatically(bool assume_valid_feeds)94   Status InferStatically(bool assume_valid_feeds) {
95     return InferStatically(assume_valid_feeds,
96                            /*aggressive_shape_inference=*/false);
97   }
98   // Infer the shape by running the graph on the specified cluster and recording
99   // the shapes of the processed tensors.
100   Status InferDynamically(Cluster* cluster);
101   // Extract the properties from a cost graph. For testing only since there is
102   // no way to ensure that the cost graph match the item.
103   Status InferFromCostGraph(const CostGraphDef& cost_graph);
104 
105   // Stores `item_.graph` with the inferred output shapes to `output_graph_def`.
106   Status AnnotateOutputShapes(GraphDef* output_graph_def) const;
107 
108   // Return the properties of node inputs/outputs, including data types and
109   // shapes. Note that the dimensions in the shapes can be negative. We use the
110   // -1 value to denote that we don't know anything about a dimension. We use
111   // values strictly less than -1 to encode symbolic dimensions: although we
112   // don't know the actual value of the symbolic dimension, we know that all the
113   // dimensions denoted by the same negative value are the equal.
114   bool HasInputProperties(const string& node_name) const;
115   bool HasOutputProperties(const string& node_name) const;
116   const std::vector<OpInfo::TensorProperties>& GetInputProperties(
117       const string& node_name) const;
118   const std::vector<OpInfo::TensorProperties>& GetOutputProperties(
119       const string& node_name) const;
120   // Invalidate input/output properties for nodes modified during graph
121   // optimization pass, to prevent potential optimizations, based on incorrect
122   // shape information.
123   void ClearInputProperties(const string& node_name);
124   void ClearOutputProperties(const string& node_name);
125   // Returns true if we have *any* properties.
has_properties()126   bool has_properties() const {
127     return input_properties_.size() > 0 || output_properties_.size() > 0;
128   }
129 
130  private:
131   // Relaxes shapes <shapes_and_types>, determined from an EnqueueV2 node, into
132   // <*queue_shapes_and_types>.
133   static Status RelaxEnqueueShapesAndMergeTypes(
134       SymbolicShapeRefiner* shape_refiner, const NodeDef* qnode,
135       const std::vector<shape_inference::ShapeAndType>& shapes_and_types,
136       std::vector<shape_inference::ShapeAndType>* queue_shapes_and_types);
137 
138   // Update the shapes of the enqueue node, port them over to the corresponding
139   // queue, and schedule the reprocessing of the queue if needed.
140   static Status UpdateEnqueue(
141       const NodeDef* enqueue_node,
142       const std::unordered_map<const NodeDef*, const NodeDef*>&
143           resource_handles,
144       SymbolicShapeRefiner* shape_refiner, bool* new_shapes);
145 
146   // Update the shapes and types of the Queue node, if not set by Enqueue node.
147   static Status UpdateQueue(const NodeDef* queue_node,
148                             SymbolicShapeRefiner* shape_refiner,
149                             bool* new_shapes);
150 
151   // Update the output shapes of a Merge node, and enqueue its fanout in
152   // new_shapes if needed.
153   Status UpdateMerge(SymbolicShapeRefiner* shape_refiner, const NodeDef* node,
154                      bool* new_shapes) const;
155   // Process the Enter node, and enqueue its fanout in new_shapes if needed.
156   static Status UpdateEnter(SymbolicShapeRefiner* shape_refiner,
157                             const NodeDef* node, bool* new_shapes);
158   // Update the shapes for node 'n'. If output shapes for n have changed,
159   // enqueue its fanout in 'new_shapes'.
160   Status UpdateShapes(SymbolicShapeRefiner* shape_refiner,
161                       const std::unordered_map<const NodeDef*, const NodeDef*>&
162                           resource_handles,
163                       const NodeDef* n, bool* new_shapes) const;
164   // Propagate the shapes for the nodes enqueued in new_shapes and their
165   // transitive fanout until a fixed point is reached.
166   Status PropagateShapes(
167       SymbolicShapeRefiner* shape_refiner, TopoQueue* new_shapes,
168       const std::unordered_map<const NodeDef*, const NodeDef*>&
169           resource_handles,
170       int num_loops) const;
171 
172   // Data members
173   const GrapplerItem& item_;
174   std::unordered_map<string, std::vector<OpInfo::TensorProperties>>
175       input_properties_;
176   std::unordered_map<string, std::vector<OpInfo::TensorProperties>>
177       output_properties_;
178   const std::vector<OpInfo::TensorProperties> missing_properties_;
179 };
180 
181 }  // end namespace grappler
182 }  // end namespace tensorflow
183 
184 #endif  // TENSORFLOW_CORE_GRAPPLER_COSTS_GRAPH_PROPERTIES_H_
185