1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 // The utility to write checkpoints for google brain tensor ops and v3
17 // checkpoints for dist_belief.
18 
19 #ifndef TENSORFLOW_CORE_UTIL_TENSOR_SLICE_WRITER_H_
20 #define TENSORFLOW_CORE_UTIL_TENSOR_SLICE_WRITER_H_
21 
22 #include <unordered_map>
23 
24 #include "tensorflow/core/framework/tensor_shape.h"
25 #include "tensorflow/core/framework/tensor_slice.h"
26 #include "tensorflow/core/framework/types.h"
27 #include "tensorflow/core/lib/core/errors.h"
28 #include "tensorflow/core/lib/core/status.h"
29 #include "tensorflow/core/lib/core/stringpiece.h"
30 #include "tensorflow/core/lib/gtl/map_util.h"
31 #include "tensorflow/core/lib/strings/stringprintf.h"
32 #include "tensorflow/core/platform/logging.h"
33 #include "tensorflow/core/platform/macros.h"
34 #include "tensorflow/core/platform/types.h"
35 #include "tensorflow/core/util/saved_tensor_slice.pb_text.h"
36 #include "tensorflow/core/util/saved_tensor_slice.pb.h"
37 #include "tensorflow/core/util/saved_tensor_slice_util.h"
38 
39 namespace tensorflow {
40 
41 namespace checkpoint {
42 
43 class TensorSliceWriter {
44  public:
45   // Abstract interface that TensorSliceWriter uses for building
46   class Builder {
47    public:
~Builder()48     virtual ~Builder() {}
49     virtual void Add(StringPiece key, StringPiece value) = 0;
50     virtual Status Finish(int64* file_size) = 0;
51   };
52   typedef std::function<Status(const string&, Builder**)> CreateBuilderFunction;
53 
54   TensorSliceWriter(const string& filename,
55                     CreateBuilderFunction create_builder);
~TensorSliceWriter()56   virtual ~TensorSliceWriter() {}
57   // Adds a slice. We support float and int32 for now.
58   // TODO(yangke): add more supports
59   template <typename T>
60   Status Add(const string& name, const TensorShape& shape,
61              const TensorSlice& slice, const T* data);
62   Status Finish();
63 
64   // Allocate "num_elements" elements in "ss" and save the data in "data"
65   // there.
66   template <typename T>
67   static Status SaveData(const T* data, int64 num_elements, SavedSlice* ss);
68 
69   static size_t MaxBytesPerElement(DataType dt);
70 
71  private:
72   static const size_t kMaxMessageBytes = 1LL << 31;
73   // Filling in the TensorProto in a SavedSlice will add the following
74   // header bytes, in addition to the data:
75   // - 1 byte: TensorProto tag and wire format
76   // - <= 5 bytes: TensorProto length
77   // - 1 byte: Repeated *_val tag and wire format
78   // - <= 5 bytes: *_val length
79   // However, we add 1KB of slack, to be conservative and guard
80   // against other additions to the TensorProto.
81   static const size_t kTensorProtoHeaderBytes = 1 << 10;
82 
83   const string filename_;
84   const CreateBuilderFunction create_builder_;
85   const string tmpname_;
86 
87   // A mapping from the tensor names to their index in meta_.saved_slice_meta()
88   std::unordered_map<string, int> name_to_index_;
89   // The metadata that holds all the saved tensor slices.
90   SavedTensorSlices sts_;
91   // The data to be written to the builder
92   std::map<string, string> data_;
93   // Total number of slices written
94   int slices_;
95   TF_DISALLOW_COPY_AND_ASSIGN(TensorSliceWriter);
96 };
97 
98 template <typename T>
Add(const string & name,const TensorShape & shape,const TensorSlice & slice,const T * data)99 Status TensorSliceWriter::Add(const string& name, const TensorShape& shape,
100                               const TensorSlice& slice, const T* data) {
101   // The tensor and the slice have to be compatible
102   if (shape.dims() != slice.dims()) {
103     return errors::Internal("Incompatible tensor shape and slice: ", "shape = ",
104                             shape.DebugString(),
105                             ", slice = ", slice.DebugString());
106   }
107   DataType dt = DataTypeToEnum<T>::value;
108   // We need to add an entry for "name" if there isn't an entry already.
109   int index = gtl::FindWithDefault(name_to_index_, name, -1);
110   if (index >= 0) {
111     // The same tensor has been registered -- we verify that the shapes and the
112     // type agree.
113     const SavedSliceMeta& ssm = sts_.meta().tensor(index);
114     CHECK_EQ(name, ssm.name()) << ProtoShortDebugString(ssm);
115     TensorShape ssm_shape(ssm.shape());
116     if (!shape.IsSameSize(ssm_shape)) {
117       return errors::Internal(
118           "Mismatching shapes: existing tensor = ", ssm_shape.DebugString(),
119           ", trying to add name ", name, ", shape = ", shape.DebugString());
120     }
121     if (dt != ssm.type()) {
122       return errors::Internal(
123           "Mismatching types: existing type = ", DataTypeString(ssm.type()),
124           ", trying to add name ", name, ", type = ", DataTypeString(dt));
125     }
126   } else {
127     // Insert the new tensor name with the shape information
128     index = sts_.meta().tensor_size();
129     name_to_index_.insert(std::make_pair(name, index));
130     SavedSliceMeta* ssm = sts_.mutable_meta()->add_tensor();
131     ssm->set_name(name);
132     shape.AsProto(ssm->mutable_shape());
133     ssm->set_type(dt);
134   }
135   // Now we need to add the slice info the list of slices.
136   SavedSliceMeta* ssm = sts_.mutable_meta()->mutable_tensor(index);
137   slice.AsProto(ssm->add_slice());
138 
139   // Now we need to add the real data.
140   {
141     SavedTensorSlices sts;
142     SavedSlice* ss = sts.mutable_data();
143     ss->set_name(name);
144     slice.AsProto(ss->mutable_slice());
145     TensorShape saved_shape(ssm->shape());
146     TensorShape sliced_shape;
147     TF_RETURN_IF_ERROR(slice.SliceTensorShape(saved_shape, &sliced_shape));
148     TF_RETURN_IF_ERROR(SaveData(data, sliced_shape.num_elements(), ss));
149     string key = EncodeTensorNameSlice(name, slice);
150     // TODO(yangke): consider doing a two-pass thing where the first pass just
151     // list the tensor slices we want to save and then another pass to actually
152     // set the data. Need to figure out if the interface works well.
153     std::pair<string, string> key_value(key, "");
154     if (!sts.AppendToString(&key_value.second)) {
155       return errors::Internal("Error writing Tensor. Possible size overflow.");
156     }
157     data_.insert(key_value);
158   }
159   ++slices_;
160   return Status::OK();
161 }
162 
163 template <typename T>
SaveData(const T * data,int64 num_elements,SavedSlice * ss)164 Status TensorSliceWriter::SaveData(const T* data, int64 num_elements,
165                                    SavedSlice* ss) {
166   size_t size_bound =
167       ss->ByteSize() + kTensorProtoHeaderBytes +
168       (MaxBytesPerElement(DataTypeToEnum<T>::value) * num_elements);
169   if (size_bound > kMaxMessageBytes) {
170     return errors::InvalidArgument(
171         "Tensor slice is too large to serialize (conservative estimate: ",
172         size_bound, " bytes)");
173   }
174   Fill(data, num_elements, ss->mutable_data());
175   DCHECK_GE(ss->ByteSize(), 0);
176   DCHECK_LE(ss->ByteSize(), size_bound);
177   return Status::OK();
178 }
179 
180 template <>
181 Status TensorSliceWriter::SaveData(const string* data, int64 num_elements,
182                                    SavedSlice* ss);
183 
184 // Create a table builder that will write to "filename" in
185 // tensorflow::io::Table format.  If successful, return OK
186 // and set "*builder" to the allocated builder.  Otherwise, return a
187 // non-OK status.
188 Status CreateTableTensorSliceBuilder(const string& filename,
189                                      TensorSliceWriter::Builder** builder);
190 
191 }  // namespace checkpoint
192 
193 }  // namespace tensorflow
194 
195 #endif  // TENSORFLOW_CORE_UTIL_TENSOR_SLICE_WRITER_H_
196