1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ******************************************************************************
5 *
6 *   Copyright (C) 2008-2015, International Business Machines
7 *   Corporation and others.  All Rights Reserved.
8 *
9 ******************************************************************************
10 *   file name:  uspoof_conf.cpp
11 *   encoding:   UTF-8
12 *   tab size:   8 (not used)
13 *   indentation:4
14 *
15 *   created on: 2009Jan05  (refactoring earlier files)
16 *   created by: Andy Heninger
17 *
18 *   Internal classes for compililing confusable data into its binary (runtime) form.
19 */
20 
21 #include "unicode/utypes.h"
22 #include "unicode/uspoof.h"
23 #if !UCONFIG_NO_REGULAR_EXPRESSIONS
24 #if !UCONFIG_NO_NORMALIZATION
25 
26 #include "unicode/unorm.h"
27 #include "unicode/uregex.h"
28 #include "unicode/ustring.h"
29 #include "cmemory.h"
30 #include "uspoof_impl.h"
31 #include "uhash.h"
32 #include "uvector.h"
33 #include "uassert.h"
34 #include "uarrsort.h"
35 #include "uspoof_conf.h"
36 
37 U_NAMESPACE_USE
38 
39 
40 //---------------------------------------------------------------------
41 //
42 //  buildConfusableData   Compile the source confusable data, as defined by
43 //                        the Unicode data file confusables.txt, into the binary
44 //                        structures used by the confusable detector.
45 //
46 //                        The binary structures are described in uspoof_impl.h
47 //
48 //     1.  Parse the data, making a hash table mapping from a UChar32 to a String.
49 //
50 //     2.  Sort all of the strings encountered by length, since they will need to
51 //         be stored in that order in the final string table.
52 //         TODO: Sorting these strings by length is no longer needed since the removal of
53 //         the string lengths table.  This logic can be removed to save processing time
54 //         when building confusables data.
55 //
56 //     3.  Build a list of keys (UChar32s) from the four mapping tables.  Sort the
57 //         list because that will be the ordering of our runtime table.
58 //
59 //     4.  Generate the run time string table.  This is generated before the key & value
60 //         tables because we need the string indexes when building those tables.
61 //
62 //     5.  Build the run-time key and value tables.  These are parallel tables, and are built
63 //         at the same time
64 //
65 
SPUString(UnicodeString * s)66 SPUString::SPUString(UnicodeString *s) {
67     fStr = s;
68     fCharOrStrTableIndex = 0;
69 }
70 
71 
~SPUString()72 SPUString::~SPUString() {
73     delete fStr;
74 }
75 
76 
SPUStringPool(UErrorCode & status)77 SPUStringPool::SPUStringPool(UErrorCode &status) : fVec(NULL), fHash(NULL) {
78     fVec = new UVector(status);
79     if (fVec == NULL) {
80         status = U_MEMORY_ALLOCATION_ERROR;
81         return;
82     }
83     fHash = uhash_open(uhash_hashUnicodeString,           // key hash function
84                        uhash_compareUnicodeString,        // Key Comparator
85                        NULL,                              // Value Comparator
86                        &status);
87 }
88 
89 
~SPUStringPool()90 SPUStringPool::~SPUStringPool() {
91     int i;
92     for (i=fVec->size()-1; i>=0; i--) {
93         SPUString *s = static_cast<SPUString *>(fVec->elementAt(i));
94         delete s;
95     }
96     delete fVec;
97     uhash_close(fHash);
98 }
99 
100 
size()101 int32_t SPUStringPool::size() {
102     return fVec->size();
103 }
104 
getByIndex(int32_t index)105 SPUString *SPUStringPool::getByIndex(int32_t index) {
106     SPUString *retString = (SPUString *)fVec->elementAt(index);
107     return retString;
108 }
109 
110 
111 // Comparison function for ordering strings in the string pool.
112 // Compare by length first, then, within a group of the same length,
113 // by code point order.
114 // Conforms to the type signature for a USortComparator in uvector.h
115 
SPUStringCompare(UHashTok left,UHashTok right)116 static int8_t U_CALLCONV SPUStringCompare(UHashTok left, UHashTok right) {
117 	const SPUString *sL = const_cast<const SPUString *>(
118         static_cast<SPUString *>(left.pointer));
119  	const SPUString *sR = const_cast<const SPUString *>(
120  	    static_cast<SPUString *>(right.pointer));
121     int32_t lenL = sL->fStr->length();
122     int32_t lenR = sR->fStr->length();
123     if (lenL < lenR) {
124         return -1;
125     } else if (lenL > lenR) {
126         return 1;
127     } else {
128         return sL->fStr->compare(*(sR->fStr));
129     }
130 }
131 
sort(UErrorCode & status)132 void SPUStringPool::sort(UErrorCode &status) {
133     fVec->sort(SPUStringCompare, status);
134 }
135 
136 
addString(UnicodeString * src,UErrorCode & status)137 SPUString *SPUStringPool::addString(UnicodeString *src, UErrorCode &status) {
138     SPUString *hashedString = static_cast<SPUString *>(uhash_get(fHash, src));
139     if (hashedString != NULL) {
140         delete src;
141     } else {
142         hashedString = new SPUString(src);
143         if (hashedString == NULL) {
144             status = U_MEMORY_ALLOCATION_ERROR;
145             return NULL;
146         }
147         uhash_put(fHash, src, hashedString, &status);
148         fVec->addElement(hashedString, status);
149     }
150     return hashedString;
151 }
152 
153 
154 
ConfusabledataBuilder(SpoofImpl * spImpl,UErrorCode & status)155 ConfusabledataBuilder::ConfusabledataBuilder(SpoofImpl *spImpl, UErrorCode &status) :
156     fSpoofImpl(spImpl),
157     fInput(NULL),
158     fTable(NULL),
159     fKeySet(NULL),
160     fKeyVec(NULL),
161     fValueVec(NULL),
162     fStringTable(NULL),
163     stringPool(NULL),
164     fParseLine(NULL),
165     fParseHexNum(NULL),
166     fLineNum(0)
167 {
168     if (U_FAILURE(status)) {
169         return;
170     }
171 
172     fTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status);
173 
174     fKeySet = new UnicodeSet();
175     if (fKeySet == NULL) {
176         status = U_MEMORY_ALLOCATION_ERROR;
177         return;
178     }
179 
180     fKeyVec = new UVector(status);
181     if (fKeyVec == NULL) {
182         status = U_MEMORY_ALLOCATION_ERROR;
183         return;
184     }
185 
186     fValueVec = new UVector(status);
187     if (fValueVec == NULL) {
188         status = U_MEMORY_ALLOCATION_ERROR;
189         return;
190     }
191 
192     stringPool = new SPUStringPool(status);
193     if (stringPool == NULL) {
194         status = U_MEMORY_ALLOCATION_ERROR;
195         return;
196     }
197 }
198 
199 
~ConfusabledataBuilder()200 ConfusabledataBuilder::~ConfusabledataBuilder() {
201     uprv_free(fInput);
202     uregex_close(fParseLine);
203     uregex_close(fParseHexNum);
204     uhash_close(fTable);
205     delete fKeySet;
206     delete fKeyVec;
207     delete fStringTable;
208     delete fValueVec;
209     delete stringPool;
210 }
211 
212 
buildConfusableData(SpoofImpl * spImpl,const char * confusables,int32_t confusablesLen,int32_t * errorType,UParseError * pe,UErrorCode & status)213 void ConfusabledataBuilder::buildConfusableData(SpoofImpl * spImpl, const char * confusables,
214     int32_t confusablesLen, int32_t *errorType, UParseError *pe, UErrorCode &status) {
215 
216     if (U_FAILURE(status)) {
217         return;
218     }
219     ConfusabledataBuilder builder(spImpl, status);
220     builder.build(confusables, confusablesLen, status);
221     if (U_FAILURE(status) && errorType != NULL) {
222         *errorType = USPOOF_SINGLE_SCRIPT_CONFUSABLE;
223         pe->line = builder.fLineNum;
224     }
225 }
226 
227 
build(const char * confusables,int32_t confusablesLen,UErrorCode & status)228 void ConfusabledataBuilder::build(const char * confusables, int32_t confusablesLen,
229                UErrorCode &status) {
230 
231     // Convert the user input data from UTF-8 to UChar (UTF-16)
232     int32_t inputLen = 0;
233     if (U_FAILURE(status)) {
234         return;
235     }
236     u_strFromUTF8(NULL, 0, &inputLen, confusables, confusablesLen, &status);
237     if (status != U_BUFFER_OVERFLOW_ERROR) {
238         return;
239     }
240     status = U_ZERO_ERROR;
241     fInput = static_cast<UChar *>(uprv_malloc((inputLen+1) * sizeof(UChar)));
242     if (fInput == NULL) {
243         status = U_MEMORY_ALLOCATION_ERROR;
244         return;
245     }
246     u_strFromUTF8(fInput, inputLen+1, NULL, confusables, confusablesLen, &status);
247 
248 
249     // Regular Expression to parse a line from Confusables.txt.  The expression will match
250     // any line.  What was matched is determined by examining which capture groups have a match.
251     //   Capture Group 1:  the source char
252     //   Capture Group 2:  the replacement chars
253     //   Capture Group 3-6  the table type, SL, SA, ML, or MA (deprecated)
254     //   Capture Group 7:  A blank or comment only line.
255     //   Capture Group 8:  A syntactically invalid line.  Anything that didn't match before.
256     // Example Line from the confusables.txt source file:
257     //   "1D702 ;	006E 0329 ;	SL	# MATHEMATICAL ITALIC SMALL ETA ... "
258     UnicodeString pattern(
259         "(?m)^[ \\t]*([0-9A-Fa-f]+)[ \\t]+;"      // Match the source char
260         "[ \\t]*([0-9A-Fa-f]+"                    // Match the replacement char(s)
261            "(?:[ \\t]+[0-9A-Fa-f]+)*)[ \\t]*;"    //     (continued)
262         "\\s*(?:(SL)|(SA)|(ML)|(MA))"             // Match the table type
263         "[ \\t]*(?:#.*?)?$"                       // Match any trailing #comment
264         "|^([ \\t]*(?:#.*?)?)$"       // OR match empty lines or lines with only a #comment
265         "|^(.*?)$", -1, US_INV);      // OR match any line, which catches illegal lines.
266     // TODO: Why are we using the regex C API here? C++ would just take UnicodeString...
267     fParseLine = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status);
268 
269     // Regular expression for parsing a hex number out of a space-separated list of them.
270     //   Capture group 1 gets the number, with spaces removed.
271     pattern = UNICODE_STRING_SIMPLE("\\s*([0-9A-F]+)");
272     fParseHexNum = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status);
273 
274     // Zap any Byte Order Mark at the start of input.  Changing it to a space is benign
275     //   given the syntax of the input.
276     if (*fInput == 0xfeff) {
277         *fInput = 0x20;
278     }
279 
280     // Parse the input, one line per iteration of this loop.
281     uregex_setText(fParseLine, fInput, inputLen, &status);
282     while (uregex_findNext(fParseLine, &status)) {
283         fLineNum++;
284         if (uregex_start(fParseLine, 7, &status) >= 0) {
285             // this was a blank or comment line.
286             continue;
287         }
288         if (uregex_start(fParseLine, 8, &status) >= 0) {
289             // input file syntax error.
290             status = U_PARSE_ERROR;
291             return;
292         }
293 
294         // We have a good input line.  Extract the key character and mapping string, and
295         //    put them into the appropriate mapping table.
296         UChar32 keyChar = SpoofImpl::ScanHex(fInput, uregex_start(fParseLine, 1, &status),
297                           uregex_end(fParseLine, 1, &status), status);
298 
299         int32_t mapStringStart = uregex_start(fParseLine, 2, &status);
300         int32_t mapStringLength = uregex_end(fParseLine, 2, &status) - mapStringStart;
301         uregex_setText(fParseHexNum, &fInput[mapStringStart], mapStringLength, &status);
302 
303         UnicodeString  *mapString = new UnicodeString();
304         if (mapString == NULL) {
305             status = U_MEMORY_ALLOCATION_ERROR;
306             return;
307         }
308         while (uregex_findNext(fParseHexNum, &status)) {
309             UChar32 c = SpoofImpl::ScanHex(&fInput[mapStringStart], uregex_start(fParseHexNum, 1, &status),
310                                  uregex_end(fParseHexNum, 1, &status), status);
311             mapString->append(c);
312         }
313         U_ASSERT(mapString->length() >= 1);
314 
315         // Put the map (value) string into the string pool
316         // This a little like a Java intern() - any duplicates will be eliminated.
317         SPUString *smapString = stringPool->addString(mapString, status);
318 
319         // Add the UChar32 -> string mapping to the table.
320         // For Unicode 8, the SL, SA and ML tables have been discontinued.
321         //                All input data from confusables.txt is tagged MA.
322         uhash_iput(fTable, keyChar, smapString, &status);
323         if (U_FAILURE(status)) { return; }
324         fKeySet->add(keyChar);
325     }
326 
327     // Input data is now all parsed and collected.
328     // Now create the run-time binary form of the data.
329     //
330     // This is done in two steps.  First the data is assembled into vectors and strings,
331     //   for ease of construction, then the contents of these collections are dumped
332     //   into the actual raw-bytes data storage.
333 
334     // Build up the string array, and record the index of each string therein
335     //  in the (build time only) string pool.
336     // Strings of length one are not entered into the strings array.
337     // (Strings in the table are sorted by length)
338     stringPool->sort(status);
339     fStringTable = new UnicodeString();
340     int32_t poolSize = stringPool->size();
341     int32_t i;
342     for (i=0; i<poolSize; i++) {
343         SPUString *s = stringPool->getByIndex(i);
344         int32_t strLen = s->fStr->length();
345         int32_t strIndex = fStringTable->length();
346         if (strLen == 1) {
347             // strings of length one do not get an entry in the string table.
348             // Keep the single string character itself here, which is the same
349             //  convention that is used in the final run-time string table index.
350             s->fCharOrStrTableIndex = s->fStr->charAt(0);
351         } else {
352             s->fCharOrStrTableIndex = strIndex;
353             fStringTable->append(*(s->fStr));
354         }
355     }
356 
357     // Construct the compile-time Key and Value tables
358     //
359     // For each key code point, check which mapping tables it applies to,
360     //   and create the final data for the key & value structures.
361     //
362     //   The four logical mapping tables are conflated into one combined table.
363     //   If multiple logical tables have the same mapping for some key, they
364     //     share a single entry in the combined table.
365     //   If more than one mapping exists for the same key code point, multiple
366     //     entries will be created in the table
367 
368     for (int32_t range=0; range<fKeySet->getRangeCount(); range++) {
369         // It is an oddity of the UnicodeSet API that simply enumerating the contained
370         //   code points requires a nested loop.
371         for (UChar32 keyChar=fKeySet->getRangeStart(range);
372                 keyChar <= fKeySet->getRangeEnd(range); keyChar++) {
373             SPUString *targetMapping = static_cast<SPUString *>(uhash_iget(fTable, keyChar));
374             U_ASSERT(targetMapping != NULL);
375 
376             // Set an error code if trying to consume a long string.  Otherwise,
377             // codePointAndLengthToKey will abort on a U_ASSERT.
378             if (targetMapping->fStr->length() > 256) {
379                 status = U_ILLEGAL_ARGUMENT_ERROR;
380                 return;
381             }
382 
383             int32_t key = ConfusableDataUtils::codePointAndLengthToKey(keyChar,
384                 targetMapping->fStr->length());
385             int32_t value = targetMapping->fCharOrStrTableIndex;
386 
387             fKeyVec->addElement(key, status);
388             fValueVec->addElement(value, status);
389         }
390     }
391 
392     // Put the assembled data into the flat runtime array
393     outputData(status);
394 
395     // All of the intermediate allocated data belongs to the ConfusabledataBuilder
396     //  object  (this), and is deleted in the destructor.
397     return;
398 }
399 
400 //
401 // outputData     The confusable data has been compiled and stored in intermediate
402 //                collections and strings.  Copy it from there to the final flat
403 //                binary array.
404 //
405 //                Note that as each section is added to the output data, the
406 //                expand (reserveSpace() function will likely relocate it in memory.
407 //                Be careful with pointers.
408 //
outputData(UErrorCode & status)409 void ConfusabledataBuilder::outputData(UErrorCode &status) {
410 
411     U_ASSERT(fSpoofImpl->fSpoofData->fDataOwned == TRUE);
412 
413     //  The Key Table
414     //     While copying the keys to the runtime array,
415     //       also sanity check that they are sorted.
416 
417     int32_t numKeys = fKeyVec->size();
418     int32_t *keys =
419         static_cast<int32_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(int32_t), status));
420     if (U_FAILURE(status)) {
421         return;
422     }
423     int i;
424     UChar32 previousCodePoint = 0;
425     for (i=0; i<numKeys; i++) {
426         int32_t key =  fKeyVec->elementAti(i);
427         UChar32 codePoint = ConfusableDataUtils::keyToCodePoint(key);
428         (void)previousCodePoint;    // Suppress unused variable warning.
429         // strictly greater because there can be only one entry per code point
430         U_ASSERT(codePoint > previousCodePoint);
431         keys[i] = key;
432         previousCodePoint = codePoint;
433     }
434     SpoofDataHeader *rawData = fSpoofImpl->fSpoofData->fRawData;
435     rawData->fCFUKeys = (int32_t)((char *)keys - (char *)rawData);
436     rawData->fCFUKeysSize = numKeys;
437     fSpoofImpl->fSpoofData->fCFUKeys = keys;
438 
439 
440     // The Value Table, parallels the key table
441     int32_t numValues = fValueVec->size();
442     U_ASSERT(numKeys == numValues);
443     uint16_t *values =
444         static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(uint16_t), status));
445     if (U_FAILURE(status)) {
446         return;
447     }
448     for (i=0; i<numValues; i++) {
449         uint32_t value = static_cast<uint32_t>(fValueVec->elementAti(i));
450         U_ASSERT(value < 0xffff);
451         values[i] = static_cast<uint16_t>(value);
452     }
453     rawData = fSpoofImpl->fSpoofData->fRawData;
454     rawData->fCFUStringIndex = (int32_t)((char *)values - (char *)rawData);
455     rawData->fCFUStringIndexSize = numValues;
456     fSpoofImpl->fSpoofData->fCFUValues = values;
457 
458     // The Strings Table.
459 
460     uint32_t stringsLength = fStringTable->length();
461     // Reserve an extra space so the string will be nul-terminated.  This is
462     // only a convenience, for when debugging; it is not needed otherwise.
463     UChar *strings =
464         static_cast<UChar *>(fSpoofImpl->fSpoofData->reserveSpace(stringsLength*sizeof(UChar)+2, status));
465     if (U_FAILURE(status)) {
466         return;
467     }
468     fStringTable->extract(strings, stringsLength+1, status);
469     rawData = fSpoofImpl->fSpoofData->fRawData;
470     U_ASSERT(rawData->fCFUStringTable == 0);
471     rawData->fCFUStringTable = (int32_t)((char *)strings - (char *)rawData);
472     rawData->fCFUStringTableLen = stringsLength;
473     fSpoofImpl->fSpoofData->fCFUStrings = strings;
474 }
475 
476 #endif
477 #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
478 
479