1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_CORE_LIB_MONITORING_METRIC_DEF_H_
17 #define TENSORFLOW_CORE_LIB_MONITORING_METRIC_DEF_H_
18 
19 #include <array>
20 #include <vector>
21 
22 #include "tensorflow/core/framework/summary.pb.h"
23 #include "tensorflow/core/lib/core/stringpiece.h"
24 #include "tensorflow/core/platform/types.h"
25 
26 namespace tensorflow {
27 namespace monitoring {
28 
29 // The different metric kinds available.
30 //
31 // Gauge indicates that the metric's values are instantaneous measurements of a
32 // (typically) continuously varying value. Examples: a process's current heap
33 // size, a queue's current length, the name of the binary used by a process,
34 // whether a task is complete.
35 //
36 // Cumulative indicates that the metric's values represent non-negative changes
37 // over specified time periods. Example: the number of rpc calls to a service.
38 enum class MetricKind : int { kGauge = 0, kCumulative };
39 
40 // The type of the metric values.
41 enum class ValueType : int { kInt64 = 0, kHistogram, kString, kBool };
42 
43 // Everything in the internal namespace is implementation details. Do not depend
44 // on this.
45 namespace internal {
46 
47 template <typename Value>
48 ValueType GetValueType();
49 
50 template <>
51 inline ValueType GetValueType<int64>() {
52   return ValueType::kInt64;
53 }
54 
55 template <>
56 inline ValueType GetValueType<HistogramProto>() {
57   return ValueType::kHistogram;
58 }
59 
60 template <>
61 inline ValueType GetValueType<string>() {
62   return ValueType::kString;
63 }
64 
65 template <>
66 inline ValueType GetValueType<bool>() {
67   return ValueType::kBool;
68 }
69 
70 }  // namespace internal
71 
72 // Abstract base class for a metric definition.
73 //
74 // Unlike MetricDef, this class is non-templatized and allows storing and
75 // accessing metric definitions without the full type information.
76 //
77 // Everything except the value type of a metric is stored here. Please read
78 // MetricDef class comments for more details.
79 class AbstractMetricDef {
80  public:
kind()81   MetricKind kind() const { return kind_; }
82 
value_type()83   ValueType value_type() const { return value_type_; }
84 
name()85   StringPiece name() const { return name_; }
86 
description()87   StringPiece description() const { return description_; }
88 
label_descriptions()89   const std::vector<string>& label_descriptions() const {
90     return label_descriptions_;
91   }
92 
93  private:
94   template <MetricKind kind, typename Value, int NumLabels>
95   friend class MetricDef;
96 
AbstractMetricDef(const MetricKind kind,const ValueType value_type,const StringPiece name,const StringPiece description,const std::vector<string> & label_descriptions)97   AbstractMetricDef(const MetricKind kind, const ValueType value_type,
98                     const StringPiece name, const StringPiece description,
99                     const std::vector<string>& label_descriptions)
100       : kind_(kind),
101         value_type_(value_type),
102         name_(name),
103         description_(description),
104         label_descriptions_(std::vector<string>(label_descriptions.begin(),
105                                                 label_descriptions.end())) {}
106 
107   const MetricKind kind_;
108   const ValueType value_type_;
109   const string name_;
110   const string description_;
111   const std::vector<string> label_descriptions_;
112 };
113 
114 // Metric definition.
115 //
116 // A metric is defined by its kind, value-type, name, description and the
117 // description of its labels.
118 //
119 // NOTE: Name, description, and label descriptions should be logically static,
120 // but do not have to live for the lifetime of the MetricDef.
121 //
122 // By "logically static", we mean that they should never contain dynamic
123 // information, but is static for the lifetime of the MetricDef, and
124 // in-turn the metric; they do not need to be compile-time constants.
125 // This allows for e.g. prefixed metrics in a CLIF wrapped environment.
126 template <MetricKind metric_kind, typename Value, int NumLabels>
127 class MetricDef : public AbstractMetricDef {
128  public:
129   template <typename... LabelDesc>
MetricDef(const StringPiece name,const StringPiece description,const LabelDesc &...label_descriptions)130   MetricDef(const StringPiece name, const StringPiece description,
131             const LabelDesc&... label_descriptions)
132       : AbstractMetricDef(metric_kind, internal::GetValueType<Value>(), name,
133                           description, {label_descriptions...}) {
134     static_assert(sizeof...(LabelDesc) == NumLabels,
135                   "Mismatch between Counter<NumLabels> and number of label "
136                   "descriptions.");
137   }
138 };
139 
140 }  // namespace monitoring
141 }  // namespace tensorflow
142 
143 #endif  // TENSORFLOW_CORE_LIB_MONITORING_METRIC_DEF_H_
144